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 This paper presents a part of a computer model 
that is suitable for limited temperature prediction 
and its application for Lake Botonega, which is 
located in Istria, Croatia. The main assumption of 
this study is that the heat transfer can be described 
by the eddy diffusivity model to formulate the 
model of the heating and cooling of a lake using a 
series of water and air temperature measurements. 
The coefficient of thermal diffusion, which is a 
function of the lake depth, is determined using the 
inverse model of eddy thermal diffusivity. The 
inverse model is linearized using the finite element 
approach. The model of lake thermal diffusivity 
consists of a conductive part and a radiative part, 
with the latter part being replaced with the heat 
flux on the boundary. The model parameters are 
calculated in two steps—a predictor step and a 
corrector step—and the coefficient of conduction is 
calculated instead of the diffusion. 
The estimated parameters are intended for 
inclusion in a simple three-dimensional thermal 
model, which provides the lake temperature 
prediction that is based on previous temperature 
measurements, as demonstrated in the examples. 
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1 Introduction 
 
This paper presents part of the computer model that 
is suitable for the limited temperature prediction for 
Lake Botonega. The lake serves as an artificial 
storage reservoir and is located in the central part of 
the Istrian peninsula of Croatia; it is the main source 
of water supply for the towns of Pazin, Poreč and 
Rovinj. It has a surface area of 2.5 km2 and a 
maximum depth of 16 m. The lake is thermally 

mixed in the winter and is stratified from spring to 
autumn. During the summer months, the water 
becomes too hot for water supply. The main 
purpose of the model is the prediction of the water 
temperature of the lake during summer based on the 
long-term weather forecast. 
The model is based on a series of water and air 
temperature measurements, which provide the only 
available data. The measured data consist of the 
depth and the corresponding water temperature 
(“temperature profile”), which is measured at the 
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water intake in Lake Botonega (Fig. 1). The 
temperature on the surface of the lake is the 
temperature at a depth of 0.1 m below the surface of 
the lake. In some periods (especially in summer), 
intake 1 was above the surface of the lake and only 
the water temperature at the surface and intake spots 
2, 3 and 4 are analyzed. Additionally, the average 
air temperature above the lake was recorded for 
particular days in 1998 and 1999. 
 

 
 
Figure 1. Water intake 
 
Determination of thermal properties of lakes (and 
related quantities like concentration of various 
gases, etc.) has been of interest for a long time and 
there are many references in Geophysical and 
Limnology journals, e.g. [1], [2]. Generally, they 
are based on forward models requiring a great 
number of measured parameters, like [1] that is 
based on the Princeton dynamic lake model from 
1987 based on primitive equations and used for 
modeling of circulation and thermal structure of 
Lake Michigan. [2] describes the importance of heat 
fluxes at the surface and bellow in formation of 
stratification and this paper recognizes their 
importance, too. 
One has to mention the great difference between 
Lake Michigan and Lake Botonega: the former is 
vast and deep (about the size of Croatia) and the 

later is small and shallow. There has been 
exhaustive measurement around Lake Michigan for 
tens of years, while for Lake Botonega there are 
only temperature measurements available. However, 
the paper demonstrates that using inverse model it is 
possible to formulate a useful model based on 
scarce data. 
The main assumption in our approach is that heat 
transfer can be described by the eddy thermal 
diffusion model, in which the thermal coefficients 
comprise all effects that have not been measured. 
The nonstationary equation of heat transfer 
establishes the relation between a series of water 
temperature measurements and a series of air 
temperature measurements; the heat transfer 
coefficients are obtained using an inverse analysis. 
By applying the estimated parameters in a simple 
three-dimensional finite element model of heating 
and cooling, the lake temperature prediction, which 
is based on previous temperature measurements, can 
be obtained. Beginning with water temperatures and 
changing air temperatures, successful predictions 
for a maximum period of one month have been 
obtained, as confirmed by the examples. All 
measured data are detailed in [3]. 
The inverse heat transfer model assumes that the 
vertical eddy thermal conductivity k(z), which has a 
dimension of the thermal conductivity (W/mK), 
includes the influence of other factors, e.g., 
turbulent mixing of water. The unknown parameter 
is the vertical eddy thermal conductivity, whereas 
two lateral thermal conductivities retain their value. 
This facilitates the construction of a one-
dimensional inverse model, in which the estimated 
parameters are compatible with a three-dimensional 
forward model and can be easily inserted into the 
forward model for temperature prediction. 
The main advantage of our inverse model is the 
reduced number of measured parameters. This 
model is necessary due to the lack of measured 
quantities (only water and air temperature, which is 
measured over several years, are available). The 
nonlinear inverse problem has been successfully 
reduced to a linear least square problem, as 
demonstrated in this paper. Quantitatively, the 
solution in this case is always optimal regarding the 
number of parameters and measured quantities. 
Qualitatively, we do not need parameters that would 
not be determined (e.g., the influence of turbulent 
diffusion is assumed to be included in the value of 
vertical eddy thermal diffusivity). The accuracy of 
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the model is determined by the number of 
parameters and measured quantities (no substitute is 
available for quantities that are not measured but it 
is a physical reality that is pertinent to this 
problem). Data resolution and model resolution 
matrices illustrate the model properties. 
The main problem of our inverse model is similar to 
the main advantage: the limited number of 
parameters. The traditional approach of the eddy 
diffusion model assumes the measurement and 
determination of a large number of parameters and 
constants (net solar radiation, albedo, and 
emissivity) and the calculation of their contribution 
to the vertical eddy thermal diffusion coefficient 
(see e.g., [4] and [5]). This influence is reflected in 
the measured water and air temperatures. A similar 
approach to the solution of an inverse thermal 
conductivity problem can be found in [6]. However, 
we had to make assumptions about the bottom and 
surface heat transfer, as in [7]. Unlike [6] and [7], in 
our problem there are additional mathematical 
difficulties related to the high nonlinearity and the 
operator rank deficiency that is caused by water 
stratification during the summer. Physically 
stratification is a state in which no vertical heat 
transfer occurs through the water; mathematically, 
we have singular operators for parameter 
estimation. The first problem is overcome by 
linearization obtained with the use of specially 
formulated novel finite elements. The second 
problem is solved with Tikhonov regularization, in 
which the parameter has been obtained using the L-
curve criterion [8]. 
Preparatory work for the model formulation 
included the formation of a 3D finite element mesh 
of the lake’s bottom. Novel type of Kriging 
interpolation has been employed for this rather 
difficult problem, as described in [9]. 
Some numerical methods developed in the work can 
be applied in various fluid modeling problems [10]. 
After the Introduction paper is composed as 
follows: chapter 2 shortly describes the forward 1D 
nonlinear eddy diffusion heat transfer model and 
chapter 3 presents its inverse formulation. There is a 
description of some difficulties arising with the 
application of the usual solution procedure based on 
the Levenberg-Marquardt method. The difficulties 
are alleviated through linearization and 
regularization as described in the sequel of chapter 
3. In chapter 4 numerical examples illustrate the 
method and chapter 5 presents conclusions. 

2 Formulation of the 1D eddy diffusion 
model for heat transfer using the finite 
element method  

 
The main characteristic of Lake Botonega is its 
shallow depth and stratified water during the 
summer. Stratification is evident from water 
temperature measurements and can be estimated by 
the modified densometric Froude number [11] 
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[m/s2], e = 10-6 density gradient [1/m], L = reservoir 
length [m], Q = mean reservoir flow [m3/s], Dm = 
mean reservoir depth [m], and V = reservoir volume 
[m3]. For Lake Botonega, Fd ≈ 0.07 <<1/π, which 
describes a strong stratification potential. 
We assume that the main source of water 
temperature changes is uniformly and 
simultaneously derived for the entire lake area (no 
separate heat sources or sinks are located in the 
lake). The assumption of homogeneity enables us to 
disregard the lateral transport behavior. We can 
apply the vertical turbulent temperature diffusion 
model. General formulation of the one-dimensional 
eddy diffusion model for heat transfer is detailed in 
many sources (e.g., [12], [13], [14]). For 
completeness, it will be summarized in this paper. 
The vertical turbulent diffusion model from [11f] is 
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It may be written in the form of a basic equation of 
transient heat transfer, as noted by [12] 
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The matrix form of equation (2), which is 
discretized with finite elements, is 
   

     0



TkKcC ρ t

T
 (3) 

 
For simplicity, no source term is included in 
equation (3); only the boundary conditions 
determine the solution, i.e., temperature field T(z) 
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discretized by the solution vector T. The specific 
heat matrix is 
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and  cc   (volumetric heat capacity). 

The integration is performed over one finite 
element, and the total matrix is obtained by 
summarizing the contributions of all finite elements. 
 kK  is the thermal conductivity matrix by the 

finite element method, and k(z) is the function of the 
vertical eddy thermal conductivity 
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Thus, the “forward” problem is defined using the 
finite element method: for known parameters c and 
k, the temperature field T is uniquely determined. 
Equations (4) and (5) describe the forward problem 
and are well known (e.g., [15]). 
 
3 Formulation of the inverse problem 
 
In the inverse problem, we attempt to determine 
parameters that characterize the model that is 
described by a forward formulation. Borrowing the 
notation from [8], the forward problem can be 
described as G(m)=d, where m represents the 
parameters and d is the outcome (result) of the 
forward model. In the case of a discretized model, 
m and d represent vectors. In our case, m=m(z) is 
discretized into m, which is the vector of thermal 
conduction coefficients, and d=d(z) is discretized 
into d, which is the vector of temperatures along the 
lake depth z. Parameter estimation using inverse 
formulation assumes that we know (from 
measurements or otherwise) the outcome d of the 
corresponding forward problem. For the discretized 
linear problem, the inverse formulation of the model 
is m=G-gd, where G-g is the generalized inverse 
matrix of G. The formulation of the inverse problem 
from a forward formulation is not always 
straightforward. However, obtaining d from 
measurements has some advantages. In [14] the 
authors predict the heat transfer coefficient for 
boundary flow based on the eddy diffusivity 
concept. In the case of coefficient prediction for the 

forward model, an additional fluid parameter, such 
as the viscosity (ν) and rate of dissipation (ε), is 
included in the changed equation for the heat 
transfer coefficient. In the case of inverse modeling, 
knowledge of the additional parameters is not 
needed; the influence of the additional parameters is 
already included in the measurement results. 
Therefore, the inverse procedure, which is based on 
measurements, automatically considers relevant 
parameters. 
The inverse procedure is formulated beginning with 
equation (2) with known results from the water 
temperature measurements. The heat flux at the 
bottom of the lake is zero (adiabatic boundary 
condition), and the heat flux through the air-water 
interface is a function of the measured surface water 
temperature, the mean air temperature and the 
estimated convection heat transfer coefficient h. 
Applying the inverse procedure, we determine the 
unknown vertical eddy thermal conductivity k(z) 
that is represented by the vector k. We obtain a 
solution for the problem in two steps: 
 
1) We can assume that the problem is stationary 
within one time step t  [16]; the temperature 
profile T(z) is determined from the measurements. 
Then, we can write 
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where 
t

T
c

  is the accumulated heat term, e.g., the 

amount of heat brought into or taken out of the 
system in one time step. We assume that the 
(measured) temperature difference in time t is 
proportional to the amount of heat Q brought into 
or taken out of the system. Now, equation (6) has 
the form of the heath flux equation 
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2) We determine the heat flux q at the boundary 
from the assumed boundary conditions: 
 q below= 0          no heat transfer through the bottom 

(adiabatic boundary condition)  
 q above =h    is the temperature difference 

between water and air. h is the estimated 
convection heat transfer coefficient (the 
components for the determination of the 
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coefficient include the net solar short wave 
radiation, the net long-wave radiation, and the 
evaporative heat flux). 

 
3.1 Note on Levenberg-Marquardt approach to 

the inverse problem 
 
The usual solution of the inverse problem 
represented with equation (6) is an iterative 
optimization of the unknown vector k(z) 
(Levenberg-Marquardt method discussed in [16]). 
The optimization procedure is simpler and more 
stable if the requested value is parameterized e.g., 
we assume equation 
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where the unknown parameters r (r=1...5) have to 
be determined to ensure that k(z) is optimal. 
The system of equations that minimize the problem 
is 
   

   02 





 

r

cal

m

cal
m

mes
m

r

T
TT

S


 (8) 

 
where m is the number of measured points, Tmes is 
the measured temperature and Tcal is the estimated 
(calculated) temperature. 
When no functional connection exists between the 
temperature T and parameter , we cannot directly 
calculate the optimal parameter r. Using an 
incremental procedure, we calculate the change of 
optimal parameters r, which decrease in the 
process of convergence. We can write the 
incremental formulation for the increment r of 
parameter r using a Taylor series expansion as 
follows: 
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Now, equation (8) becomes 
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where riri ddTX /,   (i=1…n) and n is the 

dimension of the vector T. The following equation 
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is a system of “r” equations for determining the “r” 
of parameter  
The computation of the sensitivity coefficients 

r
c ddT /  can only be analytically obtained. Xi, r can 

be approximately resolved using the finite 
difference method 
   

 
   

r

rrr
ri

TT
X


 ,,

,


  (12) 

 
The accuracy of equation (12) can be increased if 
we employ the central difference formulation or a 
more complex formulation instead of the forward 
difference formulation. 
The approach described by the standard inverse 
method was tested on the example of the measured 
temperature profiles for Lake Botonega and 
provides useless results. We have only confirmed 
the well-known fact that the method is sensitive to 
the choice of the initial parameters. 
A new original inverse modelling approach is 
proposed and adjusted for the finite element 
method. 
 
3.2 Linearized inverse problem 
 
We begin with the matrix formulation of the 
transient heat transfer equation (5) using a finite 
element discretization and obtain the matrix 
equation     0/  TkKcC ρ tT  of the 

forward/direct problem. In inverse modelling, new 
matrices are formulated, in which the parameters 
and unknowns of the standard (“forward”) model 
change places. 
A novel matrix  TH   is formulated as a function 

of the temperature difference within the time step t 
(instead of cin the forward problem) 
   
     ρρ cTHTcC   (13) 

 
where T  is the vector of the temperature 
difference  and matrix  TH   is not an [n×n] 

matrix. 
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The novel matrix  TM  is formulated as a function 

of temperature T (instead of parameter k as in the 
forward problem) 
   
    kTMTkK   (14) 

 
where T is the vector of temperature. Matrix 

 TM is not an [n×n] matrix. 

Matrices  TH   and  TM  have the dimension 

[nm+2,nm-1], where nm is the number of 
discretization points along the lake depth. This 
result is a consequence of the use of linear finite 
elements, where k and care constants within each 
element and the number of nodes (where the 
temperature is defined) exceeds coefficients k and 
c 
Now, we have a new matrix equation that is suitable 
for the inverse model 
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From equations (15) and (13), vector k(z) can be 
calculated if we know ρc . In this step (predictor), 

we assume ρc  to represent the physical value for 

water and 
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Thus, 
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This inverse system has more equations than 
unknowns, and an optimal solution is obtained 
according to the method of least squares. 
Mathematically, the generalized inverse matrix is 
employed in the solution, which is equivalent to the 
approximation with the method of least squares. 
The suitability of the solution is assessed through 
resolution matrices. The data resolution matrix 
reveals the possibility of the model to reconstruct 
the initial data. The model resolution matrix 
illustrates the quality of the model parameters that 
are deducted from the available data. In the linear 

least squares model, parameters are always well 
resolved. 
 
3.2.1 Boundary conditions 
 
In equation (15), the coefficient k is the main 
variable; we assume ρc  to be known in the first 

approximation. The calculation of the vector of the 
unknown heat transfer coefficient k using equation 
(17) can be performed with or without the 
prescribed boundary conditions at the bottom and 
the surface of the lake. The introduction of the 
boundary conditions for the heat flux q requires 
some assumptions. From Fourier’s law of heat 
conduction dzdTkq / , we will calculate k at 

both boundaries (at the bottom of the lake and 
toward the air) 
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where bT  and aT  are temperatures at the bottom and 

on the surface of the lake. 
The heat flux at the bottom of the lake is assumed to 
be zero, where qb = 0; thus, the k at the bottom is 
also zero. On the surface of the lake, we have 

 hTTq wateraira  , where h is a coefficient of the 

convective diffusion with the value taken from [17]. 
Measuring h would improve the model accuracy, 
which would require additional measuring devices 
(such as solarimeter or similar) and is planned as a 
future extension of the model. 
The relevance of the boundary conditions is 
assessed by a comparison of the inverse model 
matrix eigenvalues with and without boundary 
conditions in one of the examples. 
 
3.2.2 Tikhonov regularization 
 
The matrix M(T) is the [nm+2,nm-1] matrix, which 
cannot be inverted; thus, the generalized inversion 
procedure is necessary. If two adjacent points have 
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the same measured temperature (as occurs in a 
stratified fluid), the matrix M(T) becomes singular 
(rank is [nm-1-number of equal consecutive 
measured temperatures]). Thus, the matrix M(T) is 
also an indicator of thermal stratification. A 
singular matrix can be inverted using a singular 
value decomposition (SVD) procedure; however, 
significantly better results are obtained if a 
regularization procedure is applied. We have 
adopted Tikhonov's regularization procedure by 
applying 
   

 MIMMTM 11 )()(
T     (19) 

 
In equation (19), the parameter  for Tikhonov's 
regularization procedure is obtained using the L-
curve criterion; however, other possible solutions 
(refer to [8]). The L-curve helps to obtain the 
optimal value of  as a trade-off between the 
solution norm 

2
m  and the residual norm 

2
)( ΔQmTM  . These norms are a function of ; 

the norm that corresponds to the sharp corner of L-
curve is selected. In one of the examples, the 
corresponding L-curve is depicted. 
 
3.2.3 Time scale adjustment 
 
The water temperature prediction is obtained by 
introduction of the calculated k from equation (17) 
into the matrix form of the equation (2). However, 
the time increments Δt are not identical in both 
equations: in equation (17), the increment is 
reflected by the time difference between the 
measurements, whereas the increment consists of 
the time step in the prediction/simulation in 
equation (2). This difference in time scales is 
resolved with modification of the heat capacity by 
assuming that variable cρ is not a physical constant 
but is a model parameter. Physical justification for 
the modification of the variable cρ is that we 
describe heat exchange in the lateral direction 
(lateral heat flux between areas of different 
temperature). 
Equation (15) can be re-written in the incremental 
form 
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where superscript 0 denotes the backward value 
(backward time step), superscript 1 denotes the 
current value (current time step) and Δt is the time 
step in the prediction/simulation. The corrected 

vector 1
ρc  follows from equation (20) 

   

       100
ρ

11
ρ TkKTcCTHc t

1
 (21) 

 

Matrix  1TH  is not an [n×n] matrix, and the 

generalized inverse   11TH  is 
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Tikhonov’s or another regularization procedure is 
not necessary because the matrix is always well 
conditioned. Due to the character of the problem, 
we have to apply a generalized inverse; this solution 
is not exact but is only optimal, i.e., measured data 
cannot be fully reconstructed but a reasonable 
solution can be obtained. The data and model 
resolution matrices can be constructed to assess the 
quality of the parameter estimation. 
The forward formulation is used to reconstruct the 
measured temperatures. In the reconstruction 
procedure, the calculated vectors k and cρ have to 
be included in the transient equation 
    0/  TkKcC ρ tT  based on the finite 

element discretization. 
 
 
4 Examples 
 
In the sequel, some examples illustrate (and 
validate) the new procedure. For testing purpose, 
we begin with the initial condition of the measured 
temperature profile in the previous period (the 
previous month). Through several time steps, a new 
state is obtained. The obtained temperature should 
correspond with the measured temperature for the 
following month. 
The physical parameters of water used in the 
calculations are as follows: density =1000 kg/m3, 
specific heat c=4200 J/kgK, estimated convection 
heat transfer coefficient h=100 W/m2, and thermal 
conductivity k=0.58 W/mK. 
The calculation begins with the initial condition of 
the measured temperature profile in the previous 
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month. The inverse model is applied, and the 
equivalent vertical eddy thermal conductivity k(z) 
and the equivalent heat flux is determined. The 
calculated coefficients are inserted into the forward 
model in several time steps (in our example 5), and 
a prediction of the new temperature profile for the 
following month is obtained. In our example, the 
temperature profiles for two consecutive years are 
known; thus, we can compare the predicted values 
with the measured values. 
 
4.1 Winter month example - cooling 
 
In the first example, we observe the prediction of 
lake temperature during winter cooling using the 
measured water temperatures from mid-December 
to predict the water temperatures at the beginning of 
February, assuming that the air temperature above 
the lake is known. Because we know the water 
temperature measurement for February, we can 
simply assess the accuracy of the temperature 
prediction. We can compare the results for the nodal 
positions of the finite element mesh, which do not 
coincide with the points of measurement; thus, 
interpolation was needed. In Fig. 2, measured water 
profiles with the necessary interpolation are 
employed to obtain measurements for the finite 
element nodal positions. 
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Figure 2. Measured and interpolated temperatures 

for 8.12.1997. and 10.02.1998. 
 
Applying the described procedures, we obtain the 
resulting heat flux and equivalent eddy thermal 
conductivity, as presented in Fig. 3. 
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Figure 3. Calculated heat flux and equivalent eddy 

thermal conductivity along the lake depth 
(meters above sea level). 

 
Table 1. Comparison of eigenvalues for winter time 

example  
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The inspection of the singular value decomposition 
of matrix M with (SVDM1) and without (SVDMr1) 
the boundary conditions illustrates the importance 
of boundary conditions. 
The SVD matrix M does not have full rank; this 
example requires the application of Tikhonov 
regularization as previously described. The 
parameter for the regularization is determined from 
the comparison of the residual and solution norms, 
as depicted in Fig. 4. The solution norm 

  MIMMm
1T

2


   residual norm 

2
)( ΔQmTM   are functions of the Tikhonov 

parameter  We have selected the parameter 
=0.001, which corresponds to the dark dot in Fig. 
4. 
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Figure 4. Comparison of residual and solution 

norms for determination of the Tikhonov 
regularization parameter. 

 
The final temperature prediction is provided in Fig. 
5. The prediction pertains to approximately sixty 
days and is satisfactory. 
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Figure 5. Temperature prediction for the beginning 

of February from mid-December. 
 
Figure 5 shows our most demanding example of 
temperature prediction due to a lack of 
measurements in January 1998 and a time span of 
two months. The calculated results pertain to nine 
finite element nodal points for five time steps (12 
days for each time step). In addition, a thin 
stratification produces a singular inverse matrix 
operator. In this case, the influence of the Tikhonov 
parameter is significant. 
 
4.2 Summer month example - heating 
 
In this example, we observe the prediction of the 
lake temperature during summer heating using 
temperatures from June and July. Figure 6 shows 
the measured water profiles with the necessary 

interpolation to match the finite element nodal 
positions. 
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Figure 6. Measured and interpolated temperatures 

for 18.06.1997. and 28.07.1998. 
 
Applying the described procedures, we obtain the 
resulting heat flux and equivalent eddy thermal 
conductivity, as presented in Fig. 7. 
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Figure 7. Calculated heat flux and equivalent eddy 

thermal conductivity along the lake depth 
(meters above sea level). 

 
The inspection of singular value decomposition of 
matrix M with (SVDM1) and without (SVDMr1) 
introduction of boundary conditions indicates that 
the boundary conditions are not significant for the 
well behaved inverse operator (matrix M is full 
rank). 
In this case, Tikhonov regularization is not needed. 
We will examine the data Rd and model Rm 
resolution matrices, in which the numerical values 
are graphically presented in Fig. 8 and a dominant 
diagonal is immediately identified. 
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Table 2. Comparison of eigenvalues for summer 
time example 
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Figure 8. Data resolution matrix and model 

resolution matrix. 
 
In this example, we have introduced the resolution 
matrices as a measure of the quality of the model 
(refer to [18]). Resolution matrices would not be 
appropriate in the previous example because its 
behavior is dominated by the Tikhonov 
regularization. The data resolution matrix is 
Rd=M(T)-g M(T), and the model resolution matrix 
is Rm=M(T) M(T)-g, where the superscript -g 
signifies the generalized inverse and Rd is a 
measure of the data reconstruction capability of the 
model. When Rd=I (identity matrix), the measured 
data can be fully reconstructed from the model. Rm 
is a measure of how the model parameters are 
determined by the data; when Rm=I, the model 
parameters are uniquely determined by the data. 
As shown in Fig. 8, the data parameters can be 
satisfactorily resolved while the model parameters 
are completely resolved. The consequence of this 
resolution is visible in the prediction results 
depicted in Fig. 9. 
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Figure 9. Temperature prediction for the end of July 

beginning in mid-Jun. 
 
4.3 Overview of other temperature predictions 
 
Figure 10 provides an overview of the temperature 
predictions for several months. Some of the 
predictions pertain to heating and some of the 
predictions pertain to cooling; an interesting case of 
cooling at the surface is observed, whereas 
simultaneously heating occurs at the bottom. 
Figure 10.a. shows a simple case of winter heating 
and an excellent prediction. 
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Figure 10.a. Measured and interpolated 

temperatures for 10.02.1998 and 
08.03.1998. 

 
Figure 10.b. shows the beginning of the formation 
of the surface temperature layer with reduced 
thermal communication through the surface of the 
lake. 
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Figure 10.b. Measured and interpolated 

temperatures for 28.07.1998. and 
25.08.1998. 

 
Cooling is presented in Fig. 10.c. Cooling occurs on 
the surface and heating occurs on the bottom; at one 
moment, the temperature of the lake is almost 
uniform. 
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Figure 10.c. Measured and interpolated 

temperatures for 25.08.1998 and 
24.09.1998. 
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Figure 10.d. Measured and interpolated 

temperatures for 02.06.1999 and 
09.07.1999. 

 
Figure 10.d. presents temperature changes due to 
thermal stratification. This case is the most difficult 
case because the matrix M in the inverse model is 
singular. 
 
5 Discussion 
 
The coefficient of thermal conduction is assumed 
depth dependent and is determined by applying the 
inverse procedure on the model connecting 
measured temperatures of air and water. The inverse 
formulation is based on the eddy diffusivity 
concept. The thermal conductivity is selected as an 
additional parameter with the thermal diffusivity 
due to the two-stage procedure of coefficient 
computation. However, the concept is completely 
equivalent: k(z) can be divided by c(z) to proclaim 
the new variable for diffusivity. 
The crucial step that enables a successful model is 
the linearization that has been performed through 
finite elements. This novel approach requires 
additional effort in the formulation of special finite 
elements but is generally applicable and robust.  
This simple lake model is based on two assumptions 
that have not been quantified (due to the substantial 
amount of work, the study would entail a separate 
research project). The first assumption is pertinent 
to the fact that Lake Botonega is very shallow; thus, 
the entire surface can be considered to be 
homogeneous and the vertical heat flux can be 
separately treated. Whether these predictions can be 
obtained for a significantly deeper lake is unknown. 
The second assumption is the influence of solar 
radiation, which is expressed by the value of the 
estimated convection heat transfer coefficient h, 
which is assumed. The authors believe that the 
inclusion of this information would noticeably 
improve the model. This belief is based on the 
significance of the boundary conditions in the 
inverse model; the surface boundary conditions are 
highly dependent on the coefficient h (also, see [2]). 
 
6 Conclusion 
 
A simple thermal model of heating and cooling of a 
lake can be constructed using only measured 
temperatures of water and air. Lake thermal 
diffusivity parameters are assumed depth dependent 
and can be determined from an inverse model using 
temperature measurements. The successful inverse 
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model should consider the following facts: 1) the 
inverse model should be linearized, 2) the inclusion 
of boundary conditions significantly improves the 
inverse model, and 3) the determined heat transfer 
parameters should be adjusted to the time scale that 
is employed in the temperature predictions. By 
obeying these guidelines, successful temperature 
predictions are obtained. The examples have 
demonstrated accurate predictions for a maximum 
time period of one month. 
 
Notations 
 
k(z) vertical eddy thermal conductivity (W/mK) 
A(z) lake area as a function of depth (m2) 
q heat flux (W/m2) 
T temperature (°C) 
z vertical coordinate (m) 
N(z) element shape function 
D derivative matrix 
k vector of eddy thermal conductivity 

(W/mK) 
 density (kg/m3) 
c specific heat capacity (J/kgK) 
t time (s) 
Q rate of heat generation (W/m3) 
c heat capacity 
c heat capacity vector 
C specific heat capacity matrix (by the finite 

element method) 
K thermal conductivity matrix (by the finite 

element method) 
h estimated convection heat transfer 

coefficient (W/m2K) 
t time step  
 temperature difference (°C) 
r unknown parameter 
r increment of parameter r  
m number of measured points 
Tmes measured temperature (°C) 
Tcal model estimated temperature (°C) 
H matrix as a function of the temperature 

difference in the inverse model 
 vector of temperature increments (°C) 
M matrix as a function of temperature in the 

inverse model 
T vector of temperatures (°C) 
qb heat flux at the bottom of the lake (W/m2)  
qa heat flux on the surface of the lake (W/m2) 
Tair air temperature (°C) 

Twater water temperature (°C) 
m.a.s.l. meters above sea level 
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