

STRATEGIES FOR SUCCESSFUL SOFTWARE
DEVELOPMENT RISK MANAGEMENT

Marija Boban*, Željka Požgaj**, Hrvoje Sertić***

Received: 16. 05. 2003 Preliminary communication
Accepted: 02. 11. 2003 UDC: 004.42 : 65.012

Nowadays, software is becoming a major part of enterprise business. Software
development is activity connected with advanced technology and high level of
knowledge. Risks on software development projects must be successfully mitigated
to produce successful software systems. Lack of a defined approach to risk
management is one of the common causes for project failures. To improve project
chances for success, this work investigates common risk impact areas to perceive a
foundation that can be used to define a common approach to software risk
management. Based on typical risk impact areas on software development
projects, we propose three risk management strategies suitable for a broad area of
enterprises and software development projects with different amounts of connected
risks. Proposed strategies define activities that should be performed for successful
risk management, the one that will enable software development projects to
perceive risks as soon as possible and to solve problems connected with risk
materialization. We also propose a risk-based approach to software development
planning and risk management as attempts to address and retire the highest
impact risks as early as possible in the development process. Proposed strategies
should improve risk management on software development projects and help
create a successful software solution.

1. INTRODUCTION

Nowadays, software is becoming a major part of enterprise business. The

significance of software is growing everyday, along with the progress of

* Marija Boban, MSc, University of Split, Faculty of Law, Domovinskog rata 8, 21000 Split
Croatia, Phone: +385 98 955 0805, Fax: +385 21 393597, E-mail: marija.boban@pravst.hr
** Željka Požgaj, PhD, University of Zagreb, Faculty of Economics, J.F. Kennedy Square 6,
10000 Zagreb, Croatia, Phone: +385 1 238 32 77, Fax: +385 1 233 56 33, E-mail: pozgaj@efzg.hr
*** Hrvoje Sertić, MSc, Research & Development Center, Ericsson Nikola Tesla, Krapinska 45,
10000 Zagreb, Croatia, Phone: +385 98 416 777, Fax: +385 1 365 361, E-mail: hrvoje.sertic@
etk.ericsson.se

77

Management, Vol. 8, 2003, 2, pp. 77-91
M. Boban, Ž. Požgaj, H. Sertić: Strategies for successful software development risk management

technology. Software development is activity connected with advanced
technology and high level of knowledge. Every software development project
faces a significant amount of uncertainty that is usually manifested as possible
risk materialization The success of a software development project is directly
connected with the involved risk, i.e. project risks should be successfully
mitigated in order to finish a software development project. The conditions on
today’s global software market demand the most advanced software solutions
from enterprises in order to be comparable and competitive. Development of an
advanced software solution in the shortest possible time is a process associated
with an extremely high number of risk impacts.

Every aspect of a software development project could be influenced by

risks that could cause project failure. It is common to say that risk is the price of
opportunity, i.e. a project with a high number of risks has an opportunity on the
global software market if the project is completed on time and within planned
expenses. Many development projects are trying to advance current software
capabilities and achieve something that has not been done before. The
opportunity for advancement cannot be achieved without taking risks. The use
of advanced and, in most cases, unproven technology on software development
projects leads to a large number of risks. In order to complete a complex
software development project within planned boundaries, risks on the project
should be well understood and mitigated.

Definition of an approach to risk management in the form of strategies

suitable for different software development projects is the subject of this work.
With this work, we will show that risk management should be a part of every
software development project and that only successful risk mitigation leads to
successful software development. Furthermore, we will show that a well-
implemented risk management process, defined with the risk management
strategies we propose, increases an enterprise’s opportunities on the global
software market. Today's common software development processes, such as
Unified Process (Booch, Rambaugh & Jacobson, 2001), define risk
management as activity on software development projects, but they do not
define strategies suitable for risk management implementation on different
development projects.

This paper is organized as follows: After this introduction, an overview of

the risks in software development is given. The third section deals with the risk
management on software development projects. The fourth section presents
strategies for risk management proposed in this work. Conclusions are given at
the end.

 78

Management, Vol. 8, 2003, 2, pp. 77-91
 M. Boban, Ž. Požgaj, H. Sertić: Strategies for successful software development risk management

2. RISKS IN SOFTWARE DEVELOPMENT

As a result of the conditions on the global software market, the software

industry is becoming more ruthless everyday. In recent years, software solutions
have become extremely complex, and the complexity of software solutions is
growing everyday (Sertić, 2002). The global market requires software with new
features and capabilities developed in small time frames. Conditions on the
global software market demand new levels of usability, quality, reliability, and
performance from software solutions. The only chance for enterprises to survive
on such a market is to build software that is better than the competition, in the
shortest possible time. Building quality software in the terms defined by the
conditions from the global software market is fundamentally hard and
connected with a high level of risk (Hall, 1998). Risks are present in every
aspect of software development. Software development is a special kind of
engineering activity because of the involved knowledge and technology, so it is
common to say that risks have an extremely high influence on the success of
software development projects (Jones, 1994). There are numerous kinds of risks
that can cause software development project failure.

A risk can be defined as a consideration that has some degree of

probability of compromising the success of a software development project
(Karolak, 1995). Formally, risk can be described as project variables that
designate project success (Capers, 1994). Risk defines the probability that the
software development project will experience unwanted and inadmissible
events, such as termination, delays in project schedule and overrun of project
resources. Risk is the possibility of suffering loss that describes the impact on
the project which could be in the form of poor quality of the software solution,
increased costs, failure, or delayed completion. Software development is
specific because risks in software development can be classified in many
categories. It is difficult to clearly define risk categories that could apply to a
wide area of software development projects. The essence of risk classification is
not in precisely defining risk categories, but in identifying and describing as
many risks as possible on the project. Due to that, it is suggested that risks on
software development projects should be classified according to the main
impact areas (Ould, 1996).

For most software development projects, we can define five main risk

impact areas: (1) The use of new and unproven technologies, (2) software
system requirements, (3) software system architecture, (4) software system
performance and (5) organizational and non-functional area.

 79

Management, Vol. 8, 2003, 2, pp. 77-91
M. Boban, Ž. Požgaj, H. Sertić: Strategies for successful software development risk management

The most important risk impact area is connected to the problems related to
new technologies. The majority of software development projects is connected
with the application of new technologies. The improper use of new technologies
usually leads to project failure. Knowledge is the main problem connected with
the use of new technologies (Sertić, 2002). In order to implement new
technology, a development team should have sufficient knowledge about it. The
importance of knowledge about technologies involved in a software
development project is often disregarded. Software solution is built upon
technological features, which are often new to a project development team.
These technological features are often predicted at the beginning of a software
development project, and only a software prototype can prove these predictions
(Larman, 2002). The knowledge about these technological features can refine
predictions about features and minimize the risk connected with the use of these
technologies. A software development team should have sufficient knowledge
in order to efficiently exploit technological features. The knowledge about the
involved technologies is a precondition for a successful software development
project (Ould, 1998).

The second important risk impact area is connected with software

requirements. Software requirements are a common term for all users’ needs
regarding software system functionality and quality of service. It is often very
hard to develop the right software solution that absolutely meets users’
expectations. In order to develop a software solution according to user
expectations, a software development team should discover a whole set of user
requirements (Larman, 2002). These requirements, that must guide the entire
development process, can be divided into functional and non-functional
(Larman, 2002). Functional requirements define behavior of the software
solution, while non-functional requirements define qualities and constraints to
which the software solution must conform.

The process of the identification and definition of requirements is long and

complicated, so it is common that requirements change during the realization of
a software development project (Booch, Rambaugh & Jacobson, 2001). The
change of requirements is a major problem in software development because the
change of one or few requirements could impact the complete software solution
and lead to the failure of a software development project. As a result, it is
absolutely necessary to find the right requirements and to manage the change of
requirements during a software development project.

The third important risk impact area is the architecture of a software

solution. Software architecture could be described as a set of significant

 80

Management, Vol. 8, 2003, 2, pp. 77-91
 M. Boban, Ž. Požgaj, H. Sertić: Strategies for successful software development risk management

decisions about the organization and components of a software solution (Booch,
Rambaugh & Jacobson, 2001). Software architecture must be defined in the
early development phases in order to build a quality software solution. It is
possible that software architecture defined in the early development phases does
not satisfy all of the requirements set on a software solution. The software
architecture can be verified only with a software prototype, which can be
realized only in later development phases. Due to the importance of software
architecture, many development processes focus directly on software
architecture in order to build a quality software solution according to the
defined requirements (Royce, 1998).

The fourth risk impact area is connected with software system

performance. In order to satisfy non-functional requirements, a software
solution should have satisfactory performance. The performance of a software
solution could be tested only on a real and realized software solution. Thus, it is
necessary to make predictions about software system performance in the early
development phases. These predictions are very important because it is possible
to develop a software solution that satisfies functional requirements, but it is too
slow to fulfil performance requirements (Karolak, 1995). As a result,
development team members, with experience in given technologies, should do
performance predictions and assumptions.

The fifth risk impact area could be considered as the organizational and

non-functional area. The risks connected with this area could be described as
organizational problems and problems related to the project resources and
schedule. Organizational problems may affect the realization of a software
solution since only the efficient organization of software development leads to a
successful software development project (Sertić, 2002). A defined project
schedule could become a risk because there are many unwanted events that
could cause a delay in software realization. It is a management problem to
define a project schedule in order to satisfy both customers and developers
(Ould, 1996). In order to fulfil defined project deadlines, resources given to the
project should be sufficient. This means that every software development
project should have enough project members with the right competencies and
all the required resources for the planned completion.

Besides risk identification and specification, risks in software development

should be addressed and managed. In software development, there are many
choices of dealing with risks (Ould, 1998). Based on the risk impact area and
type, risks can be avoided, restricted, mitigated and monitored (Jones, 1994).
The best possible way of risk addressing is to completely avoid risks. There are

 81

Management, Vol. 8, 2003, 2, pp. 77-91
M. Boban, Ž. Požgaj, H. Sertić: Strategies for successful software development risk management

a number of risks that can completely be avoided by the use of different
technologies, changing requirements or project plans. The next best way to
address risks on the project is to confine them. A risk can be confined in order
to restrict the risk impact area to affect only a small part of a software
development project. In order to reduce the impact area, risks must be identified
and some changes on the project should be made regarding the technology and
resources used. This is a proper way of addressing risks that cannot be avoided.

There are many risks that cannot be avoided or confined. These risks

should be mitigated or monitored. Some risks on a project can be mitigated by
the realization of a software prototype in order to try the risks and perceive if
they will materialize or not. It is better that risks materialize on a software
prototype than on a real software solution because a software development team
can learn on a software prototype and discover a way to avoid or confine
materialized risks.

If risks cannot be mitigated, they should be constantly monitored in order

to track their materialization. For these risks, contingency plans should be done
to define activities to be taken if they materialize. The risks that cannot be
mitigated introduce a serious threat to a software development project, so they
should be considered as highly important. After the materialization of such
risks, a complete project assessment and decisions about the project future
should be made. Risks can be identified and addressed in different phases of a
software development project, but it is essential to identify risks as early as
possible and address them promptly because the cost connected with exposed
risks could be enormous (Larman, 2002).

Addressing risks is time-consuming. It takes time to change project plans

in order to avoid some risks and it takes time to build prototypes needed for risk
mitigation. Thus, it is difficult to address all risks at the same time. In order to
successfully address risks that arise on a software development project, it is
necessary to divide risks into categories by priority and to plan software
development according to risk priorities. For successful project planning and
realization according to risks categorized by priority, it is required to have risk
management as a continuous activity on a software development project.

3. RISK MANAGEMENT

The key to risk management is the identification and mitigation of all true

risks or the development of a contingency plan in case the potential risk
becomes a reality (Charette, 1989). The process of risk management and risk

 82

Management, Vol. 8, 2003, 2, pp. 77-91
 M. Boban, Ž. Požgaj, H. Sertić: Strategies for successful software development risk management

mitigation is connected with preventing huge losses in software development.
Risk management should focus on risk reduction and prevention. Software risk
management is defined as practice for managing risks that occur in a software
development project (Hall, 1998). Risk management should continuously assess
possible problems on a software development project and define potential risks,
determine what risks are important to deal with and implement strategies to deal
with those risks. This means that the global project picture is required for
successful risk identification, but every project member should assess and
identify risks in project areas defined by his role in the project. There are four
basic steps in risk definition: identification, assessment, mitigation and
conclusion (Capers, 1994).

The first step in risk definition is risk identification, which is responsible

for the recognition of potential losses and their causes. In order to implement
successful risk management, project team members should have a global
perspective on the software development project. Risk assessment should
determine the level of exposure to potential loss caused by risk materialization
(Jones, 1994). The mitigation step is responsible for the creation of a risk
avoidance plan, while the conclusion step describes the execution of risk
avoidance and mitigation plans. These steps will lead to a complete description
of all risks, which should be captured in a formal document called the Risk List.
This document should contain all risks with the description of definition,
consequence, likelihood, risk ranking, indicators, risk mitigation strategy and
contingency plan for every possible risk on a software development project.

The process of risk management should start with risk identification. The

purpose of risk identification is to discover all factors that could lead to project
failure (Hall, 1998). These factors are connected with the technology used on
the project, software development process and organizational factors. These
areas should be observed and assessed in order to capture all of the potential
risks. It is necessary to capture details connected with the discovered risk, like
risk description, probability of risk occurrence, costs connected with
materialized risk and possible risk solutions and avoidance strategies.

The second step of the risk management process is to assess the level of

exposure for each risk. In this step, discovered risks should be ranked in levels
according to risk impact (Capers, 1994). Risks should be classified according to
the degree of impact in order to choose important risks to be solved first. Risks
with a devastating impact should be assessed before risks with a low impact.
This is important because risks with a huge impact should be considered in the
early development phases, when the costs connected with risk materialization

 83

Management, Vol. 8, 2003, 2, pp. 77-91
M. Boban, Ž. Požgaj, H. Sertić: Strategies for successful software development risk management

and project failure is smaller than in later development phases (Booch,
Rambaugh & Jacobson, 2001).

After risk assessment, risk mitigation is the next step in the risk

management process. Risk mitigation is an attempt to avoid or prevent the
consequences of risk materialization (Ould, 1998). There are three main
strategies of risk mitigation: risk avoidance, risk reduction and risk transfer
(Hall, 1998). Risk avoidance is the best possible answer to risk materialization,
but there are times when it is very difficult to avoid risks on a software
development project. The best way to avoid risks is to completely reorganize
the software development project, which is sometimes impossible. If risks
cannot be avoided, they can be reduced or transferred. Risk reduction is
connected with re-planning the software development project in order to reduce
the probability of risk occurrence. Risk transfer could be described as a project
reorganization strategy in order to forward the risk to areas where it would
cause less damage. Risk mitigation plans should be defined as soon as possible
for every identified risk.

The final step in the risk management process is risk conclusion. This step

is taken after the definition of a risk mitigation plan and includes all the actions
needed for risk avoidance or actions, which are required after the risk
materializes. The actions taken in the conclusion step should be defined in the
contingency plan. The contingency plan should describe actions, which are
taken once a risk becomes a reality.

4. STRATEGIES FOR RISK MANAGEMENT

In this chapter, we present three strategies for risk management. These

strategies are defined in order to support various types of software development
projects according to the amount of risk influence. Based on the amount of risk
on a software development project, we define three risk management strategies:
(1) careful, (2) typical and (3) flexible.

Careful risk management strategy is intended for fresh and inexperienced

organizations whose software development projects are connected with new and
unproven technology. Typical risk management strategy is defined as a support
for mature organizations with experience in software development projects and
used technologies, but whose projects carry a decent number of risks. Flexible
risk management strategy is engaged in experienced software development
organizations whose software development projects are formally defined and
based on proven technologies.

 84

Management, Vol. 8, 2003, 2, pp. 77-91
 M. Boban, Ž. Požgaj, H. Sertić: Strategies for successful software development risk management

Careful risk management strategy should be used on state of the art
software development projects, which are completely unknown to the
organization. This risk management strategy should be used on a software
development project with high acceptable risks, new technology and
inexperienced people. Careful risk management strategy could be described as
high priority risk management. Risks on software development projects, with an
implemented careful risk management strategy, should be taken with utmost
importance. This requires rigorous risk analysis on multiple levels. Risks should
be analyzed and traced on individual, team and organizational levels. In order to
identify important risks as soon as possible and on a wide problem area, every
project team member should be involved in risk management. This means that
every project member should identify and define risks connected with his
problem area, but risks should also be identified and defined on the team and
organizational area. Risk mitigation strategies must be defined for each
organizational level.

In order to successfully implement the risk management strategy, an

organization should define risk management roles on the software development
project, i.e. there should be project members whose primary activities are
connected with risk management. Since careful risk management strategy is
connected with an extremely high number of risks on a software development
project, an organization should formally define risk interpretation and ranking
policy. This should help to separate the important from the unimportant risks in
order to address important risks as soon as possible. Project team members
should continuously trace risks and actions connected with risks. Work on
software development must be ordered according to project risks, i.e. risks with
high importance should be solved first.

This requires constant planning and project supervision, but with this

approach, risks will be mitigated in the early phases of software development,
when the cost of a software development project is still small. Along with
constant risk identification and project planning, the risk list should be
reordered every time a new risk is identified because the most important risks
should be first on the list. Each risk ought to be formally well-described and risk
mitigation and contingency strategies should be defined. Careful risk
management strategy is dedicated to the software development project under
high-risk influence and, with this approach, risks can be well-understood and
addressed on time. Activities of careful risk management strategy are presented
in Fig. 1 using UML (Unified Modeling Language) Activity Diagram (Larman,
2002).

 85

Management, Vol. 8, 2003, 2, pp. 77-91
M. Boban, Ž. Požgaj, H. Sertić: Strategies for successful software development risk management

Define Risk Interpretation
and Ranking Policy

Define Risk
Management Roles

Define Risk Mitigation
Strategies

Order Development Activities
According to Identified Risks

Risk Analysis
and Tracking

Risk Identification
and Definition

Performed on
individual, team
and organizational
level

Figure 1. Activities of careful risk management strategy

Typical risk management strategy is intended for mature software

development organizations with experience in software development. This risk
management strategy should be used on software development projects with a
certain level of known technology and mostly experienced people. The level of
acceptable risks for this strategy is medium, i.e. there are risks, which could be
considered as too harmful, and projects with those risks would be cancelled.
With this strategy, risks should be identified in steps according to project
progress.

The main difference between careful and typical strategy is in risk

importance because the typical risk management strategy assumes that most of
the risks on the project are easily addressed, while the careful risk management
strategy assumes a high number of dangerous risks. Risk management should
mostly be practiced on the team and organizational level because risks on a
well-defined project are connected with the entire project area. This risk
strategy does not require project roles responsible for risk management because

 86

Management, Vol. 8, 2003, 2, pp. 77-91
 M. Boban, Ž. Požgaj, H. Sertić: Strategies for successful software development risk management

risks should be identified by the project management team and occasionally by
project team members. As with the careful risk management strategy, risks
should also guide software development in order to early address important
risks, but because a relatively small amount of risks have an influence, project
plans should be stable and only sporadically changed. In this strategy, risk
interpretation and ranking policy is less formal because risks should be defined
and ranked by the project management team. This strategy is intended for
software development projects connected with mostly known technologies
because this strategy should handle sporadically materialized risks. Activities of
the typical risk management strategy are presented in Fig. 2.

Define Risk Interpretation
and Ranking Policy

Define Risk
Management Roles

Define Risk Mitigation
Strategies

Order Development Activities
According to Identified Risks

Risk Analysis
and Tracking

Risk Identification
and Definition

Performed on
team and
organizational
level

Figure 2. Activities of typical risk management strategy

Flexible risk management strategy is defined for a mature organization
with formally defined software development projects, which use known and
proven technology with efficient organization. This strategy assumes a small
number of acceptable risks, which are mostly transferred to other organizations.
Flexible strategy requires a relatively informal risk definition, with risk
mitigation and contingency plans defined only for a few important risks. This is
defined in order to minimize the amount of work required for risk management
because there is a small level of risk influence in mature and experienced
software development organizations. This strategy is based on comparing
currently identified risks to previously encountered ones and risk management
should be practiced mostly on the organizational level. There is no risk

 87

Management, Vol. 8, 2003, 2, pp. 77-91
M. Boban, Ž. Požgaj, H. Sertić: Strategies for successful software development risk management

interpretation and ranking policy connected with the flexible risk management
strategy, mostly because of the small risk influence and importance on formally
defined software development projects. Risks should be identified at the
beginning of the software development project and occasionally during the
project since there is a small influence of change on these software development
projects. Initial project plans should be made according to identified risks, but
eventual risk materialization should not change project plans because of the
small risk influence. Flexible risk management strategy is intended for mature
and experienced organizations in order to achieve efficient risk management
and to improve project conditions. Activities of the flexible risk management
strategy are presented in Fig. 3.

Define Risk
Management Roles

Risk Analysis
and Tracking

Risk Identification
and Definition

Performed on
team level

Assess Previously
Solved Risks

Compare Risks to
Previously Solved

Perform Risk-Related
Activities

Figure 3. Activities of flexible risk management strategy

The selection of a suitable risk management strategy should be primarily
based on organizational experience and the quality of project organization, but
software development project complexity, use of new technologies, stability of
requirements and competencies of project members should also be considered.
We believe that the careful risk management strategy should be used in the

 88

Management, Vol. 8, 2003, 2, pp. 77-91
 M. Boban, Ž. Požgaj, H. Sertić: Strategies for successful software development risk management

initial project phase and that the risk management strategy should be
reconsidered and possibly changed to typical or flexible on each project
milestone. Proposed strategies are the result of a theoretical study based on real
experiences from software development projects at Ericsson Nikola Tesla.
Activities defined in the careful risk management strategy are a result of
experiences from the IP Telex development project, whose project goal was to
build a telecom exchange solution based on a commonly used computer
platform. The two other strategies are a theoretical proposition for more mature
development projects than the current ones at Ericsson Nikola Tesla Company
and should be tested in the future.

5. CONCLUSION

This work describes risks in software development. Risks are present in

every software development project because software development is based on
knowledge and new technologies, and the chances for success of a software
development project are closely connected with successful risk addressing. As a
result of that, we have closely investigated risks and risk impact areas in
software development projects. With this paper, we propose a key element of
modern software development practices to be software risk management. In
order to achieve efficient risk management, we have proposed three risk
management strategies suitable for different software development projects
according to the amount of risk impact.

We have also proposed a risk-based approach to development planning and

risk management as an attempt to address and retire the highest impact risks as
early as possible in the development process. The risk-based approach to
software development should enable early risk addressing and conclusion when
the expenses connected with risk materialization and project failure are small
and insignificant. Strategies proposed in this work should enhance risk
management on software development projects and increase project chances for
success.

From the global business perspective, the success of many enterprises is

becoming increasingly dependent on the success or failure of the software they
build. It is not important if software is intended to be sold, internally used or to
drive business transactions, the future of many enterprises is connected with the
software they develop. Thus, risk management is not only a crucial
development practice, but also a vital business practice.

 89

Management, Vol. 8, 2003, 2, pp. 77-91
M. Boban, Ž. Požgaj, H. Sertić: Strategies for successful software development risk management

6. REFERENCES

1. Hall, E. (1998): Managing Risk: Methods for Software System

Development, Addison-Wesley, New York
2. Jones, C. (1994): Assessment and Control of Software Risk, Prentice-Hall,

New York
3. Sertić, H. (2002): Applying Unified process on complex software system

development, Master Thesis, Economic Faculty, University of Zagreb,
Zagreb

4. Booch, G.; Rambaugh, J.; Jacobson, I. (2001): The Unified Software
Development Process, Addison-Wesley, New York

5. Karolak, W. (1995): Software Engineering Risk Management, Wiley-IEEE
Press, San Francisco

6. Royce, W. (1998): Software Project Management: A unified framework,
Addison-Wesley, New York

7. Larman, C. (2002): Applying UML and Patterns, Prentice Hall, Upper
Saddle River

8. Robertson, S.; Robertson J. (2001): Mastering the Requirements Process,
Addison-Wesley, New York

9. Capers, J. (1994): Assessment and Control of Software Risks, Prentice Hall
PTR, Upper Saddle River NJ

10. Ould, M. (1996): Strategies for Software Engineering: The Management of
Risk and Quality, John Wiley & Sons, San Francisco

11. Charette, R. (1989): Software Engineering Risk Analysis and Management,
McGraw Hill, New York

12. Ould, M. (1998): Managing Software Quality and Business Risk, John
Wiley & Sons, San Francisco

 90

Management, Vol. 8, 2003, 2, pp. 77-91
 M. Boban, Ž. Požgaj, H. Sertić: Strategies for successful software development risk management

STRATEGIJE ZA USPJEŠNO UPRAVLJANJE RIZIKOM U
RAZVOJU SOFTVERA

Sažetak

Softver je danas postao jednim od ključnih čimbenika poslovanja. Razvoj softvera je
aktivnost povezana s razvijenom tehnologijom i visokom razinom znanja. Proizvodnja
uspješnog softverskog sustava traži uspješno smanjivanje rizika u projektu softverskog
razvoja. Jedan od čestih razlika za neuspjeh projekta leži u nedostatku planiranog
pristupa upravljanju rizikom. Ovaj rad istražuje temeljna područja djelovanja rizika,
kako bi se stvorio opći teorijski pristup upravljanju rizika u razvoju softvera, a s ciljem
poboljšanja uspješnosti softverskih projekata. Na temelju tipičnih područja djelovanja
rizika na proces softverskog razvoja, predlažu se tri strategije upravljanja rizikom,
pogodne za veliki broj poduzeća i projekata razvoja softvera, koje obilježava različita
razina rizika. Predloženim se strategijama definiraju aktivnosti koje bi trebalo obavljati
u okviru uspješnog upravljanja rizikom, kao i aktivnosti vezane uz poboljšanje
percepcije rizika i uklanjanje problema nastalih uslijed negativnih posljedica rizika.
Autori također predlažu pristup utemeljen na upravljanju rizikom kao pokušaj
identificiranja i uklanjanja najznačajnijih oblika rizika projekta softverskog razvoja, i to
u što ranijoj fazi projekta. Predložene bi strategije trebale poboljšati upravljanje rizikom
u projektima razvoja softvera, te pomoći u stvaranju uspješnih softverskih rješenja.

 91

 92

	Sažetak

