Arh. hig. rada, 8 (1957) 97

TOKSIKOLOŠKO ZNAČENJE ERITROCITNIH INKLUZIJA

T. Beritić

Institut za medicinsku istraživanja Jugoslavenske akademije znanosti i umjetnosti. Zagreb

(Primljeno 3. VI., 1957.)

The red cell is a reagent of great sensitivity...
S. Cranick. Blood, 6 (1949) 104

Prikazani su rezultati višegodišnjih kliničkih istraživanja o pojav i eritrocitnih inkluzija kod različitih otrovanja te o pojav i nekih inkluzija kod životinja. Istaknuta je opravdanost istraživanja morfoloških promjena eritrocita ne samo zbog dijagnostičke veće i zbog prevencije otrovanja. Rad obuhvaća bazofilne pukačnike eritrocita, Heinova tjeleca i siderotičke granulacije. U obilnom prikazu literature i vlastitih zapažanja obuhvaćene su kvalitativne i količitivne promjene eritrocita i eritroblasta kod kliničkog saturnizma. Istanuto je značenje bazofilnih pukačnica u koštanoj srži: kod djelovanja olova te su inkluzije u srži ne samo priznate nego i puno brojnije nego u eritrocitima perifernih krvi. Prikazom literature i vlastitih iskustava kod hemolitičkih anemija upozorju se, da je kod nastajanja pukačnica pokrenut neki endogeni mehanizam dishemopoeze. Određivanje broja punktoranih eritrocita može se koristiti u kontrole rada, da se utvrdi ne samo individualnu nego i kolektivnu ekspoziciju olova,

O proučavanju Heinovih tjelcišta iznesena su klinička zapažanja, a zatim rezultati istraživanja pojave Heinovih tjelcišta kod mačaka. Određivanje je vršeno na velikom broju životinja (63). Kod 4 životinja isvršena je splenektomija, da se utvrdi ujedno endogenih faktora na frekvenciju eritrocitnih inkluzija. Nadvamo je, da je kod splenektomiranih životinja broj eritrocitnih inkluzija prije i poslije operativnog zahvata jednak. Konačno je prikazana vrijednost eksperimentalnog izazivanja Heinovih tjelcišta u viro, osobito za prevenciju osećanja, što se mogu potvrditi u toku liječenja kemoterapeutima.

Pojavljanje kliničkih simptoma otrovjanja označuje obično već razvi-jenu pa i uznapredovalu, a kaškada čak i konačnu fazu bolesti. Zbog toga je, dakle, prirodno i opravdano nastojanje, da se dijagnostički zahvati u početnu, ranu fazu sumnjivog zbivanja, da se kod toga koristi svaka, pa i najmanja promjena i retrakaga pristupačnih elemenata tijela, a da se to ipak izvede jednostavnom, brzom i jeftinom laboratorijskom tehnikom. Hematološko promatranje eritrocita u perifernoj krvi i eritroblasta u koštanoj »rizi je u pravu takav zahvalni postupak. Kao jedinice visoko diferenciranih biokemijskih svojstava, vrlo male rezistenzne prema supstančijama stranima tijelu, a haja toga s najvećim regenerativnim potencijalom, crvene krvne stanice zauzimaju važno mjesto u proučava-nju toksičnih promjena krvi (1). U tim se promjenama našao naci fini indikator štetnog djelovanja neke kemijske aktivne tvari, jer je crvena krvna stancia zaista, kako kaže Granick (2) »reagens velike osjetljivosti«. To su bili razlozi, da sam se kroz posljednjih deset godina pridvatio sistematskom proučavanju eritrocitnih inkluzija, da bi ih – kao dijagnostičko pomagalo – mogao praktički upotrebiti ne samo u klinici nego i u prevenciji profesionalnih intoksikacija.

Nekoliko vrsta tvoresa u crvenim stanicama označuju se danas za jediničkim nazivom »inkluzije«. Ma da taj naziv nije nikada bio jasno definiran, on se obično odnosi na citoplazmatike tvorese, što nastaju kao morfološka manifestacija među sobom različitih i još nedovoljno proučenih biokemijskih promjena eritrocita. Te tvorese su: bazofilne punkta-cije, Heinzova tjelesca i siderotičke granulacije.

Radi se, dakle, o poznatim morfološkim fenomenima, što se u većem ili manjem broju katkad javljaju kao pratioci endogenih hemopatija, a gotovo redovno i u velikom broju kod mnogih egzogenih otrovjanja. Upravo zbog toga, što te tvorose nisu samo posljedica djelovanja egzo-gene nosek, trebalo je proučiti njihove morfološke karakteristike. No kako se većina tih tvoresu u eksperimentalnoj i kliničkoj toksikologiji vrlo često među sobom i zamjenjuje pogetavanu kad se pojave u isto vrijeme, trebalo je proučiti i njihove diferencijalne karakteristike. Tek pozna-vanje tih karakteristika opravdava praktičko značenje eritrocitnih inkluzija u toksikološkim prigradama.

1. Bazofilne punktacije

Kromatološkim metodama prikazane bazofilne punktacije vide se kao multiple, većinom okrugla ili ovalna, rijetko štapičasta ili nepravilna tjelesca, raspoređena difuzno po tijelu crvenih krvnih stanicu. Veličina im varira, no redovno su to vrlo sitne tvorese, s promjerom od jedne ili više desetinski mikrona. Vrlo rijetko, obično samo u eritroblastima, pre-laže veličinu od jednog mikrona. Nisu vidljiva u nativnom preparatu, ni nakon supravitalnog bojadiana razmaza krvi, a vrlo dobro se vide
bojadisanim bazičkim bojama (sl. 1). Obojene punctacije naročito se jasno vide u tannom polju. Selektivne slike nastaju bojadisanim metilenovim modrom. U faznoj opšti ne mogu se bazoofilne punctacije vidjeti nativno. Metode prikazivanja, tehniku bojadisana i tumačenje nalaza opisao sam u ranijim publikacijama (1. 3).

Bazoofilne punctacije eritrocita prvi put je točno opisao Askana (4) 1893. g., kao popratnu pojavu kod anemije. Nekoliko godina kasnije (1899) je Behrendt (5), u diskusiji na Littcnovu predavanje u crnoglobo-

larnim tvrdbama eritrocita, prvi uvozio na »izvanredno množstvo znatnih eritrocita«, koje je — uz minimalne znakove »anemične degeneracije« — vidio u krvnom razmažu nekog na izgled inače neobičnog »anemičnog« šiša, bolesnika u napadaju oluvnih kolika. Ubrzo nakon toga su Grawitz (6) i Hamel (7) ukazali na dijagnostičko značenje tih stanica kod otrovanja oluvom. Kako je, osim toga, opaženo, da se bazo-

ofilne punctacije eritrocita javljaju ne samo kod različitih anemija nego i kod zdravih ljudi (8, 9), započelo je njihovo kliničko i eksperimentalno proučavanje potaknuto ne samo opštim hematološkim interesom za te

tvorbe, nego i interesima higijenc rada, naročito u prevenciji industrijskog satanizma. Tako se o bazoofilim punctacijama eritrocita postepeno nagomilala nepregledna literatura, iz koje ču navesti samo one podatke, koji su važni za kliničku toksikologiju olova.

Već se vrlo rano postavlja u literaturi pitanje, da li su bazoofilne punctacije manifestacija regenerativnih ili degenerativnih promjena eritrocita. Autori prvih eksperimentalnih istraživanja (10, 11) zaključuju, da se radi o »granularnoj degeneraciji eritrocita«, pa se to mišljenje dugo zadržalo u literaturi. Pojava bazoofilnih punctacija još se u novije vrijeme katkad naziva »bazoofilom degeneracijom« (Fairhall i Sayers, 12). Ferrata (13) g. 1910. u opštoj studiji navodi mišljenja raznih autora i njihove argumente za degenerativni, odnosno regenerativni karakter punctacija. Jedna od glavnih pretpostavki o degenerativnoj na-

ravi punctacija temeljila se na tvrdnji, da se one ne javljaju u koštanoj srži, pa da rema tome nastaju u perifernoj cirkulaciji. Bell i suradnici (14) i Key (15) nisu našli kod eksperimentalnog otrovanja olomov bazo-

ofilno punktirane stanice u srži, na što ih je u isto vrijeme bilo mnogo u perifernoj krvi. Stoviše, Speransky i Sklinskaia (16), a tako isto i Seifert i Arnold (17) videlo su i bazoofilno punktirane eritrobaste u perifernoj krvi otrovanih životinja, ali tvrde, da eritroblasti u koštanoj srži nikad ne sadržavaju bazoofilnih punctacija. Aub i suradnici (18) napisali su 1926. g. klasičnu monografiju o otrovanju olomov, pa u
poglavlju o djelovanju olova na krvne stanice kažu, da olovo djeluje na mlade cri'recote pošto su ušli u perifernu cirkulaciju, i to na taj način,
čo njihovu bazoofilnu supstanciju koagulira tako, da te mlade stanice dobiju svoj karakteristični znasti izgled poznat pod nazivom »bazoofilne punctacije«. Ma da su to pitanje evropski hematolozi, naročito Ferrata i Nasgeli, davno prije Aubove monografije riješili i dokazali, da se ne
radi o perifernoj degeneraciji, ipak se to mišljenje u industrijskoj toksi-
kologiji zadržalo gotovo sve do naših dana. Tako Hunter (19) 1944. g.
još uvijek podržava Aubovo mišljenje, a Lloyd Davies 1948. g. u svojoj
knjizi «The Practice of Industrial Medicine» (20) tvrdi, da olovo nema
nikakvog djelovanja na koštanu srž i da je njegovo djelovanje na krv
samo periferno, da su pogođene mlade stanice, koje sadržavaju olovo u
obliku netopljivog olovnog fosiča. Smatrajući da je to sporno pitanje
od litice važnosti za razumijevanje toksičkog djelovanja olova, pre-
utavao sam nekoliko godina kvantitativne i kvalitativne promjene eri-
tropeze kod kliničkog saturnizma.

Biopsija koštane srži, kao klinička metoda pretrage, počela se vršiti
tek od godine 1929., pa su se prva istraživanja u djelovanju olova na
hematopoetički organ poduživala samo kod životinja i kod rijetkih smrt-
ih slučajeva saturnizma. Pa i tada su se opažanja svodila gotovo samo
na irocentralni celularni sastav koštane srži, i na one kvalitativne pro-
mjene stanica, koje su se mogle prikazati histološkom tehnikom mikro-
skopske pretrage. White i Pepper (10) nalaze već 1901. g. u srži eritro-
cite s bazoofilnim punktacijama, a iduće godine Stengel, White i Pepper
(11) nalaze i bazoofilno punktiranе eritroblaste u srži eksperimentalno
otvorenih pasa. I Naegeli je nakao punktirane eritrocite i eritroblaste u
srži otvorenih životinja, ali kasnije je o tome u literaturi malo podataka
Tek 1937. g. Klima i Seyfried (22) pišu opet o prisustvu tih stanica u
srži otvorenih kunića i zamoričadi, a zatim i mnogi drugi autori, uglav-
nou kod slučajeva kliničkog (23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33
i 34), ali i eksperimentalnog saturnizma (35, 36). I ja sam već 1948. g.
objavio (1) rezultate prvih opažanja, da kod kliničkog otvorenja olova
velik čestotak normoblasta u srži sadržava bazoofilne punktacije. Stovije.

Cundehar i ja (38) smo kasnije našli i kod velikog broja eksponiranih
radnika takve promjene u srži. Na temelju dosadašnjega Iskusva, a
dijelom i prema podacima iz literature (33), zaključujem, da je fenomen
bazoofilnih punktacija rezultat djelovanja olova na eritroblaste u srži.
Procent punktiranih normoblasta od sveukupnog broja eritroblasta u
srži mnogo je veći nego što je procent punktiranih eritrocita od sve-
ukupnog broja eritrocita u periferiji. I kod najtežih kliničkih otvorenja
oloval, koja sam promatrao, bazoofilna punktiranu eritrocitu ne prelaze
vrijednost od 5% svih eritrocita u periferiji. U srži smo, naprotiv, mogli
redovno naći i do 37% punktiranih eritroblasta (37). Neosporna je, dakle,
činjenica, da su bazoofilno punktirane stanice u srži blesušika otvorenih
oloval (Sl. 2 i 3) ne samo ristutne nego i kudikamo brojnije nego u
periferiji. Uostalom, vršćici eksperimente na ljudima Alkahary (29) je
pokazao, da se bazoofilno punktirani eritrociti javljaju mnogo prije u
srži nego u perifernoj krvi.

Time se može smatrati dokazanom stara Cadwaladerova (39) hipoteza,
da bazoofilne punktacije u eritrocitima periferne krvi zaista potječu iz
koštane srži.
Većina autora ističe kao karakterističan znak djelovanja olova hiperplazu eritropoetkih stanica srži. I ja sam opazio (1. 37. 38) neobično jaku eritropoetsku aktivnost, kojoj odgovaraju i kvantitativne i kvalitativne promjene u eritroblastima. Ta pojačana eritropoeza je zapravo u upadljivom nesrazmjeru s neznatnom olovnom anemijom, pa već Cadwolader (39) 1906. g. s pravom primjećuje, da se ni kod jedne druge anemije ne vidi u srži »tako velik napor, da se ispravi i tako mala anemija« kao što je to kod otrovanja olovom. Najznačajnija kvalitativna promjena u toj jakoj eritroblastičkoj proliferaciji je nestanjivo pojava bazofilno punktiranih eritroblasta (37). S druge strane već se kod anemije razvija da se odavno uvijelo i dobro je danas poznato, da je pojava bazofilnih punktacija neovisna o djelovanju olova i da je naročito česta, iako konstantna, uzročak kod anemija s jakom regeneracijom (većina pernicoznih anemija, neki slučajevi hemolitičkih anemija) i u embrioidalnoj krvi (13. 40. 41), a da punktirani eritrociti u perifernoj krvi potpuno manjaju kod aplastičnih anemija (42). Time je postalo najvjerojatnije da se traje o fenomenu regeneracije, t. j. o mladim stanicama, a da je stimulirana eritroiogenезa, bez obzira na njene uzroke, zajednički izvor bazofilnih punktacija. Prema tome se čini, da su te stanice rezultat regenerativnih procesa u srži. Ipak Alabary (29) u novije vrijeme (1944-1945) smatra, da punktirani eritrociti nisu regenerativne stanicane već ih dubovito naziva »infantilnim stanicama«, budući da su one u odrasloj dobi sačuvale neke karakteristike eritroblasta. Međutim, kod otrovanja olovom ne nastaju bazofilne punktacije zbog anemije, jer se javljaju i prije anemije (43), a katkad i uopće bez anemije, pa je vjerojatno fiziološka regeneracija, koja se nepristano vrši u srži, jednim dijelom bar skrenuta pod djelovanje olova sa svog normalnog puta. Bazofilno punktirani eritrociti nisu, neime, normalna karika u lanecu nematogenog razvitka eritrocita odrasla čovjeka, nego običnu pupatnu i uvaju različiti patološki stanja krvi (1), pa se zašto smatraju znakom »patološke regeneracije« (Pappenheim, 44) ili, po Schillingu (45), znakom »degenerativnih promjena regenerativnih stanica«. Uostalom, može se i radi o mladim stanicama iz hematopoetskog organa, još uvijek je moguće, da su granulacije u njima nastale degenerativnom promjenom nekne preformirane tvorbice. Pojam »patološke regeneracije« ili »degenerative regeneracije« tražio je, dakle, dalje objašnjenje o porijeklu i mehanizmu nastajanja bazofilnih punktacija.

Dugo je vremena bilo u literaturi sporno pitanje, da li su bazofilne punktacije kariogennog ili citoplazmatskog porijekla. O tom je pitanju naročito opširno pisao Ferrata (13). Da postoji neka veza između jegre eritroblasta i bazofilnih punktacija, pomoću se u prvom redu zbog istovremenog prisustva bazofilno punktiranih eritrocita i brojnih eritroblasta u perifernoj cirkulaciji kod otrovanja olovom. Ta veza se čini dovoljno očitom i zbog toga, što su jegre cri roblasta u periferiji bile vrlo često u dezintegraciji. Tako već Sabrazes i suradnici (16) spominju 1900. g.
kod saturnizma bazofilno punktitirane eritroblaste u perifernoj krvi s promjenama jezgre, i to smatraju dokazom, da su bazofilne punktacije jezgri ninog jezgre. _Dumas_ 1903. g. (47) ističe, da se deminukcija eritroblašteta kod zdrava čovjeka izuzetno vriše fragmentacijom jezgre, a da je fragmentacija, naprotiv, vrlo česta kod otrovanja olovom. _Vaughan_ (8) iste godine piše, da se velik broj bazofilno punktiranih eritrocita može naći upravo kod svih patoloških stanja, koja su popraćena prisustvom eritroblasta u perifernoj cirkulaciji - pa zaključuje, da su bazofilne punktacije ostaci razgrađene jezgre eritroblasta. _Caldwell_ (9) 1905. g. ističe, da se uz bazofilno punktitirane eritrocite kod otrovanja olovom nalaze i eritroblasti vrlo često u perifernoj krvi čak i onda, kada je sveukupni broj eritrocita samo neznačito smanjen, pa zaključuje, da je njihova međusobna veza vrlo vjerojatna. On je ujedno opazio, da je porast bazofilno punktiranih eritrocita najveći onda, kada su eritroblasti u periferiji u odanju, pa smatra, da su bazofilne punktacije vjerojatno ostaci fragmentirane jezgre eritroblasta. _Ferrata_ 1910. g. drži, da su punktacije kariogenog porijekla, i to naročito zbog toga, što u eritroblastima pojavljuju karakterističnu perinuklearnu lokalizaciju. Mišljenje o kariogenom položaju bazofilnih punktacija zadržalo se i kasnije u literaturi, pa je čak i veliki hematolog _Nageli_ (13) bio sklon mišljenju, da su bazofilne punktacije kariogenog porijekla. Različito bojadisanje jezgre i Jollevih tjelesaca s jedne strane, a bazofilno punktiranih eritrocita s druge strane tumačilo se kemijskim promjenama, što navodno nastaju u nekrobiotičkoj jezgri. Međutim, dok sam _Nageli_ kasnije dopušta mogućnost citoplazmatskog porijekla (42), dotle _Schmidt_ još 1937. g. (48) misli, da su punktacije nastale iz jezgre, koja je uz morfološke promjene bila podvrsna nekim kemijskim promjenama, koje su odgovorne za različitu bojadisanje jezgre i punktacije.

Ali jedan dio autora već od početka podržava staro _Ehrlichovo_ i _Askaryjevo_ mišljenje (13), da se radi o tvorbama citoplazmatskog porijekla. Tako su već spomenuti _Stengel_ i suradnici (11) ukazali na »karioniotozu u granuliranim eritrocitima«, što bi bilo dokazom, da punktacije sigurno ne nastaju zbog karakterističnog raspadanja jezgre, jer »nije vjerojatno, da bi jezgra u isto vrijeme mogla biti i u stadiju aktivne mitoze i u karioreksi«. Danas je citoplazmatsko porijeklo bazofilnih punktacija potpuno dokazano ovim činjenicama (1). Bazofilne se punktacije javljaju već, kako smo vidjeli, u normoblastima, i to kad je još jezgra vrlo dobro očuvana (12), čim sam ja i mikrofotografijom pokušao dokumentirati (1). Nažalost sam bazofilne punktacije ne samo u ujednocimski normoblastima koristi potpuno intaktna jezgre nego i u mladim polikromatskim normoblastima u srži, kad jezgra obično još ne podliježe procesima konaktnog nestajanja. Bazofilne punktacije su, osim toga, prisutne i u raznim stadijima kariokinez, kako je već opisao _Stengel_ sad suradnici (11), a kasnije i drugi autori (12). Na priloženim mikrofotografijama eritroblasta iz vlastitih punktata srži može se
vidjeti kariokineza u prisustvu bazofilnih punctacija (Sl. 5). Štovište, Vandekar i ja smo mikrofotografijom pokazali, da se brižnim promatranjem razmaza mogu naći svi prijelazi od košaraste ili mrežaste citoplazme do bazofilnih punctacija (37) (Sl. 4). 2. Glimsnom otopinom bojadisuje se jezgrine grudire azur-crvenkasto, dok bazofilne punctacije pokazuju plavu boju pojačanog tona polikromazije (45). 3. Najvažniji dokaz citoplazmatiskog prijelaza bazofilnih granulacija je negativna Feulgenova nuklearna reakcija, koja je specifična na prisustvo degeneracijskih, koja je kemijski sastojak jezgrice (49). Citoemijska istraživanja, koja su u novije vrijeme vršili Dustin (50), Thoma (31) i Sano (52, 53) pokazala su, da bazofilne punctacije duguju svoj afinitet prema bazičkim bojama upravo prisustvu ribonukleinske kiseline, koja je kemijski sastojak citoplazme i nukleolusa eritroblasta. Time je konačno riješeno, da se radi o tvorbiom citoplazmatiskom prijelazu.

Bazofilna supstancija punktiranih eritrocita može se, dakle, po prijelazu i citoproduktom sastavu smatrati ostatak citoplazmatode bazofilne supstancije. Kako su polikromatska supstancija iz polikromatskih eritrocita i granulo-filamentoznih supstancija iz retikulocita istu taku osnove te bazofilne supstancije eritroblasta, postavlja se opravdana pitanje, u kakvom su međusobnom odnosu ta tri morfološka fenomena. Schilling (45) misli, da su bazofilne punctacije zapravo degeneracija polikromazije, a da sama polikromazija može predstaviti pojavu bazofilne punktirane eritrocita, pa da čak "ima stadija i forma otvaranja olova, koji pokazuje samo polikromatske eritrocite, a upravo nema bazofilno punktiranih eritrocita". I Rosegger (54) dovodi ta dva fenomena u najužu vezu ta kaže, da nazar polikromazije i bazofilne punctacije idu uporedno, pa da su bazofilne punctacije zamijenjena manifestacijska forma polikromazije. U razuzeću se mogu naći i "sve prije- laznice forme od polikromatskih do bazofilno punktiranih eritrocita". Rosegger ističe, da se bazofilne punctacije mogli smatrati produktom zagonuča polikromatske supstancije. To zagonuče polikromatske supstancije naziva "retrakcijom". I Goldblatt (55) u najnovije vrijeme (1955) piše, da je bazofilno punktirani eritrocit zapravo polikromatski eritrocit, koje su granulacije gusto stisnute jedna uz drugu, tako da se ne vide odijeljene pa daju utisak difuzne, ravnomjerne bazofilije. Dustin je čak nedavno uspio da metodom "polaganog sušenja" izazove i vir prijevođu polikromatskih u bazofilno punktirane eritrocite. Leitner (30) ispostavlja bazofilne punctacije eritrocita s "tokiškim" granulacijama granulocita pa kaže, da se prve ponajprije prema normalnoj "vitalnoj" granulaciji eritrocita kao druge prema normalnoj granulaciji granulocita. Prvenstveni odnos bazofilno punktiranih eritrocita i retikulocita kod životinja dvostrukho tornih olova i fenilhidrazonom, Whitby i Britton (56) su došli do zaključka, da su i bazofilne...
punktacije i polikromazija manifestacije istog fenomena "retikulacije". Rosegger je 1946. g. (54) našao, da je izoelektrična točka ista i za bazofilne punktacije, i za polikromaziju, i za retikulum. Kemijski identitet bazofilnih punktacija i granulo-filamentne supstancije u retikulocitima dokazao je u najnovije vrijeme Sano (53). Međutim, obje vrste tvorba razlikuju se, kako je poznato, bitno u načinu prikazivanja i po-
našanja prema postupcima bojadiana, pa još uvijek ostaje neriđen njihov međusobni odnos. Retikulocit su kod otrovanja olovom redovni
pratilac bazofilnih punktacija, pa je očito, da se u njihovom broju re-
flexija podražna crtipoctaka aktivnost srži. Koelsch smatra, da po-
većani broj retikulocita kod djelovanja olova ima dijagnostičko zna-
čenje. Slično su mišljenja Dreesen (57) i u novije vrijeme Borges (58).
Ja sam našao kod svih slučajeva otrovanja olovom povišen broj reti-
kulocita, a isto tako i kod svih slučajeva abnormalne apsorpcije olova
(tablica). Brojenje retikulocita je zbog toga dio standardne hematološke
pretrage pri pregledu radnika izluženih olovu. Ni kod jednog slučaja
nismo našli povišene brojeve bazofilno punktiranih eritrocita bez povi-
šenih brojeva retikulocita.

Odnos bazofilno punktiranih eritrocita prema mitohondrijima pro-
učavali su Key (59), Albahrty (29) i u najnovije vrijeme Sano (53).
Ovjaj posljednji autor je pokazao, da bazofline punktacije nastaju zbog
vitalne agregacije ribonukleinske kiseline oko mitohondrija. Sano je
našao, da mitohondriji persistiraju u eritrocita kod otrovanja olovom,
dok inače, kako je poznato, isčežavaju iz zrelih eritrocita zdrava či-
vjeta (2).

Pregledavanje literaturu može se zaključiti, da su gotovo sva prou-
čavanja o naravi bazofilnih punktacija u najužoj vezi s toksikološkim
proučavanjem tih tvorbi kod otrovanja olovom. Ta vrsta inkluzija
može se, doduše, naći u manjem broju i kod drugih otrovanja (1), na-
ročito zlatom (60), ali je njihov broj tako konstantno visok kod otro-
vanja olovom, da nije čudo, što se u prvo vrijeme mislilo, da su te
tvorbe patognomonične za saturnizam, pa su se čak i slučajevi perni-
cioznog anemije zamjenjivali s otrovanjem olovom (61) i nazivali »Blei-
perniziosa« (62). Rosegger (54) upozorava na ovu zabludu pa ističe, da
se i kod drugih stanja može naći velik broj bazofilno punktiranih eri-
trocita u perifernoj krvi. I precjenjivanje nalaza u srži može se naći
in literaturi. Što je, dakako, praktički neobično važno, jer dovodi do
diagnostičkih zloupot. Tako se u jednom često citiranim slučaju na-
vodnog otrovanja (63) dijagnoza saturnizma postavila isključivo na te-
melju nalaza bazofilno punktiranih eritrocita u koštanju srži. Movitz
(31) također misli, da se nalaz bazofilno punktiranih eritroblasta u srži,
a bez punktiranih eritrocita u periferiji, može smatrati odlučnim za di-
Fig. 1. Basophilic stippling in erythrocytes of the peripheral blood

Fig. 2. Basophilic stippling in erythrocytes of the bone marrow
Fig. 3. Basophilic stippling in erythroblasts of the bone marrow.
Fig. 41-4. Basophilic stippling in erythroblasts showing defective hemoglobinisation
Sl. 5/1

Sl. 5/2

Sl. 5/1—2. Erythroblasti u kariomitozi s bazofilnim punktacijama

Fig. 5/1—2. Erythroblasts with karyokinesis and basophilic stippling
Sl. 6. Heinzova tjeleca kod kliničkog otrovanja meta-dinitrobenzenom
Fig. 6. Heinz bodies in clinical m-dinitrobenzene poisoning
Sl. 7. Schmauchova tjeleća u eritrocitima zdrave mačke
Fig. 7. Schmauch's bodies in erythrocytes of normal cats
jagnozu saturnizma. Međutim, već je Kupasz (64), a kasnije i Sata (65) pokazao, da se brojni punktirani eritroblasti mogu naći u koštanoj srži ne samo kod pernicozne anemije nego i kod različitih patoloških stanja. Bazofilne punktacije u apadljivo velikom broju nađene su u novije vreme i kod različitih tipova hemolitičkih anemija (66, 67) i kod jedne hereditarnih anomalija eritroblasta s poliploidijom a bez anemije (!) (68). I kod tih su stanja u koštanoj srži bile brojne bazofilne punktacije nego u perifernoj krvi. Hauptmann i ja (69) smo u najnovije vreme promatraли dva slučaja stečene hemolitičke anemije s velikim brojem bazofilno punktiranih eritrocita odnosno eritroblasta. Prema tome se može pretpostaviti, da postoji i jedan endogeni tip poremećene eritropoiese, koji se morfološki manifestira fenomenom bazofilnih punktacija. Točni mehanizam te «dishemopoiese» nije poznat, ali bi se ovo ranje olom moglo smatrati takvom dishemopoiese poznate etiologije.

Međutim, dok su kod različitih hematoških oboljenja bazofilne punktacije općenito rijetke i samo izuzetno u velikom broju prisutne, dotle je kod otrovanja olomov upravdan Baaderov zaključak (70): »nema otrovanja olomov bez bazofilno punktiranih eritrocita«. Od uku pno 70 teških slučajeva otrovanja olomov, koje sam promatrao i verificirao kemijskim određivanjum olova u krvi i porfirina u mokraći, kao i »križnim« kliničkim simptomima (olovni rub, kolike, artralgije, polineuritis, encefalopatija), nije bilo ni jednog slučaja, kod kojeg ne bi bilo bazofilnih punktacija u vrlo velikom broju (od 5000 na milijun do 51000 na milijum). Na temelju tog iskustva možemo danas zaključiti, da se kod bolesti popraćenih pojavom bazofilnih punktacija, pošto se isključuje rijetke hemopatie, a postoje klinički simptomi saturnizma, može nalaz bazofilnih punktacija praktički upotrebiti za postavljanje dijagnostičko otrovanja olomov. Bazofilne punktacije eritrocita su najvažniji i najsigurniji crumenac u dijagnosticu saturnizma.

Međutim, nalaz bazofilno punktiranih eritrocita ima u industrijskoj toksikologiji ne samo dijagnostičko već i prevektivno značenje. U tom je pogledu dragocjenu opažanje, da se bazofilne punktacije kod djelovanja olova javljaju i prije anemija (29, 43) ili kod neznanje anemije (9, 39, 62) kao i opažanje, da se javljaju već nekoliko sati nakon eksperimentalnog davanja olova ljudima (29) ili životinjama (43). Radnici, koji su izloženi profesionalnom utjecaju olova, mogu, naime, imati povećani broj bazofilno punktiranih eritrocita bez subjektivnih, objektivnih ili laboratorijskih znakova anemije. Strošiće, nalaz bazofilno punktiranih eritrocita bez anemije upravo je karakterističan znak za djelovanje olova (62), budući da i druge, neolovne, anemije mogu, kako smo vidjeli, već same po sebi imati bazofilno punktirane eritrocite. Manjak subjektivnih simptoma, koji su vezani za anemiju, diferencira, osim toga, stanje t. zv. abnormale apsorpcije olova prema kliničkom otro-
vanju. Prema tome se tokšćko djelovanje olova može utvrditi kod klinički potpuno zdravih ljudi, odnosno radnika, dok još nesmetano vrše svoj redovni posao. Konačno, određivanje broja bazofilno punktiranih eritrociteta je tehnički jednostavniji i brži laboratorijski postupak nego određivanje same crvene krvene slike, koja bez prisustva bazofilno punktiranih eritrociteta još ne može otkriti opasnost tokšćkog djelovanja olova. Zbog svega toga određivanje broja bazofilno punktiranih eritrociteta, kao mjerilo profesionalne ekspozicije olova, ima izvanredno tokšćko kološko značenje u industrijskoj higijeni.

Određivanje broja bazofilno punktiranih eritrociteta može poduštiti ne samo kao mjerilo individualne ekspozicije nego i kao mjerilo kolektivne ekspozicije pojedinih grupa radnika, koje su različito izvršili tokšćanu djelovanju olova. U jednom eksperimentu terensko-istraživačkom radu, što sam ga izvršio s ostatkim članovima Instituta za higijenu rada, bio je radni zadatak klasificirati radna mjesta prema stupnju radnog rizika te ispitati broj i stupanj ugroženih radnika u jednom radniku i topionici olova. Radnike smo podijelili u dvije grupe, koje je trebalo među sobom i prema kontrolnoj grupi isporoditi o obziru na nalaz bazofilno punktiranih eritrociteta. Prva grupa, nazvana topioničari (T), obuhvatila je 221 radnika kod visoke peći, kod električnog precipitatora, kod t. zv. mehaničkih ognjišta, u rafineriji olova, kod prženja olova i t. d. Druga grupa nazvana rudari (R), obuhvatila je 121 radnika u jami, kupača, vozača, minera, jamskih strojara, jamskih zidara, jamskih tesara i t. d. Treća kontrolna grupa, obuhvatila je 19 radnika iz drugog poduzeća, koji nisu bili u profesionalnom kontaktu s olovo. Kako vidimo iz pri-ložene tablice, grupa razdroba bazofilno punktiranih eritrociteta pokazuje jašnu skretanje grupe topioničara. Iz statističke obrade rezultata izlazi, da je 32,4% pregledanih radnika iz topionice pokazivalo prošeni broj bazofilno punktiranih eritrociteta iznad vrijednosti od 1000 na milijun, a to prema našim iskustvima (3) znači abnormalnu apsorpciju olova. U grupi rudara taj procenat iznosi 4,1 a u kontrolnoj grupi 0,0. Prema tim nalazima mogli smo zaključiti, da je grupa topioničara kao cjelina kudikamo više izvrgnuta tokšćkom djelovanju olova nego grupa rudara.

U zaključku smatram, da je poznavanje mehanizma nastanka bazofilnih punktacija i patoloških stanja, kod kojih se javljaju ove tvorbe, poželjno potrebno za pravilno ocjenjivanje njihova značenja u kliničkoj tokšćologiji saturnizma. Ma da u lancu hematoških zbijanja kod otrovanja olovojov još mnogo karika ostaje nepoznata i zagotovna, ipak se eritrocitne inkluzije, poznate pod nazivom »bazofilne punktacije«, mogu već korisno upotrebiti za dijagnozu i prevenciju ove najčešće profesionalne intoksikacije. Dalje proučavanje ovih inkluzija razjasnit će osim toga i mnoge nejasnoće u problemu endogenih poremećaja hemoptoeze.
Eritrocitne inkluzije

Bazofilno punktirani eritrociti na milijun eritrocita

<table>
<thead>
<tr>
<th>Broj</th>
<th>T</th>
<th>R</th>
<th>K</th>
<th>1/4 T</th>
<th>1/4 R</th>
<th>1/4 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>57</td>
<td>12</td>
<td>14,0</td>
<td>47,1</td>
<td>63,2</td>
</tr>
<tr>
<td>Manje od 500</td>
<td>74</td>
<td>50</td>
<td>7</td>
<td>33,3</td>
<td>41,3</td>
<td>36,8</td>
</tr>
<tr>
<td>500–999</td>
<td>45</td>
<td>9</td>
<td></td>
<td>70,3</td>
<td>7,5</td>
<td></td>
</tr>
<tr>
<td>1000–1999</td>
<td>31</td>
<td>3</td>
<td></td>
<td>14</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>2000–2999</td>
<td>15</td>
<td>1</td>
<td></td>
<td>6,7</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>3000–3999</td>
<td>15</td>
<td></td>
<td></td>
<td>6,7</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>5000 i više</td>
<td>11</td>
<td></td>
<td></td>
<td>6,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>222</td>
<td>121</td>
<td>19</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Srednje vrijednosti i standardna pogreška

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>σ</th>
<th>σ₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>1234,1</td>
<td>1841,6</td>
<td>1235,56</td>
</tr>
<tr>
<td>R</td>
<td>243,8</td>
<td>452,6</td>
<td>40,90</td>
</tr>
<tr>
<td>K</td>
<td>92,1</td>
<td>129,6</td>
<td>29,59</td>
</tr>
</tbody>
</table>

Retikulociti u promile vrijednosti

<table>
<thead>
<tr>
<th>Broj</th>
<th>T</th>
<th>R</th>
<th>K</th>
<th>1/4 T</th>
<th>1/4 R</th>
<th>1/4 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manje od 1</td>
<td>116</td>
<td>98</td>
<td>16</td>
<td>57,5</td>
<td>81,0</td>
<td>84,2</td>
</tr>
<tr>
<td>1–1,4</td>
<td>68</td>
<td>18</td>
<td>3</td>
<td>30,8</td>
<td>14,9</td>
<td>15,8</td>
</tr>
<tr>
<td>1,5–1,9</td>
<td>23</td>
<td>3</td>
<td></td>
<td>10,4</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>2–2,4</td>
<td>9</td>
<td>1</td>
<td></td>
<td>4,1</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>2,5–2,9</td>
<td>3</td>
<td></td>
<td></td>
<td>1,3</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>3 i više</td>
<td>2</td>
<td></td>
<td></td>
<td>0,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>221</td>
<td>121</td>
<td>19</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Srednje vrijednosti i standardna pogreška

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>σ</th>
<th>σ₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>1,09</td>
<td>0,5484</td>
<td>0,0369</td>
</tr>
<tr>
<td>R</td>
<td>0,82</td>
<td>0,376</td>
<td>0,0342</td>
</tr>
<tr>
<td>K</td>
<td>0,75</td>
<td>0,2887</td>
<td>0,0662</td>
</tr>
</tbody>
</table>
2. Heinzova tjelesca

Morfološke, kromatološke i biološke karakteristike Heinzovih tjelesaca kao i njihov hemizam opisao sam u jednom od ranijih radova (1). Njihovo otkriće pripada u vrijeme, kad je čovjek stupio u profesionalni i terapeutski kontaktni niz novootkrivenih kemijskih spojeva, osobito iz grupe amina i nitro derivata benzola. Premjene su Heinzova tjelesca kao simptom otrovanja već i historijski vezana na toksikološka istraživanja. Pošto je sintetizirana fenilhidrazin i njegovi derivati, procvavljanje farmakoloških i toksikoloških svojstava tih spojeva pokazalo je, da većina ima destruktivno djelovanje na eritrocite, što se morfološki manifestira toksičkim promjenama na eritrocitima, poznatim danas pod skupim imenom Heinzova tjelesca. Te inkluzije u eritiocitima prvi je opazio Riess (2) 1882. g. kod kliničkog otrovanja kalijevim kloratom, ali i kao prvi točno opisao farmakolog Heinz (3), koji je u velikom broju eritrocita našao kod kunića eksperimentalno otrovanih fenilhidrazinom, a kasnije i kod pasa i mačaka otrovanih sličnim kemijskim spojevima. Odatle danas je u čitavoj sveječkoj literaturi objavljeno više 79 radova (2-28) iz kliničke kazustike otrovanja, kod kojih su opažena Heinzova tjelesca (tablica 1).

Donedavno se mislilo, da Heinzova tjelesca nastaju isključivo djelovanjem egzogenih kemijskih noks, pa bi tako izazvana toksička stanja bila tipičan primjer t. zv. bolesti, što ih stvara sam čovjek ("man-made disease"). Međutim, čini se, da postoje i endogeno stvaranje tih eritrocitnih inkluzija. Već je Ehrlich (9) smenuo te tvrde kod anemija bez označenog egzogenog uzroka, a danas se tvrdi, da Heinzova tjelesca mogu nastati kod kronične miješanih leukemije (7, 30) i kod hereditarne hemolitičke anemije (Jürgens i Schürer) (31). Spontano nastajanje Heinzovih tjelesaca opisano je kod nedomošene djece (32), kod u novorođenčadi sa slabim funkcionom sluzenje (19, 33) te kod agenezie sluzenje (34). Nedavno je Cattane (35) opisao slučaj hemolitičke anemije s Heinzovim tjelescima kod dojenčeta, kod kojega se inkluzije persistiraju u velikom broju i nakon splenektomije. Konačno Forstfeld i suradnici (9) i Jung (20) napominju, da se i u normalnoj krvi odraslih ljudi mogu pojaviti spontano Heinzova tjelesca. Prvi autori (9) dovode tu pojavu u vezu s entrogenom autointoksišajem.

Tokskološka istraživanja u pojavu Heinzovih tjelesaca vršena su s velikim brojem otrova na različitim specijesima pokusnih životinja. Koliko je zanimanje za te tvrde poraslo u posljednje vrijeme, vidit će se po tome, što je velika većina radova objavljena u prošlih 15 godina (tablica 2). Istraživanja su vršena s jedne strane u cilju, da se prouče toksikološka svojstva neke kemijske supstancije, pri čemu je pojava Heinzovih tjelesaca služila kao test toksičkog djelovanja supstancije, a s druge strane su vršena u cilju proučavanja mehanizma nastajanja tih eritrocitnih inkluzija, pri čemu su upo rebljene toksičke supstancije služile kao izazvači tvrda. Supstancije, koje su uzrokovali kliničku pojavu
<table>
<thead>
<tr>
<th>Autor</th>
<th>Godina</th>
<th>Otrovin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hess (2)</td>
<td>1882. 1908</td>
<td>kalijev klorat</td>
</tr>
<tr>
<td>Heinz (3)</td>
<td>1890</td>
<td>acetilfenilhidrazin (piridin)</td>
</tr>
<tr>
<td>Ehlich i Lindenthal (4)</td>
<td>1896</td>
<td>nitrobenzen</td>
</tr>
<tr>
<td>Huber (5)</td>
<td>1912</td>
<td>kalijev klorat</td>
</tr>
<tr>
<td>Schilling (6)</td>
<td>1927</td>
<td>acetaminilid (antifibrin), anilin</td>
</tr>
<tr>
<td>Zadeck i Burg (7)</td>
<td>1930</td>
<td>anilin</td>
</tr>
<tr>
<td>Genkin i Raschewskaja (8)</td>
<td>1933</td>
<td>anilin</td>
</tr>
<tr>
<td>Freifeld, Schilova i Ludvinowsky (9)</td>
<td>1937</td>
<td>anilin, dinitrobenzen i dinitrotoluenu acetilfenilhidrazin, fenilsemikarbazid, nitroglicerin</td>
</tr>
<tr>
<td>Ungricht (10)</td>
<td>1930</td>
<td></td>
</tr>
<tr>
<td>Mocachlin (11)</td>
<td>1940</td>
<td>sulfapiridin</td>
</tr>
<tr>
<td>Rohr (12)</td>
<td>1940</td>
<td>nitrobenzen</td>
</tr>
<tr>
<td>Doering (13)</td>
<td>1941</td>
<td>dimetildiaminodifenilsulfon</td>
</tr>
<tr>
<td>Dustin (14)</td>
<td>1941</td>
<td>kohlicin</td>
</tr>
<tr>
<td>Willi (15)</td>
<td>1942</td>
<td>guajakol (monometiceter brenzkaterehina)</td>
</tr>
<tr>
<td>Markoff (16)</td>
<td>1943</td>
<td>sulfonamidi</td>
</tr>
<tr>
<td>Sievers (17)</td>
<td>1945</td>
<td>trinitrotoluven</td>
</tr>
<tr>
<td>Pertman i Doan (18)</td>
<td>1946</td>
<td>eritroetranitrat</td>
</tr>
<tr>
<td>Willi (19)</td>
<td>1947</td>
<td>sulfanilamino-dimetil-pirimidin (Elkosin)</td>
</tr>
<tr>
<td>Jung (20)</td>
<td>1947</td>
<td>dinitrobenzen</td>
</tr>
<tr>
<td>Jasinski (21)</td>
<td>1948</td>
<td>anilin</td>
</tr>
<tr>
<td>Zadel i Apt (22)</td>
<td>1949</td>
<td>naftalin</td>
</tr>
<tr>
<td>Redek i Wes.haus (23)</td>
<td>1952</td>
<td>anilin</td>
</tr>
<tr>
<td>Hughes i Trecen (24)</td>
<td>1954</td>
<td>anilinski spujevi</td>
</tr>
<tr>
<td>Friedrich (25)</td>
<td>1954</td>
<td>fenotiazin</td>
</tr>
<tr>
<td>Plschcr (26)</td>
<td>1955</td>
<td>gantrisin (dimetil-sulfamid-amidoizoksazol), lizol (krezol)</td>
</tr>
<tr>
<td>Beritić (27)</td>
<td>1956</td>
<td>dinitrobenzen</td>
</tr>
<tr>
<td>Davies (28)</td>
<td>1956</td>
<td>kalijev klorat</td>
</tr>
</tbody>
</table>
Heinzovih tjelesaca, odnosno supstanci, kojima je uspjelo izazvati Heinzova tjelesca kod pokusnih životinja možemo, prema Fertmanu i Fertmanu (36) podijeliti u 6 grupa:

I. grupa
Aromatski amini

<table>
<thead>
<tr>
<th>Komponenta</th>
<th>Nomenklatura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anilin</td>
<td>Tolilhidroksilamin</td>
</tr>
<tr>
<td>Toluidin</td>
<td>Acetanilid</td>
</tr>
<tr>
<td>Emlidin</td>
<td>Fenacetin</td>
</tr>
<tr>
<td>Para-aminofenol</td>
<td>Fenilendiamin</td>
</tr>
<tr>
<td>Para-aminobenzojeva kiselina</td>
<td>Tolilendiamin</td>
</tr>
<tr>
<td>Vitlamin/nobenzolat</td>
<td>Fenilhidrazin i njegovi derivati</td>
</tr>
<tr>
<td>Fenilhidroksilamin</td>
<td>Para-acetilamino-benzal-tiosemi-</td>
</tr>
<tr>
<td>Sulfnonamiđi</td>
<td>karhassin (konteben)</td>
</tr>
</tbody>
</table>

II. grupa
Aromatski nitro-spojevi

<table>
<thead>
<tr>
<th>Komponenta</th>
<th>Nomenklatura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrobenzen</td>
<td>Trinitrobenzen</td>
</tr>
<tr>
<td>Nitrotoluenu</td>
<td>Trinitrotoluenu</td>
</tr>
<tr>
<td>Dinitrobenzen</td>
<td>Meta-nitroanilin</td>
</tr>
<tr>
<td>Dinitrotoluenu</td>
<td>Para-nitroaminil</td>
</tr>
<tr>
<td>Dinitrokiselena</td>
<td>Mononitrostilil hidroksilamin</td>
</tr>
</tbody>
</table>

III. grupa
Kompletni aromatski amino-spojevi

<table>
<thead>
<tr>
<th>Komponenta</th>
<th>Nomenklatura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfat nilskog modrila</td>
<td>Fenol/asin</td>
</tr>
<tr>
<td>Metilenko modirilo</td>
<td>Kolhizin</td>
</tr>
<tr>
<td>Azo-spojevi</td>
<td></td>
</tr>
</tbody>
</table>

IV. grupa
Atilatski i heterociklički spojevi, koji sadržavaju dušika

<table>
<thead>
<tr>
<th>Komponenta</th>
<th>Nomenklatura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etil nitrat</td>
<td>Manitol heksanitrat</td>
</tr>
<tr>
<td>Glikol nitrat</td>
<td>Alokan</td>
</tr>
<tr>
<td>Nitroglicerin</td>
<td>D'alurična kiselina</td>
</tr>
<tr>
<td>Eritol tetranitrat</td>
<td>Aloksanin</td>
</tr>
</tbody>
</table>

V. grupa
Organski spojevi bez dušika

<table>
<thead>
<tr>
<th>Komponenta</th>
<th>Nomenklatura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guajakol</td>
<td>Naftalin</td>
</tr>
<tr>
<td>Progalol</td>
<td>Askorbinska kiselina (in vitro)</td>
</tr>
<tr>
<td>Diktrolenol (in vitro)</td>
<td>Saponin</td>
</tr>
</tbody>
</table>

VI. grupa
Amorganski spojevi

<table>
<thead>
<tr>
<th>Komponenta</th>
<th>Nomenklatura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroksilamin</td>
<td>Natrijev sulfit</td>
</tr>
<tr>
<td>Natrijev azid (in vitro)</td>
<td>Natrijev metasulfit</td>
</tr>
<tr>
<td>Natrijev nitrat</td>
<td>Dikromalit</td>
</tr>
<tr>
<td>Natrijev nitrit</td>
<td>Arsenovodik</td>
</tr>
<tr>
<td>Klorati</td>
<td>Stibin</td>
</tr>
</tbody>
</table>

Kod pokusa na životinjama opaženo je (37), da postoje razlike prema specijesu pokusne životinje s obzirom na nastajanje Heinzovih tjelesaca. Kod kanarincu se metilenskim modrilom ne mogu izazvati te tvorbe (38). Kod kuniča je mnogo teže izazvati Heinzova tjelesca nego kod mačke.
<table>
<thead>
<tr>
<th>Autor</th>
<th>Godina</th>
<th>Species</th>
<th>Otrav</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heinz (47, 48)</td>
<td>1892–1901</td>
<td>kunić</td>
<td>anilin, toluidin,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p-aminofenol, etilaminobenzat, fekilihidroskiloamin, toluilen-diamin, fenilhidrazin i derivati, nitrobenzen, dinitrobenzen, hidroksilamin</td>
</tr>
<tr>
<td>Huber (49)</td>
<td>1891</td>
<td>kunić</td>
<td>hidroksilamin</td>
</tr>
<tr>
<td>Schmauch (45)</td>
<td>1899</td>
<td>kunić</td>
<td>fenilhidrazin</td>
</tr>
<tr>
<td>Schwalbe i Solley (50)</td>
<td>1902</td>
<td>kunić,</td>
<td>toluilen-diamin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>zamorač i pas</td>
<td></td>
</tr>
<tr>
<td>Von Domarus (51)</td>
<td>1908</td>
<td>kunić</td>
<td>fenilhidrazin, pirogal</td>
</tr>
<tr>
<td>Itami i Pratt (57)</td>
<td>1909</td>
<td>kunić</td>
<td>fenilhidrazin</td>
</tr>
<tr>
<td>Hess i Müller (53)</td>
<td>1912</td>
<td>štakor</td>
<td>acetilfenilhidrazin</td>
</tr>
<tr>
<td>Deutsch (54)</td>
<td>1928</td>
<td>mačka</td>
<td>toluilen-diamin s acetilfenilhidrazinom, sulfatnilskog modrila fenilhidrazin</td>
</tr>
<tr>
<td>Gutstein i Walbach (55)</td>
<td>1928</td>
<td>kunić, miš</td>
<td>toluilen-diamin s acetilfenilhidrazinom, sulfatnilskog modrila fenilhidrazin</td>
</tr>
<tr>
<td>Strampelli (56)</td>
<td>1930</td>
<td>kunić</td>
<td>acetiltenhidrazin</td>
</tr>
<tr>
<td>Hueper (57)</td>
<td>1936</td>
<td>štakor</td>
<td>natrijev nitrit</td>
</tr>
<tr>
<td>Moeschlin (58)</td>
<td>1941</td>
<td>miš</td>
<td>sulfonamidi, natrijev nitrit</td>
</tr>
<tr>
<td>Richardson (59)</td>
<td>1941</td>
<td>miš</td>
<td></td>
</tr>
<tr>
<td>Bredow i Jung (60)</td>
<td>1942</td>
<td>mačka</td>
<td>nitrobenzen, nitrotooluenc, dinitrobenzen, dinitrotooluenc, dinitrobenzen, trinitrobenzen, trinitrotooluenc</td>
</tr>
<tr>
<td>Gross et al. (61)</td>
<td>1942</td>
<td>mačka</td>
<td>dinitroglikol, nitroglicerin</td>
</tr>
<tr>
<td>Pulina (62)</td>
<td>1942</td>
<td>mačka</td>
<td>etilnitrat, natrijev nitrat</td>
</tr>
<tr>
<td>Willi (15)</td>
<td>1942</td>
<td>mačka</td>
<td>etilnitrat, dinitroglikol, nitroglicerin</td>
</tr>
<tr>
<td>Kiss e Seipelt (63)</td>
<td>1943</td>
<td>miš, štakor</td>
<td>guajakol, fenaceetin, toluilen-diamin, sulfonamidi, dinitrobenzen, dinitroglikol, klorati</td>
</tr>
<tr>
<td>Schlimnec (64)</td>
<td>1943</td>
<td>mačka</td>
<td>fenilhidroskiloamin, toluilen-hidroskiloamin</td>
</tr>
<tr>
<td>v. Oettingen et al. (65)</td>
<td>1944</td>
<td>pas</td>
<td>trinitrotooluenc</td>
</tr>
<tr>
<td>Autor</td>
<td>Godina</td>
<td>Species</td>
<td>Otvor</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------</td>
<td>------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Fertman i Doan (18)</td>
<td>1945</td>
<td>mačka</td>
<td>crirulceitrinitrat,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>manitol heksanitrat,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>natrijev nitrit,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sulfonamidi</td>
</tr>
<tr>
<td>Figge (66)</td>
<td>1946</td>
<td>miš</td>
<td></td>
</tr>
<tr>
<td>Bock (38)</td>
<td>1947</td>
<td>miš, štakor,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>zamorac, mačka,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pas, kunić, majmun,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>zamorac, mačka</td>
<td></td>
</tr>
<tr>
<td>Cruz i Pimenta de Mello (67)</td>
<td>1947</td>
<td>kunić, majmun,</td>
<td>kriogenin i srodnipevijo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>zamorac, mačka</td>
<td></td>
</tr>
<tr>
<td>Haas (68)</td>
<td>1947</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lambrechts et al. (69)</td>
<td>1947</td>
<td>miš, mačka, miš,</td>
<td>dinitrobenzen, dinitro-</td>
</tr>
<tr>
<td>v. Oelingen et al. (72)</td>
<td>1947</td>
<td>pas, majmun,</td>
<td>benzen, trinitrobenzen,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MC a-nitroanilin</td>
</tr>
<tr>
<td>Rejsek (71)</td>
<td>1947</td>
<td>kunić, pas</td>
<td></td>
</tr>
<tr>
<td>Roubal (72)</td>
<td>1948</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spicer et al. (45)</td>
<td>1948</td>
<td>mačka</td>
<td></td>
</tr>
<tr>
<td>Spicer (73)</td>
<td>1949</td>
<td>mačka</td>
<td></td>
</tr>
<tr>
<td>Treon et al. (74)</td>
<td>1949</td>
<td>mačka, kunić</td>
<td></td>
</tr>
<tr>
<td>Spicer i Thompson (75)</td>
<td>1949</td>
<td>mačka</td>
<td></td>
</tr>
<tr>
<td>Webster et al. (76)</td>
<td>1949</td>
<td>miš</td>
<td></td>
</tr>
<tr>
<td>Zuelzer et al. (22)</td>
<td>1949</td>
<td>pas, mačka, miš,</td>
<td></td>
</tr>
<tr>
<td>Braunssteiner et al. (77)</td>
<td>1950</td>
<td>mačka, miš, kunić</td>
<td></td>
</tr>
<tr>
<td>Itubuke i Jusag (78)</td>
<td>1951</td>
<td>pas, štakor, kunić,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>zamorac, pile, golub</td>
<td></td>
</tr>
<tr>
<td>Merlini (79)</td>
<td>1951</td>
<td>majmun, mačka</td>
<td></td>
</tr>
<tr>
<td>Rigdon i Breslin (80)</td>
<td>1951</td>
<td></td>
<td>kriogenin</td>
</tr>
<tr>
<td>White et al. (81)</td>
<td>1951</td>
<td></td>
<td>acetilfenilhidrazin</td>
</tr>
<tr>
<td>Autor</td>
<td>Godina</td>
<td>Species</td>
<td>Otrov</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>---------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Siebenmann i Zubrya (82)</td>
<td>1955</td>
<td>miš</td>
<td>para asecilamino-benzal-tio-enikarbonazon (konte-ben), flavolinanitlin</td>
</tr>
<tr>
<td>Roza i Speier (44)</td>
<td>1955</td>
<td>mačka</td>
<td>azo-derivati fenilendiami, toluillendiamin</td>
</tr>
<tr>
<td>Wingler (83)</td>
<td>1955</td>
<td>mačka</td>
<td>aminit nitrat</td>
</tr>
<tr>
<td>Stahl i Jung (42)</td>
<td>1955</td>
<td>mačka</td>
<td></td>
</tr>
<tr>
<td>Trec et al. (45)</td>
<td>1955</td>
<td>mačka, kunić, zamorac, štokar, miš</td>
<td></td>
</tr>
</tbody>
</table>

Isti otrov, na primjer, kod miševa treba 4 dana da izazove Heinzova tjelesna, a kod mačaka tek 20 minuta (Moeschelin, 39; Wilhelmi, 40). Etrul-tetranitrat u subletalnoj dozi ne izaziva kod kunića ni kod maj-muna Heinzova tjelesna uopće, dok i mnogo manja doza uzrokuje jak porast tih tvorba kod mačke (Ferkman i Doan, 41). Djelovanjem fenilendiamina i toluillendiamina pojava se već nakon nekoliko sati Heinzova tjelesna kod mačke u velikom broju, sporije i manje kod pasa, dok se kod kunića i zamoraca uopće ne pojavljuje (42). Slična su opažanja objavili Trec et al. 1955. g. (43) proučavajući toksičnost aminitritle na mačkama, zamorcima, kunićima, štokarima i miševima. Zbog toga se kod mnogih ekperimentalnih izazivanja Heinzovih tjelesaca uzima vrlo često mačka kao pokusna životinja. Međutim, kod mačke mogu te tvorbe biti prisutne i »fiziološki«, a to, dakako, otežava pravilno prosuđivanje ekperimentalnih rezultata kod izazivanja tih tvorba. Usmjerećen naši radovi su na ekstremalnoj nitraciji mačaka, ali je oni ostali bez velikog uspjeha (43, 44, 45). Začutio, ni Jung (42), jedan od najboljih poznatelja pojava Heinzovih tjelesaca, ne obrača težnje dovoljno pažnje. Kod mačke se, kaže Jung, »kao i kod zdravog čovjeka« nadu i uključuje »u vrlo malom procentu«, a samo ih je »u jednom neobređenom slučaju« našao i u 80% mačkinih eritrocita. Zbog toga sam poduzeo ispitivanja o endogenoj pojavi Heinzovih tjelesaca kod mačke. Smatram, naime, da je to ne samo prijeko potrebno za procjene i usporedbu rezultata ekperimentalnih otrovanja kod mačaka, već i za upoznavanje bioloških karakteristika »endogenih« inkluzija.

Otkako je Schmauch 1899. prvi opisao i opisao detaljno opisan (46) endoglobularna tjelesca kod mačaka, vrlo rijetko se o tom pojavu pisalo u eksperimentalnoj medicini. U veterinarskoj literaturi, koja mi je bila pristupačna, nismo sam samu nekoliko radova o eritrocitnim inkluzijama, koje se u veterinarskoj medicini nazivaju Schmauchovim tjelescima (tablica 3). Podaci o broju odnosno približnom nalazu tih tvorba kod zdravih (neotrovanih) mačaka sažen su u tablici 3.
<table>
<thead>
<tr>
<th>Autor</th>
<th>Godina</th>
<th>% E sa Schmaudovim tjelesima</th>
<th>E roj ispanih životinja</th>
<th>Methode bojadisaja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schmauch (46)</td>
<td>1895</td>
<td>15</td>
<td>1—80</td>
<td>metilviolekt</td>
</tr>
<tr>
<td>Natscheff (97)</td>
<td>1931</td>
<td>13</td>
<td>0,2—85</td>
<td>brilliant-krezalno modrilo</td>
</tr>
<tr>
<td>Freifeld et al. (5)</td>
<td>1937</td>
<td>neutražen</td>
<td>veći kod odraslih mačaka</td>
<td>sulfat niškog modrila</td>
</tr>
<tr>
<td>Hofbauer (58)</td>
<td>1937</td>
<td>22</td>
<td>0,1—7,4</td>
<td>brilliant-krezalno modrilo</td>
</tr>
<tr>
<td>Wirth i Schratt (99)</td>
<td>1937</td>
<td>2</td>
<td>27,5—78,6</td>
<td></td>
</tr>
<tr>
<td>Ottawa (120)</td>
<td>1938</td>
<td>10</td>
<td>0,4—3,8</td>
<td></td>
</tr>
<tr>
<td>Gross et al. (61)</td>
<td>1942/43</td>
<td>neutražen</td>
<td>10—30</td>
<td>sulfat niškog modrila</td>
</tr>
<tr>
<td>Jung (20)</td>
<td>1945/47</td>
<td>neutražen</td>
<td>same poječimačno (kod jedne mačke 80%)</td>
<td>neutražena</td>
</tr>
<tr>
<td>Bock (38)</td>
<td>1947</td>
<td>neutražen</td>
<td>20</td>
<td>sulfat niškog modrila</td>
</tr>
<tr>
<td>Feriman i Doan (41)</td>
<td>1948</td>
<td>neutražen</td>
<td>veći kod starih mačaka</td>
<td>brilliant-krezalno modrilo</td>
</tr>
<tr>
<td>Wirtl (85)</td>
<td>1950</td>
<td>recražen</td>
<td>0,1—71,4</td>
<td>recražena</td>
</tr>
</tbody>
</table>
Tolsweth i ja (84) smo kod velikog broja mačaka (63 životinje) našli, da se procenat eritrocita, koji sadržavaju Schmauchova tjelešca, kreće između 0,3 i 96,1 (tablica 4). Kako se vidi iz tablice, nešto više od polovice svih ispitanih životinja imalo je te tvorbe u manje od 10% eritrocita, ali su praktički sve ostale životinje imale preko 10% eritrocita sa Schmauchovim tjelešcima. Samo je jedna životinja imala ispod 1%, a tri životinje su imale iznad 50% Schmauchovih tjelešaca (Sl. 7). Naši su rezultati, dakle, slažu s većinom navedenih rezultata, ali su točniji s obzirom na mnogo veći broj ispitanih životinja.

Pitanje mehanizma nastajanja Schmauchovih tjelešaca kod mačaka ostalo je gotovo sasvim neistraženo. Sam Schmauch je smatrao, da su te endoglobularne tvorbe posljedica djelovanja endogenih toksina iz crijeva životinja. Neki autori, prema navodu Wirtha (86), dovode te tvorbe u vezu s nedovoljnom funkcijom slezena. Freifeld i suradnici (9) tvrde, da ih je kod mladih mačaka malo, a da svaka odrasla mačka ima te tvorbe, da Schmauchova tjelešca nisu nikad našli kod novorođenih mačaka; Fertman i Doan (41) ističu, da stari životinje imaju Schmauchova tjelešca.

Odabir mačke za naša ispitivanja uzimali smo samo životinje, kužih smo starosti znali prema navodima vlasnika. Prema podacima iznesenima u tablici 5 možemo zaključiti, da ne ce vjerojatno biti točan navod, da novorođene mačke nemaju Schmauchovih tjelešaca. Iz tablice se vidi, da ih kod mladih mačaka (do jedne godine starosti) uvijek ima, pa i u vrlo velikom broju. Uostalom u našem materijalu nije bilo ni jedne životinje, koja ne bi imala Schmauchovih tjelešaca.
<table>
<thead>
<tr>
<th>Starost</th>
<th>Broj ispitanih životinja</th>
<th>Način u procentu</th>
<th>Od — do</th>
<th>prosjek</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 dana</td>
<td>9</td>
<td>2,2—6,3</td>
<td>4,4</td>
<td></td>
</tr>
<tr>
<td>4—7 tjedana</td>
<td>12</td>
<td>0,3—9,1</td>
<td>13,6</td>
<td></td>
</tr>
<tr>
<td>2—8 mjeseci</td>
<td>16</td>
<td>2,2—49,6</td>
<td>22,6</td>
<td></td>
</tr>
<tr>
<td>1 godina</td>
<td>12</td>
<td>5,3—70,2</td>
<td>20,3</td>
<td></td>
</tr>
<tr>
<td>2 godine</td>
<td>4</td>
<td>6,2—7,9</td>
<td>7,4</td>
<td></td>
</tr>
<tr>
<td>3—4 godine</td>
<td>4</td>
<td>10,3—36,4</td>
<td>20,7</td>
<td></td>
</tr>
<tr>
<td>5—8 godina</td>
<td>4</td>
<td>2,6—49,6</td>
<td>20,2</td>
<td></td>
</tr>
<tr>
<td>preko 10 godina</td>
<td>2</td>
<td>3,6—9,1</td>
<td>6,3</td>
<td></td>
</tr>
</tbody>
</table>

Mi smo kod životinja izvršili splenekтомiju. Brojanjem eritrocita sa Schmauchovim tjelescima prije i poslije splenekтомije mogli smo utvrditi, da splenekтомija ne utječe na pojavu Schmauchovih tjelesaca. Stoviše, mi smo kod dvije životinje za vrijeme operacije uzimali krv iz vene odnosno arterije linealis i utvrdili su, da niema razlike u broju inkluzija između venozne i arterijske krv. Dalja istraživanja o pojavama Schmauchovih tjelesaca kod mačaka su u toku.

Da su Schmauchova endogena tjelesca identična s Heinzovim tjelescima zaključujem po potpuno jednakom ponašanju obiju inkluzija prema metodama prikazivanja (jednaka slika u faznoj oštićii, jednak afinitet prema bojama, iščezavanje obiju vrsta tvorbi nakon fiksiranja ciliim ili metilnim alkoholom). Za njihov identitet govori osim toga i činjenica, da se eozineno izazvana tjelesca kod iste životinje većinom morfološki ne mogu razlikovati od već primarnih endogenih tjelesaca. Pčuna tom je, dakle, od odlučne važnosti poznavanje Schmauchovih tjelesaca u eksperimentalnoj toksikologiji.

Razlike u pojavama Heinzovih tjelesaca postojao i kod kliničkih otvaranja. Na tu je činjenicu ukazao Markoff 1943. g. (16) kod terapije sulfonamidina. Reiner je 1950. g. (36) opisao slučaj kliničke upotrebe sulfatiazola, kod koje je došlo do pojavu brojnih Heinzovih tjelesaca, što je inače veliku riječnost s obzirom na široku upotrebu tog relativno neotoksičkog spoja. Ja sam nedavno objavio slučaj otvaranja metadinitrobenzenom kod dviju radnica s istog radnog mjesta (27). Nakon jednake ekspozicije otvoru i uz gotovo jednaku kliničku sliku (mešanog neklučivog ili dr) kod jedne je radnice nađen visok procenat Heinzovih tjelesaca (38%), dok se kod druge nisu u citavanom toku bile opće pojavile te tvorbe.

Za razliku od bazofilnih punktacija Heinzova tjelesca nastaju isključivo u perifernom krvi (87), pa se mogu i in vitro izazvati djelovanjem različitih otvora. Leshin (1) je i prije Heinzova opisa promatrao stvaranje inkluzija u eritrocitima pod djelovanjem hidroksilamina u vitro. Kasnije su i mnogi drugi autori opisali nastajanje tih tvorbi in vitro.
Eritrocitne inkluzije

(14, 22, 39, 76, 88, 89, 90, 91, 92, 93). Prema opisima rezultata raznih autora može se zaključiti, da broj, veličina i lokalizacija tvorbi zavise o nizu eksperimentalnih uvjeta (kemijska struktura, koncentracija otrova, pH otolina, vrijeme djelovanja, temperatura, prisutnost zraka, prisustvo krvne piaznine itd.). Povećanjem koncentracije fenilhidrazina našao sam također (1), da naslanju sve sitnije i mnogobrojnije tvorbe, dok hidrokiselinam ni u mnogo jačim koncentracijama ne izaziva tako silna tjelesa. Ove morfološke varijacije naročito je detaljno procijenio Jung (23) upotrebom elektronskog mikroskopa. Na tekuću primatranja morfoloških zbivanja Jung je došao do zaključka, da Heinzova tjelesa nisu jedinstvene tvorbe, budući da su one, već prema vrsti i trajanju otrovanja, vrlo različitog oblika i lokalizacije. Zbog toga Jung i izbjejava naziv »Heinzova tjelesa«, jer se katkada uopće i ne radi o distinktnim, kompaktnim solitarnim ili multilim »tjelesima«, već samo o vrlo sitnim, nejednakim zracima, često vidljivim tek elektronskim mikroskopom. I Niset (94) je istog mišljenja, pa predlaže za te sitne tvorbe naziv »Heinzove granulacije«. Tokištinska oštećenja eritrocita Jung dijeli prema tipu djelovanja nekog otrova u 4 grupe, između kojih, dakako, nema oštrih granic. Kod djelovanja kalijeva klorata ili arsenovodika, na primjer, nastaje se tvoje uglavnom od denaturiranog hemoglobina. Proces denaturacije je u tom slučaju difuzan i izoliran. Kod fenilhidrazina se također radi o denaturaciji i obaranju hemoglobina, ali proces zahvaća nekoliko centara koagulacije, t.j. mjesta početnog stvaranja tvorbi. Djelovanjem dinitrobenzena nastaje pretežno difuzan i izoliran obaranje stromatina, dok se kod fenilendiamina radi o denaturaciji stromatina iz jednog ili više centara koagulacije.

Individualne razlike moru se opaziti kod djelovanja istog otrova i vitro na ljudeku krv raznih osoba (98). Ta je činjenica u najnovije vrijeme vrlo korisno upotrebljena za testiranje preosjetljivosti prema primakini (8-aminokinolin) u kemočranjiji maliarije. Hochwald i suradnici (93) i Dehe i suradnici (96) su, naime, opazili, da se kod liječenja primakom kod izvjesnog broja osjetljivih ljudi može pojaviti akutna hemoitčka anemija. Ovi posljednji autori su pokazali, da se ta anemija osjetljivost ima pripisati »nekom unutarnjem defektu eritrocita«. \(\text{Kasnije su isti autori utvrdili, da su ti eritrociti osjetljivi ne samo prema primakini već i na niz drugih pojave, za koje znamo da izazivaju Heinzova tjelesa (fenilhidrazin, acitanilid, fenacetin, sulfanilamid i t. d.). Osobe, kojih su eritrociti osjetljivi, čine jasno određenu grupu ljudi, jer gradacija u osjetljivosti primakina i nema. U eritrocitiima osjetljivih osoba stvara se i vivo i i vitro mnogo veći broj Heinzovih tjelesa pod djelovanjem primakina nego u eritrocitiima neosjetljivih osoba. Na temelju tog opažanja su Beutler i suradnici (101) izradili jednostavni laboratorijski test, kojim se u crvi i vitro pomoću acetalifenilhidrazina održuje osjetljivost na primakin kod osoba, koje će se podvrgnuti liječenju maliarije. Kod osjetljivih osoba se tako može predrasuditi hemoitčko djelovanje primakina.}
Heinzova tjelesna imaju, dakle, veliku vrijednost u kliničkoj i eksperimentalnoj tokisokologiji. Ona imaju direktno dijagnostičko značenje, jer upućuju na djelovanje nekog egzogenog hemolitičkog otvara. Ona imaju i preventivno značenje, jer njihova pojava, tješi ostalih simptoma otvaranja ili u testiranoj krvi in vitro, služi kao znak opasnosti i preosjetljivosti.

3. Siderotičke granulacije

Prisutnost željeza u hemoglobinu ne može se otkriti histokemijski, pa eritrociti zdrava odrasla čovjeka daju negativnu reakciju berlinskog modrila (1). Međutim, Grünberg je 1941. g. (2) pokazao, da se u embrionalnoj krvi zdravih štakora, miševa i ljudi mogu pojedinačno pojaviti eritrociti, koji u hemoglobin sadržavaju i slobodno ili »lako odcepljivo« željezo. To se željezo može prikazati pomoću reakcije berlinskog modrila. Eritrocite, što sadržavaju željezo u tom obliku, nazvao je Grünberg »siderocite«. Kasnije (1942 i 1943) je Grünberg našao (3) siderocite u vrlo velikom broju u krvi miševa oboljelih od prolaznog oblika anemije, veza ne na recezivni »gen za zabijeni rep i za mrlinu na trbuho«. Stupanj anemije kod tih životinja bio je u dirktnom omjeru s procentom siderocita. Isražujući ovu zanimljivu pojavu Grünberg je dalje tražao za stajnjima u umanjoj patologiji, kod kojih bi se mogli naći siderociti u većem broju. Tako su Doniach, Grünberg i Pearson 1943. g. opisali (1) pojavu siderocita kod bolesnika s bilijarnom cirozom jetre, koji je bio splentomiran, zatim kod četiri bolesnika, koji su bili splentomirani zbog anemije, trombocitopenične purpure ili traumatske rupture stlezne, te konačno kod dva bolesnika, koji su bošovali od kronične uremije. Pojava siderocita protumačena je kao znak »neke griješke u metabolizu željeza«. Proučavanjem diferencijskih karakteristika siderotičke supstancije autori su ukazali na razlike prema hemosiderinu, koji se može vidjeti u obliku zlatnožutih zrnaca i u nativnom razmazu, a koji, višalom, nikad nije bio opažen u intaktnom eritrocitu. Za razliku od bazofilnih punktacija i Howell-Jollyevih tjelesaca, siderociti se mogu lako naći i bez bojadiana bazičkim bojanjem. Ubrzano nakon ovih radova Grünberga i njegovih suradnika opisali su u SAD Pappenheimer i suradnici (4) pojavu eritrocitnih inkluzija kod tri bolesnika s anemijom, što je persistirala i nakon splentomije. Kod dva od tih bolesnika anemija je bila hemolitičkog tipa, a kod jednog »neodređenog tipa«. Za razliku od Grünbergovih siderotičkih granulacija, Pappenheimerove inkluzije u eritrocitima su se bojadiane te samo specifičnom reakcijom na željezo već i bojama Romanowskoga, t. j. mogu su se prikazati i u razmazu bojadianom po Giemsi. Slijedeći opažanja Pappenheimera i suradnika Dacie i Doniach (5) su također pokazali, da siderociti mogu imati svojstva bazofilnih punktacija, t. j. da pokazuju...
bazofilni kromašinitet, kad se bojadišu metilenским modrolo ili jednom od metoda bojadsanja Romanowskog. Oni razlikuju "difuznu točku bazofiliju" od bazofilnih punktacija: ta difuzna točka bazofilija daje negativnu reakciju berlinskog modrila isto tako kao što na L.E. Howell-Jollyeva tjelesca daju negativnu reakciju na željezo. Siderotička zraka su bila prisutna i u eritroblastima koštane srži. Iste godine su McFadzean i Davis (6) u opširnoj studiji iznijeli opažanja kod 7 slučajeva stečene idioptapske hemolitičke anemije. Prije splenekтомije, koja je bila izvršena kod 6 bolesnika, sidero-positivne inkluzije su bile vrlo brojne u koštanoj srži, ali relativno oskudne u crvenoj krvi. Nakon splenekтомije su zraka, pozitivna na željezo, bila u jednakoj množini nađena u srži, ali je u perifernoj krvi nastao nagli porast tih inkluzija, paralelno s porastom sveukupnog broja eritrocita. Taj porast siderocita autoru tumače manjkom slecne, koja je po njihovu mišljenju vjerojatno vršila odstranjivanje siderocita iz periferne cirkularije. Sidero-positivne inkluzije u eritrocitima su opazili kod drugih hematoloških poremećaja, ali ni kod jednog stanja u toj množini kao kod stečene idioptapske hemolitičke anemije. Granulacije, što ih opisuje McFadzean i Davis, su se bojadsale vrlo dobro i bojama Romanowskoga, zbog čega ih autori nazivaju Pappenheimerovim tjelescima. Kako su multipla "Pappenheimerova" zraka, vidljiva bojadsajućim po Giemsi, plavkasto-ljubičasta pa prema tome vrlo slična bazofilnim punktacijama, koje se vide kod otrovanja olovom, autorii su promatrali odnos bazofilnih punktacija kod kliničkog i eksperimentalnog otrovanja olovom prema sideročkih granulacijama. Našli su, da su grulje punktacije kod otrovanja olovom često pokazivale pozitivnu reakciju na željezo, dok su manja granula većinom bila negativna na željezo. Kasnije su isti autori (7) još posebno proučavali taj odnos pa su utvrdili, da kod kliničkog otrovanja olovom samo jedan dio bazofilnih punktacija u eritrocitima periferne krvi daje pozitivnu reakciju na željezo. Broj bazofilno punktiranih eritrocita u preparativima iz izvora od Leishmanu (Giemsi) bio je odlične duonstruko veći od broja siderocita prikazanih reakcijom berlinskog modrila. Slično je intoksikacija olovom bila teža, a bazofilne punktacije grulje, to je i veći procenat tih punktacija davao pozitivnu reakciju na željezo. Grube granulacije u normobilastima u perifernoj krvi, koje su bile smještene uz sumu jezgru, redovno su bile pozitivne na željezo. U razmažima koštane srži sidero-positivna tjelesca su sadržavali normobilasti, eritrociti i fagociti. Za razliku od odnosa eritrocita s bazofilnim punktacijama i siderocita u perifernoj krvi, eritroblasti sa sideročkim granulacijama su bile brojčano jednako zastupljene u koštanoj srži kao i eritroblasti s bazofilnim punktacijama. Dekolorisajući bazofilno punktiranih eritroblasta u razmazu bojadosanom po Leimhanu i naknadnom primjenom reakcije berlinskog modrila autori su utvrdili, da su bazofilne punktacije dijelom pozitivne na željezo. Prema tim bi se opažanjima, dakle, bazofilne punktacije, s obzirom na reakciju na željezo, mogu podijeliti u dvije grupe: u bazofilne punktacije, koje daju pozitivnu reakciju na
željezo, i u one, koje daju negativnu reakciju na željezo. Međutim, ističu autori, granulacije, koje se dotiču jezgre, uvijek su pozitivne na željezo, a one, koje su razapune po citoplazmi stanice, samo djelomično. Isposuđujući siderotičke granulacije kod stičenih hemolitičkih anemija sa siderotičkim granulacijama kod otrovanja olovnou autori zaključuju, da se kod oba stanja radi vjerovatno o sličnom defektu u sinči hemoglobina. Siderotičke granulacije, što se u velikom broju mogu naći u kožnoj srži kod otrovanja olovnom, bile bi, prema tome, morfološki dokaz valjanosti hipoteze, da se kod otrovanja olovnem radi o spriječenoj ugradnji željeza u požilinski prsten. Konačno, autori su našli, da kod životinja, koje su bile splektomirane i naknadno otrovane olovnom, broj siderocitai u eriternoj krvii naglo raste i ostaje visok za čitavo vrijeme djelovanja olovnja na životinju, da se i kod otrovanja olovnem kao i kod hemolitičkih anemija, smanjenje sveukupnog broja eritrocita ima prijazni eliminatorski funkciji srževju, koja odstranjuje defektne eritrocitae snajčje istovremeno i sveukupni broj eritrocita.

Radovi McFadzeana i Davisea pokazali su, dakle, da se kod otrovanja olovnem, kao i kod drugih krvnih bolesti, mogu pojaviti u velikom broju siderotičke granulacije. Dalja klinička i ekperimentalna istraživanja su potvrdile ta opažanja. Tako je Pirrie (14) eksperimentalnim otrovanjem olovnem pokazao, da su i bazofilne punktacije i siderotične granulacije manifestacija dishemopoioze kod otrovanja olovnem. Kaplan i suradnici (8) su nedavno vidjeli kod 8 djeceetrovane olovnem, da eritoblasti u vrlo visokom procentu sadržavaju siderotičke granulacije, koje su ne samo brojne u pojedinim stanicama nego i po veličini istaknute.

Budući da smo (Beritić, Hahn, Hauptmann, Keller, 9) već prije četiri godine izrazili na činjenicu, da je metabolizam željeza kod otrovanja olovnom potpuno u smislu povećanja serumskog željeza, a kako su siderotičke granulacije kao eritrocitne inkluzije od naročito značajna za toksiološka istraživanja, smatrali smo potrebnim proučiti uvu pojavu kod kliničkog otrovanja olovnem. Gregič, Sirec i Ja (10) smo promatrati broj eritoblasta sa siderotičkim granulacijama u kožnoj srži bolesnika otrovanih olovnem. Kod pet slučajeva kliničkog otrovanja našli smo, da se procenat eritoblasta sa siderotičkim granulacijama kreće između 75—95%. Narčio nas je zanimao morfološki izgled ovih inkluzija i njihov odnos prema bazofilno punkтираниm eritrocitima. Mi smo upotrebili tehniku bojadsjana, koja preporučuje Dacie (11), a kao kontrastnu boju karbolfuksin. Proučavajući morfološki izgled i lokalizaciju inkluzija, koje daju pozitivnu reakciju berlinskog modila, došli smo do zaključka, da bazofilne punktacije i siderotičke granulacije nisu identične tvarbe. Ispravnom tehnikom reakcije i kontrastnog bojadsjana može se, naime, vidjeti, da se bazofilne punktacije u ovoj individualnoj stanci, eritrociti i eritoblastu, bojadsju jasno crveno, a siderotičke granulacije jasno plavo. To smo mi na kolor-mikrofotografijama upojeli dokumentirati. Osim toga smo utvrdili, da zapravo kod otrovanja olo-
vom, kao ni kod drugih stanja, koja su popraćena siderocitima, nije ovdovano govoriti o «granulacijama», jer se ne radi uvijek o granulacijama ni o distinktnim tvorbama već o supstanciji, koja može potpuniti različite oblike. Ta se supstancija može vidjeti i u obliku nukupina, kako smo to na jednoj mikrobioografiji prikazali u jednom eritroblastu sa dvije jezgre, u kojem je siderošćka supstancija smještena kao nukupina plavce boje između obje jezgre. Siderošćka supstancija se može vidjeti i kao vrlo uska kontinuirana plava zona oko jezgre. Stoviše, mi smo našli i na eritroblaste, čija je čirava citojazma sidero- pozitivna i prema tuču sasvim homogeno plava. Takve stanice su vidjeli McFadzean i Davie. Što se tiče morfološkog odnosa bazofilnih punkta- cija i siderošćkih čestica mogli smo utvrditi, da postoje jasne razlike između obje vrste tvorbi. Bazofilne punktacije su većinom okruglaste sitne grudnice, manje ili više jednake veličine, ali općenito gotovo jednaka izgleda u svim stanicama. Siderošćke čestice u istoj stanici se obično poševno razlikuju po izgledu od bazofilnih punktacija, jer su nepravilna i neodređena oblika, poput stapića ili zareza ili nejednakih zrnaca, a redovno različitog rasporeda i smještaja u citrocitov i različitog izgleda u pojedinim eritrocitima. U citrocitovima su čestice porodene gotovo uvijek uz samu jezgu, ili sasvim blizu nje. Sto većinom nije slučaj kod bazofilnih punktacija. One su zapravo tako tijesno uz jezgu smještenice, da ih je moguće od jezgre odijeljene vidjeti upravo samo zato, što su sidero-pozitivne na reakciju berlineg mobrila i zbog toga izrazito plave boje, pa su vrlo kontrastne prema tamnocrvenoj boji jezgre. Vrlo često, kako smo rekli, siderošćka supstancija čini samo jedan uski kontinuirani perinuklearni pojas, koji se potpuno dodiruje jezgre. Gotovo ni kod jednog drugog stanja nije sidero-pozitiva supstancija u tako intimnom kontaktu s jezgrom kao kod otvaranja olovuna. Douglas i Ducte (12), koji su nedavnio potpuno ispisali morfologiju siderošćkih granulacija, kažu, da granula katkad čine prsten oko jezgre. Taj smo konstantni perinuklearni siderošćki pojas vidjeli zapravo samo još kod jednog slučaja stečene hemolitičke anemije. Zanimljivo je, da je upravo u tom slučaju nađen i neobično visok (1/000 na milijun) broj bazofilnih punktaniranih eritrocita, što se također nađe gotovo samo kod otvaranja olovuna. Taj slučaj potpuno odgovara slučaju, koji su opisali 1950. god. Mills i su- radnici (13). Razmatrajući mehanizam nedovoljne sinteze hemoglobinina kod svog slučaja i sličnih slučajeva iz literature, Mills i suradnici pret- postavljaju, da se kod tih bolesnika radi o endogenom defektu, koji pog- pada izmjenu željeza između jezgre i citojazme. Tu su pretpostavku eksperimentalno dokazali upotrebom radioaktivnog željeza, a kao dokaz, da se kod njihova slučaja zaista radi o toj spriječenoj izmjeni željeza, navode »početnu akumulaciju siderošćkih granula u paranuklearnoj zoni«. Bazofilne punktacije u razmazu bojadisanom po Giemsi se međutim vide, kažu autori, više prema periferiji i difuzno po eritroblastu. Taj odnos je procentualno pokazan na tablici 6.
Tablica 6.
Lokalizacija granulacija u punktiranim eritroplastima prema Millsu i suradnicima

<table>
<thead>
<tr>
<th>Metoda bojadsanja</th>
<th>Lokalizacija</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Centralna (paranuklearna)</td>
</tr>
<tr>
<td>Wright-Giemsa</td>
<td>14%</td>
</tr>
<tr>
<td>Reakcija berlinskog modrila</td>
<td>50%</td>
</tr>
</tbody>
</table>

Zrclinjem cutritoplasta sideročičke se granulacije »pomiču« od paranuklearnog smještaja sve više prema periferiji i time, prema autorima, sve više gube pozitivnu reakciju na željezo, tj. od sideročičkih postaju bazofilne punktacije.

Ma da ovaj odnos nije proučen na većem materijalu, on pokazuje, da je vjerojatno u nastajanju bazofilnih punktacija pokrenut neki endogeni mehanizam kao i kod nastajanja sideročičnih granulacija.

Ispitivanja o pojavim inkluzija, koje daju pozitivnu reakciju na željezo, malobrojna su, pa su i iskustva još oskudna. Međutim, ni u jednom od dosadašnjih radova iz prikazane literature nije jasno istaknuta činjenica, da postoje dvije vrste sidero-positivnih inkluzija: jedne, koje je prvi opisao Grünberg, mogu se prikazati samo i isključivo reakcijom berlinskog modrila, a druge, koje je prvi opazio Pappenheimer, mogu se prikazati u bojama Romanowskoga i reakcijom berlinskog modrila. Njihovo slabio međusobno razlikovanje u literaturi uzrokovano je i zajedničkim imenom: i oni eritrociti, koji posjeduju Grünbergove granulacije, i oni, koji posjeduju Pappenheimerove granulacije, nazivaju se istim imenom: siderociti. Uostalom, obje vrste sideropozitivnih granulacija ne daju posve jednaku reakciju berlinskog modrila: u razazima trećanim na posve jednak način i primjenom posve jednokog kontrastnog bojadsanja bazičkim fuksinom Grünbergove granulacije prikazuju jasnu plavu boju, a Pappenheimerove granulacije zagasit, tannoplavu boju, vjerojatno nastalu kombinacijom plave boje berlinskog modrila i tannopljubicaste boje neke kemijijski još nedefiniranupešenosti, prisutne u Pappenheimerovim granulacijama. Prema tome postoje i dvije vrste siderocita, koje bismo mogli nazvati »siderociti tipa Grünberg« i »siderociti tipa Pappenheimer«. Kod otvaranja olovom nastaju, prema našem mišljenju (10), siderociti tipa Grünberg, tj. sideročičke inkluzije se kod otvaranja olovom mogu prikazati jedino reakcijom na željezo. Te su inkluzije često prisutne i u eritrocitima, koji sadržavaju bazofilne punktacije, ali su uvijek jasno plave i obično
nemaju morfološki izgled granulacija, pa se ne možemo složiti s mišljenjem McFadseana i Davisa, da se kod otrovanja olovom nalaze "Pappenheimerova tjelesica".

Da li je željezo u siderocitima tipa Grüneberg-nastalo nekim pašogenetskim mehanizmom, koji se razlikuje od onoga, kojim nastaje željezo u eritrocitima tipa Pappenheimer, nije poznato. Međutim, vjerovatno je, da i jedna i druga vrsta sideročkih inkluzija nastaje kao morfološka manifestacija poraznjećene sinteze hemoglobinuma. Stanja, koja obiluju i jednom i drugom vrstom granulacija, popularna su visokim serumnim željezom i anemiom manjeg ili većeg stupnja. Kako se takva stanja mogu izazvati i različitim egzogenim kemijskim nošama (otrovanje olovom, 6, 7, 8, 14, otrovanje fenilhidrazinom, 12) neoporno je, da je proučavanje sideročkih čestica neobično važno za razumijevanje hemato-toksičkog djelovanja različitih otrova.

Zaključak

Eritrocitne inkluzije kao morfološke manifestacije biokemijskih zbijanja, što nastaju pod utjecajem niza kemijskih otrova u osjetljivim stanicama crvene krvne loze, ma da još nedovoljno proučene, ipak su našle definitivno mjesto u rutinskim toksikološkim priragama. Neobično veliki porast egzogenih otrovanja, što ide u korak s razvijanjem industrizacije, opravdava dalje proučavanje tih tvorbi.

Literatura

47. Donas, R.: Arch. génér. de Med. 192 (1903), 2576.
70. Baeder, E.: Arch. Gewerbepath. 7 (1937), 597.
2. Heinsova tjelesca

46. Schmaus, G., Virchows Arch. 156 (1950), 207.
47. Heinz, R.: Virchows Arch. 122 (1890), 112.
49. Huber, A.: Virchows Arch. 126 (1901), 240.
55. Gutstein, M.; Wellbach, G.; Virchows Arch. 267 (1928), 144.
58. Moeschlin, S.; Fo! Haematol. 65 (1941), 345.
64. Schlimme, H.; ibid. 202 (1943), 60.
73. Schier, S.; I. industr. Hyg. & Toxicol. 31 (1949), 204.
74. Treon, J. et al.; ibid. 31 (1949), 1.
75. Schier, S.; Thompson, E.; ibid. 31 (1949), 206.
78. Heimler, A.; Jung, F.; Seng, B. 77 (1951), 166.
90. Gajdie, A.; Tijero, G.; Song 18 (1957), 35.
100. Wirth, D.; Schratt, H.; Fo! Haematol. 38 (1937), 358.

3. Videtoitke granulakcie

2. Grunenberg, H.; Nature 148 (1941), 114; 148 (1941), 469.
TOXICOLOGICAL SIGNIFICANCE OFERYTHROCYTIC INCLUSIONS BODIES

Determination of inclusion bodies in the erythrocytes (basophilic stippling, Heinz bodies, and iron-containing particles) has been described as a simple clinical tool for the recognition and appraisal of the exposure to toxic chemicals. None of these phenomena is confined solely to the exogenous toxic influence. However, their significance with regard to the diagnosis and prevention of incipient intoxications, is emphasized.

The hypothesis of the origin and the microchemistry of stippling are recorded and discussed. The changes in erythroblasts in the bone marrow in human lead poisoning are briefly reported. The evidence that the phenomenon of stippling results from the fault in the development of the red cell precursors in the bone marrow is supported not only by the findings in lead poisoning but also by the identical findings in certain cases of acquired haemolytic anaemia due to the faulty haemoglobin synthesis and showing basophilic stippling in the peripheral blood. Both conditions are due to an endogenous mechanism of dyserythropoiesis. Through an example of the field research work in a lead mine and a smelting plant it is shown how the enumeration of stippled cells may reveal the degree of individual and collective exposure to lead in miners and in smelters respectively.

Clinical data and toxic chemicals producing Heinz bodies in humans and animals are listed. The literature is reviewed dealing with the individual and species differences in the incidence of Heinz bodies. The spontaneous occurrence of Heinz bodies as observed by various authors in the newborn infants with and without splenic pathology is discussed. The occurrence of Heinz bodies in the erythrocytes of normal cats (Schauz's bodies) due to the unknown endogenous factor has been studied. The incidence of affected erythrocytes was found to vary between 0.3 and 9.1 per cent. These differences were not related to the age of animals. Solventium, performed in 4 animals, did not result in any decrease in the number of affected cells before and after operation. The number of erythrocytes containing Schauz's bodlies found in the blood of the rats was approximately equal to that of arteria linlalis. The value of experimental production of Heinz bodies in vitro is described particularly for in the prevention of the injury to the red cells which may appear in the course of treatment with chemotherapeutics.

The morphology of stainable iron particles in erythrocytes and erythroblasts is described and the relationship of the siderotic granules to the granules of basophilic stippling in lead poisoning is discussed.

Institute for Medical Research,
Zagreb

Received for publication
June 3, 1957.