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DEFLECTION AND BENDING MOMENTS AMPLITUDE DISTRIBUTION AT THE FORCED
OSCILLATIONS OF THE EULER-BERNOULLI BEAM

Yurii KRUTII, Nikolay SURYANINOV

Abstract: The paper considers forced oscillations of a simply supported Euler-Bemoulli beam with inner inelastic resistance. Maximum values of non-dimensional amplitudes of
bending moments and deflections which are invariants with respect to dimensional parameters of beam are calculated. For beams with any dimensional parameters calculation
of the maximum amplitudes corresponding to the set frequency of forced vibrations, reduces to multiplication by appropriate dimensional factor already calculated invariant
dimensionless values. In a specific example, a comparative analysis of accurate amplitude values for dynamic bending moments and deflections is calculated according to the
author's method, with the same calculation in the ANSYS program complex. Values of the amplitudes in the vicinity of the resonance frequencies are clarified.
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1 INTRODUCTION

One of the major problems in the theory of oscillations
of elastic systems is the study of the influence of external
and internal resistances to oscillation processes. The
calculations on the free oscillations consist in definition of
own frequencies and forms of oscillations, as well as
calculations on forced vibrations away from the resonance
zones. The resistance forces are often neglected. This is due
to the fact that when such calculations accounting the forces
of resistance do not significantly influence the final result.
Another thing is calculation of oscillation near resonance.
This calculation requires the consideration of the resistance
forces, since their effect is appearing in the greatest
measure.

Effect of external and internal resistance to oscillations
is different and depends on many factors: the oscillatory
characteristics of the system, the material of which the
elements of the system are made, parameters of
environment. However, in this case, internal resistance of
inelastic material is of particular importance.

2 BACKGROUND AND ANALYSIS OF RESEARCH

Presence of internal friction in the material was firstly
found by Coulomb in experiments with a torsion balance.
The study of internal friction involved W. Thomson. It was
established experimentally that the resilient material does
not strictly follow Hooke’s law even if the elastic
deformations within the limits of elasticity. This explains
the internal energy loss fluctuations.

Many scientists talk about the importance of internal
friction in the material studies conducted in the beginning of
the 20" century. Experiments of Guye on the internal losses
in the material during torsional vibration of metal wires
showed a completely insignificant role of air friction as
compared with losses in the metal. Rowett, exploring
damping vibrations in machines, found that the share of

domestic energy dissipation in the material accounts for at
least two-thirds of all losses during vibration.

In the dynamic structural analysis, the hypothesis of
Kelvin-Voigt, which is based on the idea of the viscosity of
solids, is widespread when taking into account the internal
resistance of inelastic material [1, 2]. The internal friction
proportional to the velocity was used by the founders of the
applied theory of vibrations A.N.Krylov [3] and
S.P. Timoshenko [4].

However, as it is well known [2], the Kelvin-Voigt’s
hypothesis in its pure form has a number of drawbacks. The
main point is the fact that the hypothesis leads to a
conclusion about the frequency-independent internal
friction in the material, which contradicts the experimental
data. This disadvantage is eliminated by taking the
corrected Kelvin-Voigt hypothesis, according to which the
damping is taken into account in proportion to the strain
rate, divided by the oscillation frequency [2].

Among the fundamental studies on this issue,
particularly noteworthy are the works of A.N. Krylov [3],
S.P. Tymoshenko [4], J.G. Panovko [5] and E.S. Sorokin
[6].

Current studies are characterized by the extensive use
of computer methods of mechanics. Works related to
considering variable mass for different kinds of friction are
published by V.P. Olshansky and S.V. Olshansky [7, 8].
The work of N.N. Berendeev is devoted to the problem of
the influence of the internal friction on the system of forced
oscillations [9].

3 MAIN CHAPTER
3.1 The main symbols and formulas

Consider the forced harmonic oscillations of a hinged
beam internal forces taking into account the inelastic
resistance. The general scheme of the oscillation is shown in
Fig. 1. Fig. 2 shows a diagram of forces acting on the
oscillations of the beam element.
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Figure 1 Forced transverse vibrations of a rod
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Figure 2 Driving forces acting on the rod element

The  following  designations are  accepted:
q(x,t) =qgsinfdt— external dynamic load, where q-
constant amplitude, &— the frequency of the disturbing
force; m— the intensity of the distributed mass (mass per
unit length) of the rod; y(x,t)— lateral movement of the
point with the coordinate axis of the rod at the time
(dynamic bending); ¢(x,t)— dynamic rotation angle;
M (x,t)— dynamic bending moment; Q(x,t)— dynamic
shear force; r(x,t)— the intensity of the internal forces of

. . é’Zy . . N
resistance; f(x,t):—mﬁ— the intensity of the inertial

forces that arise in the course of the oscillation (the power
of D'Alembert).

Assuming, according to the corrected hypothesis of
Kelvin-Voigt [1, 2],

oy
otox*

r(xt) :gEI

the equation of forced oscillations of the beam can be
written as [1, 2]

4
E|(1+7ayja imdY —qgsindt, )
0 at)oxt  ot?

where y— inelastic resistance coefficient (dimensionless
constant for a given material); El — the bending stiffness of

the beam. To this we add the equation as defined boundary
conditions:

y(0,) =0; M(0,t) =0; y(I,t)=0; M(I,t) =0. @)

In the absence of the scientific literature of the exact
solution of the Eq.(1), for the study of forced oscillations of
the beam based on the internal resistance to the present, as a
rule, we used approximate methods. An exception may be
the publication of M. Abu-Hilal [10], where the definition
of the dynamic deflection of the beam is based on the
method of Green's functions.

In [11] an exact solution of the Eq. (1) and fully defined
dynamic parameters of the beam is found. In particular,
formulas for the deflection and bending moments

y(x,t) = y;(x)sin 8t + y, (x) cos 6t 3)
M (x,t) = My (X)(sin 8t + y cos 6t) + 4
+ M, (x)(cos 6t — ysin 6t),

where y, (x), M (x) (k=1,2)— the so-called constituent
functions of their parameters. These functions with
boundary conditions (2) at a point x=0, defined by the
formula [11]:

Y (X) =

013
= (—1)k+l [(01(0) X5k (%)= Qll(zl) Xax (X)JJr

0)I° ©)
QZI(EI) X3k (X)+

(X5 () + (=¥ X5 5.4 (X));

+ 0, (0)IX 53 (X) -

4

-1 ka_ A"
) 1+ 7°)EI
My (x) =

- (1) [“’1() xz,k(x)—Ql(O)lxz,k(x)]—

0)El , (6)
PO e 0+ QO X5 (0

where
Xn,l(x):
1 ("t & cosks (x )t @)
_(n—l)!(l_] +g(4k+n 1)|( j !
© 2k 4k+n-1
X, 5(X) = Z(Zkfl:kf).(xj (N=2,3,4,5), ®)
1
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It is important to note that the parameters L, § and all

functions (7)—(10) are dimensionless.
Constituent functions (5), (6) represented in a complex
form [11]:

Y1(%) +1y2(X) = (1(0) +ip ,(0)) X (x) -

QO+ a0+ ¥ 0 (2
! 2R TN @rip BN Y

M, (%) +iM (x) =

P10+, ) S KX+ (13)

+(Q1(0)+iQ2(O))IX2(X)_(].—f]—iy)I2X3(X)’

where
Xn(X) = X, 1(X) =X, ,(X) (n=2,3,4,5),
K2X4 (%) = X32(0 =Xz ().

3.2 The dimensionless amplitude of dynamic deflections and
bending moments

Unidentified initial parameters ¢, (0), ¢,(0) ,
Q,(0), Q,(0) are determined from the boundary conditions

(2) at the pointx=1. These boundary conditions on the
basis of formulas (3), (4) are equivalent to

$1(0=0, y,(1)=0, M;(1)=0, M, (1) =0,

and their implementation, by the formulas (12), (13), leads
to a system of equations:

X2(1)(@1(0) +ip,(0)) -

12 gl
__x4(|)(Q1(0)+|Q2(0)) m

3

Xs(1);

‘T L KX, (1)(01(0) + i (0)) +

2
HX, QO +iQ; (0) = 11— X5 0.

Hence we find the complex |n|t|aI settings:

¢ (0) +ig, (0) =
q® X)X, ()= X, ()X, () . (14)

T@HiEL X2A()— KEXZ()
Ql(o) + in (0) =
gl X, ()X, () - KX, (1)X(1) (15)

T1tiy X2()-KEXZA()

To determine the required initial parameters
,(0), ¢,(0), Q,(0), Q,(0) allocate the real and imaginary

terms in the right-hand sides of the formulas (14), (15). The
result

T H, QO

»,(0) Zm

where  H,,S,— dimensionless constants, calculated

according to the formulas:

H, _aC 3,0, +7(ac —alc)

(:1 +c

g &G y(alc +a,C )
2 c?+c?

S :b1c1+bzcz +y(b,c, —bc,) .

' c?+c? '

S :bzcl—blc y(blc +bc)
2 ¢t +c?

8y = X, (X5, (1) =X, (X5, ()=
X1 (DXg, () + X5, ()X, (1);
=X, (DX, (N + X, , ()X, (1) -
“Xaa X5, () =X, () X5,(1);
by = Xp (N X5, (1) = X5, (D X5, (1) -
=Xaa X, )+ X, )X, (1);
= Xaa (X5, (1) + X, (X5, (1) -
X1 (X5, () =X, (1) X5,(1);
¢, = X5u ()= X5, ()= Xga (X, () + X, (X, (1)
C, =X, (DX, , () + X, , ()X, (1)-2X,,(1)X, ().

Substituting the values of the initial parameters in the
formula (5), (6) we have:

4

_ar 16
Y (X) = L A)E — Y (X); (16)

2

M, (X) = j' M (x) (k =12), 17)
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where y, (x), M, (X)— dimensionless functions, which have
the form

Vi () =

= (_l)k+l(H1X2,k (X) =5 X4, (X)) +Hy X553 (X) =
=S, X431 (X) + (—1)k+1(X5,k (xX)+ (—1)k 7 X534 (X)),
My (X) =

= (D) (H1 X3 () = S X (X)) = Hp X5 4 () +
+5, X3k (X) + (-D* (X3 (¥) + (-D* 7 X33 (X))

To study the vibrations, the formula, which clearly
highlighted the amplitude function, will be more
convenient. Rearranging equation (3), (4) to a desired form,
taking into consideration the representations (16), (17) we
finally obtain:

y(x,t) = Amy(x,t)sin(ft + z, (X)) ;

Amyxt=—3yx);

(L+ °)EI
Y00 =, )% + (3 00)2. 7, (0 = atan 5&; ;
M (x,t) = AmM (x,t)sin(t + x, (X)) ;
AMM (x,t) = q'zz M(X) ;
1+y
M(X)=\/(MI(X)—7M;(X))2+(MZ(X)+ny(X))2 ;
M, (X) + M, ()

7 () =aretg T ST L

As can be seen, the formula for the amplitude contains
dimensionless factors y(x) and M(x), that is independent

q— and
L+ 7%)El

4
of the load. This factors up to size ratio !

2

ql
1+y
and dynamic bending moment. The functions y(x) and
M (X) can also be interpreted as a dimensionless amplitude.

The maximum value of the amplitude will obviously
be achieved in the middle of the beam, i.e.

> it defines the main forms for the dynamic deflection

o
max Am y(x,t) = )i y(zj, (18)
max AmM (x,t)= qI:M(lj. (19)
1+y 2

Thus, to determine the maximum amplitude, it is
necessary to calculate the corresponding value of the

dimensionless amplitude in the middle of the beam. This
will represent a special interest in the calculation of the
resonance zones, when the frequency 6 of forced
oscillations will be located in the vicinity of the frequency
of free vibrations of the beam.

As is known [1], for the frequency of free oscillations
of the beam, excluding the resistances, there is the formula

wsz—;\/E(jzl,z,B,...), (20)
| m

where Kj — dimensionless coefficients of free oscillations.

In the case of simply supported beam K; = (jz)*.

As the frequency of forced oscillations set the following
values:

inthe interval 0 <6< w, we believe

a)1
0=k (k=123..10);
10

in the interval @, <0 < w, we believe

W, =W,

0=, +k (k=12,..,10)

inthe interval @, <6< w; we believe

W;— @
3 2
0=0w,+k

(k=1,23,..,10);

in the interval w; <0 < w, we believe

W, — @,

0=0,+k (k=12,3).

Substituting here instead of frequency w,, ®,, @,, @, their
values (16), we obtain the representation

K" |[EI

0=

where K™ — dimensionless ratio of forced oscillations for
which we have
2 @,
0,1kz°, when § =k —;
10

w, — o
(1+0,3k)7?, when 6 = @, +k——*;
! 10

@, —®
K" =1(4+0,5k)7?, when 9=w2+k%

(k=1,2,3,...,10);

w,—a
(9+0,7k)7?, when 0 = 0, +k ————

(k =1,2,3).
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When this parameter L, determined by the first of the

formulas (11), taking into account (21), we obtain
K"

«i‘/l+}/2
Tab. 1 shows the results of calculations of the
dimensionless deflection and bending moment amplitudes
in the middle of the beam, corresponding to different values
of coefficient of forced oscillation K" . Especially note that
these values are invariant relative to dimensional values
I,EI,m,q and depend only on beams ends restraints. In
fact, they describe the very essence of the phenomenon.

Table 1 Maximum values of dimensionless amplitudes

K" For deflection For bending moment
y(1/2) M(1/2)
0.1x? 0.013204 0.127292
0.2n° 0.013614 0.131360
0.3n? 0.014358 0.138729
0.4x? 0.015546 0.150496
0.57° 0.017393 0.168793
0.6n® 0.020338 0.197974
0.77* 0.025397 0.248102
0.8n* 0.035476 0.347992
0.97° 0.062745 0.618348
n 0.148025 1.466401
1.3n? 0.018987 0.191677
1.6’ 0.008483 0.087690
1.9 0.005097 0.054210
2.2n° 0.003483 0.038293
2.5n2 0.002564 0.029264
2.8’ 0.001982 0.023597
3.1n? 0.001587 0.019803
3.4n® 0.001306 0.017153
3.7’ 0.001099 0.015250
4n? 0.000941 0.013865
4.5m 0.000752 0.012349
5n° 0.000622 0.011532
5.5n% 0.000532 0.011248
6 0.000468 0.011453
6.5n° 0.000426 0.012213
T 0.000402 0.013748
7.5n2 0.000401 0.016610
8n’ 0.000434 0.022275
8.5m 0.000539 0.035211
9n® 0.000629 0.054233
9.77° 0.000185 0.025754
10.4x? 0.000051 0.013671
11.1n? 0.000017 0.009066

Fig. 3, 4 are graphs of the maximum amplitude of the
dimensionless deflection and bending moment on the
coefficient of beam forced vibrations. As can be seen, the
highest values of the amplitudes are achieved when the
value of the coefficient of oscillations is =n?, which
corresponds to the frequency of free oscillations w;.
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Figure 3 Dependence of the dimensionless deflection amplitude of the oscillation
rate
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Figure 4 Dependence of the dimensionless bending moment amplitude of the
oscillation rate

Thus, according to the formulas (21), (18), (19) the
calculation of the maximum amplitudes of the dynamic
deflection and bending moments of the beam caused by
external dynamic load q(x,t)=qsindt reduces to

multiplication dimensionless value K, y[lzj M(IEJ
contained in Table 1, on the corresponding dimensional

4 2
multipliers %,’E C]|2 \ il 5.
“\Nm  (@Q+y9)El 1+y

3.3 Example

Let us find the distribution of the amplitudes of the
dynamic deflection and bending moments at the hinge beam
for given values of higher frequency of forced oscillations.
Inelastic material resistance factor is y = 0.089. The force of
inertia that occurs during the equipment operation is
assumed to be g = 20 kN/m, mass per unit length of the
beam m = 2.5 kNs?/m?, bending stiffness El = 79615.11
kKNm?2,
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Yurii KRUTII, Nikolay SURYANINOV: DEFLECTION AND BENDING MOMENTS AMPLITUDE DISTRIBUTION AT THE FORCED OSCILLATIONS OF THE EULER ...

With such design data, the first four frequencies of
oscillation beams excluding resistance according to (20) are
equal:

®1=48.9243s!; 0, = 195.6974 57! w3 = 440.3191 57 ;
w4 =782.7895 571,

To calculate the required amplitude of dynamic
deflections and bending moments corresponding to a given
frequency 6, according to the proposed method, we multiply
the values that appear in the first, second and third columns
of Tab. 1, respectively, on the dimensional ratios

4
iz El_ 4957157, # =0.3230 m,
| m @+ y°)EI
ql?
5= 714.3417 KNm.
1+y

Results are shown in Tabs. 2 and 3. For comparison, the
results of calculations for a given beam finite element
method are obtained using ANSYS [12] software package.

Table 2 Maximum values of dimensioned amplitudes

Frequencies For deflection, m

0,s! The author’s method ANSYS
4.8924 0.004265 0.004312
9.7849 0.004398 0.004402
14.6773 0.004638 0.004683
19.5697 0.005022 0.005074
24.4622 0.005618 0.005691
29.3546 0.006569 0.006611
34.2470 0.008204 0.008316
39.1395 0.011459 0.011700
44,0319 0.020267 0.020211
1 = 48.9243 0.047813 0.041122
63.6016 0.006133 0.005918
78.2789 0.002740 0.002212
92.9562 0.001646 0.001533
107.6336 0.001125 0.001094
122.3109 0.000828 0.000800
136.9882 0.000640 0.000637
151.6655 0.000513 0.000510
166.3428 0.000422 0.000412
181.0201 0.000355 0.000349
w, =195.6974 0.000304 0.000293
220.1595 0.000243 0.000213
244.6217 0.000201 0.000180
269.0839 0.000172 0.000143
293.5461 0.000151 0.000139
318.0082 0.000137 0.000111
342.4704 0.000130 0.000100
366.9326 0.000129 0.000099
391.3947 0.000140 0.000100
415.8569 0.000174 0.000114
w3 = 440.3191 0.000203 0.000112
474.5661 0.000060 0.000058
508.8132 0.000017 0.000013
543.0602 0.000005 0.000005

Table 3 Maximum values of dimensioned bending moments amplitudes

Frequencies For bending moment, kNm
0,s! The author’s method ANSYS
4.8924 90.9303 90.9393
9.7849 93.8362 93.8732

14.6773 99.0996 99.1469
19.5697 107.5053 107.9006
24.4622 120.5757 120. 9934
29.3546 141.4211 142.1433
34.2470 177.2297 180.0014
39.1395 248.5850 256.4465
44.0319 441.7116 480.9984
w1 = 48.9243 1047.5114 1210.1123
63.6016 136.9229 134.4555
78.2789 62.6410 60.9702
92.9562 38.7246 38.3356
107.6336 27.3544 26.7447
122.3109 20.9048 20.8733
136.9882 16.8566 16.8341
151.6655 14.1464 14.0050
166.3428 12.2530 12.0405
181.0201 10.8938 10.9666
w, = 195.6974 9.9044 9.8888
220.1595 8.8213 9.0403
244.6217 8.2375 8.7641
269.0839 8.0346 8.7445
293.5461 8.1815 11.2345
318.0082 8.7243 13.1477
342.4704 9.8206 19.2345
366.9326 11.8649 28.4332
391.3947 15.9119 45,3221
415.8569 25.1526 91.3576
w3 = 440.3191 38.7406 111.3787
474.5661 18.3970 76.3744
508.8132 9.7656 41.3222
543.0602 6.4760 26.8564

4 CONCLUSIONS

The maximum values of the amplitudes of the
dimensionless dynamic deflections and bending moments
are calculated. Analysis of the results shows that the sharp
increase in the amplitude values of deflections and dynamic
bending moments occur in the resonance regions
corresponding to the first natural frequency of oscillation.
At higher frequencies this effect is practically absent. At
frequencies of the external load, close to the third natural
frequency, there is quite a significant difference in the
results obtained by the author’s and the finite element
method. Values obtained by the author, should be regarded
as accurate, since they are obtained by the exact solution of
the original differential equation by the method of direct
integration.
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