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1. INTRODUCTION
Application of mathematics in geology is relatively new approach 
in the interpretation of subsurface geology. Geostatistics, as a 
part of geomathematics began its development in the second half 
of the last century. Two great scientists are the founders of the 
Kriging method: Prof. Dr. Daniel Krige and Prof. Dr. George 
Matheron. The Kriging method is a mathematically advanced in-
terpolation method, which estimates the value of the variable in 
the grid. This method is very well described in KRIGE (1951) 
and MATHERON (1965). Common application, as well as the 
intensive development geostatistical methods paralleled the soft-
ware development and the appropriate IT infrastructure alto-
gether. Geostatistical methods can be divided into deterministic 
and stochastic methods. In deterministic methods, all the condi-
tions which can influence the estimation have to be completely 
known. Deterministic results can be unambiguously described 
by the completely known finite conditions, so deterministic ana­
lysis can only offer one solution. It is clear that the true geologi-
cal model in the subsurface is singular, but since the description 
of the subsurface is based on well data (point data), it is not pos-
sible to be certain that the solution obtained with geostatistical 
methods is the correct one. This is why all geostatistical methods 
contain some uncertainty; they are a way of estimating the sub-
surface conditions and they can provide only the most probable 
solution, in other words the model which is the closest to the real 
conditions.

In reservoir characterization, petrophysical modelling, espe-
cially the porosity modelling is important for getting insight into 
the spatial variability of different properties. In the case that po-
rosity is mostly connected with the depositional environment of 
the reservoir rocks in the study area, this may pave the way for 
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Deterministic methods are still widely used for reservoir characterization and modelling. The re-
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distributed geological variables. The results obtained were acceptable and areas with the high-
est uncertainties were clearly observed on the maps. However, high differences of reservoir 
property values in neighbouring cells caused the numerical simulation duration to be too long. 
For this reason, Ordinary Kriging as a deterministic method was used for modelling the same 
reservoirs. Smooth transitions between neighbouring cells eliminated the simulation duration 
problems and Ordinary Kriging maps showed channel sandstone with transitional lithofacies in 
some reservoirs.

interpretation of sedimentary environments and depositional 
mechanisms. Within the present study, new porosity modelling 
has been performed with the aim of introducing and analysing 
the uncertainty of reservoir properties. Different deterministic 
and stochastic distribution methods were tested and analysed to 
choose the most acceptable one.

2. GEOLOGICAL DESCRIPTION OF THE STUDY 
AREA WITHIN THE SAVA DEPRESSION
Generally, during the Late Pannonian and Early Pontian, many 
subsided structural units in the entire Pannonian Basin System 
were reactivated due to the thermal subsidence (MALVIĆ & 
VELIĆ, 2011). Accommodation space for a huge volume of sedi­
ments was created. During these periods, the main regional 
sandstone hydrocarbon reservoirs were deposited in the SW part 
of PBS (VELIĆ, 2007). Turbidites were the dominant clastic 
transport mechanism in the Croatian part of the Pannonian Basin 
System during the Late Pannonian and Early Pontian (e.g. RÖGL, 
1996, 1998; VRBANAC, 1996). Although there are some theories 
about the local material source, it was proven that most of mate-
rial originates from the Eastern Alps. Due to lengthy transport 
distances, only the medium and fine grained sands and silts 
reached the Sava Depression. In the calm period, when turbiditic 
currents were not active, typical calm hemi-pelagic marls were 
deposited.

The study area is located in the north-western part of the 
Sava depression. The location itself is a hydrocarbon field with a 
structure of an asymmetrical brachianticline, with a somewhat 
longer axis of northwest-southeast strike, and with a slightly pro-
nounced peak in the southern part. A fault system of NW-SE 
strike extends along the western part of the field.
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The lithological composition of the reservoirs is fairly simple 
– medium and fine-grained sandstones (lithoarenites) in continu-
ous alternation with marls. Marls are compact, dense brown-grey 
rocks. Both sandstone and marl layers are not always continuous; 
there are frequent pinch-outs and sections where different sand-
stone layers are in direct contact. The whole series was divided 
into 11 sandstone intervals, referred to here as S1 to S11. S1 to S4 
are saturated with gas (in the gas cap) and oil rim, and they rep-
resent one hydrodynamic unit. S5 to S10 are saturated with oil, 
representing a second hydrodynamic unit, while S11 is water-
saturated. All of the reservoirs in the series (S1-S11) were classi-
fied as representing the Upper Pannonian. Some of the reservoirs 
(S2, S3, S5, S7 and S10) are elongated in the NW-SE direction 
and they have the geometry of channel sediments. According to 
porosity and net pay distribution in the model it could be assumed 
that those reservoirs have the coarsest material deposited in the 
channel centre, which laterally, toward channel borders changes 
into basinal marls through transitional lithofacies (sandy marls 
and marly sandstones). Other reservoirs (S1, S4, S6, S8, S9 and 
S11) have greater areal extents and minor thickness variability 
representing rather sand lobes or similar type of deposits.

3. APPLIED GEOSTATISTICAL METHODS
Some methods give only one solution, i.e. for the same input data 
and by applying the same method, the result is always going to 
be the same, i.e. the same map is constructed. These are the de-
terministic methods, although it is correct to call them determini
stic interpolation methods. Such methods are still commonly 
used for reservoir characterization and modelling, despite the fact 
that our knowledge about geological processes is far from com-
plete. Still, we are aware that such deterministic interpretation 
cannot be unambiguous and certain, but it is often described as 
the most probable. Since a completely deterministic system is al-
most impossible by nature, it might be better to use stochastics 
wherever possible. Stochastic methods are a standard part of 
mathematical geology and are increasingly being used as an in-
tegral part of the tools for hydrocarbon reservoir characteriza-
tions worldwide.

Alternatively, stochastic realizations provide a different 
number of solutions for the same input data set. Those solutions 
can be very similar but never identical which is why all obtained 
solutions or results are equally probable. In stochastic processes 
the number of realizations can be any number we desire. The 
more realizations there are, the lower the uncertainty, i.e. there is 
a higher certainty that a number of realizations are close to the 
real geological situation. 100 realizations is the most common 

number in practice because it gives a level of certainty that is high 
enough for reservoir characterizations. There are conditional and 
unconditional simulations. In conditional simulations, the well 
data are considered as hard data, unlike in unconditional simula-
tions where these data are not constant. The explanation for this 
approach is that well data is just point data extrapolated to the 
whole cell in the 3D reservoir model. Cell dimensions in the 
model generally are 50 x 50 or 100 x 100 m and the point data 
again give some uncertainty. If the well had been positioned 
slightly differently, the cell in the 3D model would probably have 
different property values. This is why the point data in uncondi-
tional simulations is „surrounded” with measured data variance 
and the cell value will be chosen within this interval. Generally, 
conditional simulations are more often used.

3.1. Basics about Ordinary Kriging method
The Kriging method is one of the mathematically advanced de-
terministic interpolation methods. It is used for variable value 
estimation at the grid points. The result is a continuous surface 
created from a set of input points (Figure 1). This method was 
named by a mining engineer and professor at the Johannesburg 
University, D.G. Krige, who developed this to estimate the gold 
concentration of a mine (KRIGE, 1951). Other scientists includ-
ing de WIJS, (1951), MATHERON, (1965), HOHN, (1988), 
ISAAKS & SRIVASTAVA, (1989), and DUBRUBLE, (1998) 
continued to develop the method. The goal of the method is to 
determine spatial relationships between real, measured data and 
the location where the value should be estimated. As a first step 
of Kriging mapping, variogram analysis must be performed. 
Therefore, except for the distance between a measured and esti-
mated location, the local or Kriging variance was taken into ac-
count. This means that the difference between the expected and 
estimated values is minimal. During Kriging estimation each 
data item is weighted by the weighting coefficient (λ).

Kriging estimation is given by the simple equation (1):

	
∑

=

⋅=
n

i
iiK zZ

1
l 	        (1)

Where:
zK 	 – estimated value
λi 	 – weighting coefficient at the „i“ location
zi 	 – real, measured data at the „i“ location
The most often used Kriging technique is Ordinary Kriging, 

where the sum of all weighting coefficients must be 1. An expres-
sion for the Ordinary kriging estimation technique is given by 
the matrix equation (2):

Figure 1. The process of Ordinary Kriging (http://www.bisolutions.us/A-Brief-Introduction-to-Spatial-Interpolation.php)
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Where:
γ 	 – variogram value;
z1....zn	– real, measured value at the locations 1 to n;
x 	 – location where new value should be estimated;
μ 	 – Lagrange multiplicator.

3.2. Basics about Sequential Gaussian Simulations
Sequential Gaussian Simulations are very well described in GEI-
GER (2006) and MALVIĆ (2008). Basically, they are not an in-
terpolation method, but after normal transformation, the data are 
most often defined by the properties of a normal distribution and 
estimation is performed in cells without well data to produce 
simulations. A random choice of location is used to estimate one 
cell (the first introduction of randomness, i.e., stochastic). The 
value of the selected cell is estimated mostly by Kriging from 
other points in a spatial model. It is important to note that these 
points can be hard data or previously simulated points. After a 
cell is estimated deterministically, a new value is „surrounded” 
by the interval ±3s (using the variance of the „zero” solution). 
Using a random choice (the second introduction of randomness), 
any value from this interval can be accepted as simulated for the 
cell. The procedure is repeated until estimates of all cells have 
been made (Figure 2). It is important to emphasize that all realiza­
tions are equally probable. It is quite clear that the more realiza-
tions there are the lower the uncertainty is. 10 realizations, which 
are performed in the first phase of this study could just provide a 
rough insight into the area of the highest uncertainty in the ana-
lysed reservoirs, which later was actually the area with few or 
even without any well data. Although all realizations are equally 
probable, it is impossible and meaningless to show them all. Rea
lizations P5, P25, P50, P75 and P95 or just P5, P50 and P95 are 
most often presented. Realization P5 shows a solution where 5% 
of all solutions have lower values and realization P95 shows so-
lution where 5% of all solutions have higher values. Such inter-

pretation is valid for all other P realizations. Following this pat-
tern, realization P50 should represent a mean value because 50% 
of all realizations have higher, and 50% have lower values than 
the selected one.

The main advantage of SGS is the possibility for estimating 
values in all cells of a model through a set of realizations. There 
is however a disadvantage, e.g., simulated values can be signifi-
cantly different in neighbouring cells, which can cause many 
problems in numerical simulation as proven by sensitivity per-
formed on required simulation time. Although this may not be a 
problem in cases with large cells which may better describe the 
subsurface than interpolation.

4. INPUT DATA AND MODELLING PROCESS
Input data set used for geological model construction comprised 
well log data (from 86 wells), quantitative log analysis, core data 
(from 28 wells) and previously constructed 3D structural models. 
All these data have been integrated and analysed. A new geological 
model was built in PetrelTM, with cell dimensions of 50 x 50 m. 
The vertical resolution of the cells is 2.5 m.

4.1. Structural modelling
A reliable structural model is a precondition for performing pet-
rophysical modelling. The tops and bottoms of the 11 sandstone 
reservoirs (22 horizons) together with interlayered marls deter-
mined 21 zones. Two types of reservoirs were recognised: reser-
voirs with relatively uniform gross reservoir thickness in the field 
area and those with great lateral thickness variability. The latter 
have been identified as channel bodies. According to these ob-
servations, a layering method within the individual zones in the 
model was adopted. It was concluded that a better layering 
method in the case of channel bodies with great lateral variabi
lity of thickness was layering with constant layer thickness and 
following the top of reservoir, while in the other cases propor-
tional layering was chosen. So, layering with constant layer thick-
ness (2 m) was performed by „Follow top” method for the S2, S3, 
S5, S7 and S10 „channel” reservoirs, and „Proportional“ type of 
layering was performed for S1, S4, S6, S8, S9 and S11 sandstones. 
Differences between „Follow top“ and „Proportional“ types of 
layering are shown in Figure 3.

Figure 2. The process of Sequential Gaussian Simulations.
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4.2 Petrophysical modelling (porosity distribution)
Analysis of petrophysical parameters was performed using: (1) 
the old deterministic petrophysical log analyses of effective po-
rosity and; (2) porosity measured on core samples. Cored wells 
and intervals, as well as wells with petrophysical log analysis are 
evenly distributed all over the field and are representative of the 
lithological and petrophysical parameters of the analysed Lower 
Pontian sandstone series.

After correction of core porosity for overburden pressure, 
depth correlation of log analyses and coring data was performed. 
In most cases smaller corrections were necessary (up to 5 m) dur-
ing correlation of depth intervals (Figure 4).

Input data for porosity modelling included porosity meas-
ured on core samples as well as porosity resulting from determi
nistic petrophysical log analyses. A significant porosity mismatch 
has been observed (especially for porosity values from 0 to 15%) 

when comparing core porosity data (corrected for overburden 
pressure and adjusted by depth) and the data obtained by petro-
physical log analyses. The relationship between well log and core 
data is given by equation 3 and Figure 5:

	 y = 0.545x + 12.71	 (3)

Where:
y = Overburden corrected core porosity
x = Porosity from petrophysical log analysis

Generally, porosity obtained by the petrophysical log analy-
sis was significantly underestimated (especially for the interval 
from 0 to 15%) compared to porosity measured on core samples 
under reservoir conditions. Quality control of acquired well log 
data and performed analysis showed that the available data set 
consisted mainly of old, low resolution Spontaneous Potential, 
Gamma ray and Resistivity data but lacked in measured porosity 

Figure 3. Two types of layering method; „Follow top” used for channel bodies, and „Proportional”, used for reservoirs with relatively uniform gross reservoir thick-
ness (Novak Zelenika et al., 2016).
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logs. The measured Spontaneous Potential represented the main 
input for deterministic calculation of effective porosity. Porosity 
measured on core samples obviously was not taken into account 
in the process of petrophysical log analysis. However, since the 
main scope of the case study presented here was the analysis of 

different methods of petrophysical modelling and their influence 
on reservoir simulation results, no new petrophysical analyses 
were performed. Therefore, the mathematical relationship (eq.3) 
has been applied on porosity coming from petrophysical log ana
lysis in order to obtain more reliable porosity data. The results are 

Figure 4. Depth shifting between the core and log effective porosities (Novak Zelenika et al., 2016).

Figure 5. Cross plot diagram of porosity (core) vs. porosity (petrophysical analysis of well logs). Linear correlation was established.
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corrected porosity logs for all wells having porosity logs from 
quantitative log analysis.

Corrected porosity logs were then upscaled in the model rep-
resenting the input for porosity modelling. Upscaling is a process 
of averaging input data in the model cells containing well data. 
In this way just one value is assigned to a cell. There are differ-
ent upscaling methods, i.e. logs can be upscaled as minimum, 
maximum or arithmetic mean, and other properties can be also 
used to bias the estimated value. In the upscaling process of the 
study, the scale-up method was the arithmetic average. Original 
and upscaled corrected porosity were analysed using histogram 
plots for each reservoir separately as illustrated on Figure 6. for 
reservoirs S6 and S5. Quality control of corrected log porosity 

values showed that the whole range of data between 0 and 12% 
porosity is missing as a consequence of the unique mathematical 
relationship applied. Moreover, there is an evident mismatch be-
tween the input data and upscaled data as a result of averaging in 
upscaling. For that reason, a new relationship between the log and 
core data using simple linear regression was established by two 
equations; one for the lower (eq. 4) and another one (eq. 3) for the 
higher porosity values (Figure 7.):

	 y = 1.6x	         (4)

After applying the two different equations for the high and 
low porosity values, a quality check using histograms (Figure 8) 
showed that porosity values in the range from 0 to 12% were re-

Figure 6. Original and upscaled porosity histograms, observe that the whole range of data between 0 and 12% porosity is missing in the input data as a conse-
quence of the applied single linear mathematical relationship.

Figure 7. Cross plot diagram porosity (core) vs. porosity (petrophysical analysis) with linear relationships established separately for low and high porosity value in-
tervals (Novak Zelenika et al., 2016).
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covered. Also, the match between the input corrected log poro
sity and upscaled values was considered satisfactory. Modelled, 
Ordinary Kriging distributed values showed lower values than 
the original data (Figure 8) because the mean and the variance of 
the Kriging estimates are considerably less than the true values. 
The mean values are lower because Kriging performs decluster-
ing of the original data and the variance is lower because of the 
smoothing effect of Kriging. The general trends are reproduced 
quite well (DEUTSCH & JOURNEL, 1997).

Before porosity distribution, data analysis was performed 
and variograms for each reservoir were calculated (Figure 9).

Different stochastic and deterministic methods of porosity 
distribution were examined.

In the first phase, 10 realizations of Sequential Gaussian Sim-
ulations (SGS) of porosity distribution were performed. Figure 
10 shows two different realizations for the S6 and S5 reservoirs. 
Maps clearly show some areas with huge differences between es-
timated cell values in different realizations, for example the 
northern and north-western parts of the S6 reservoir and the east-
ern part of the S5 reservoir. These parts are areas with the high-
est uncertainty caused by a lack of well data. Large differences 
between the neighbouring cell values can be also very clearly ob-
served in all realizations (Figure 10).

Due to the simulated values which were significantly diffe­
rent in neighbouring cells, problems occurred in fluid flow simu-

lation during dynamic modelling as proved by the sensitivity per-
formed on required simulation time (Figure 11). Implementation 
of SGS modelled porosity resulted in unacceptable simulation 
durations of 12–16 hours for approximately 20 years of produc-
tion history.

Finally, to avoid problems in numerical modelling, porosity 
has been distributed using the Ordinary Kriging method (Figure 
12). A synthetic lithofacies log had been created based on poro­
sity (if the porosity was higher than 11% the lithofacies log repre
sents sandstones, otherwise it represents marls), and it had been 
used as a bias for porosity upscaling. The value of 11% of poro
sity was chosen based on correlation between porosity and perme
ability. 11% porosity matches a permeability of 1*10-3µm2, which 
was proved as the lowest permeability for oil production in the 
studied reservoirs. In this way input porosity data are weighted 
according to prevailing lithofacies. Porosity logs had been up-
scaled using arithmetic average methods for each reservoir. A 
channel sandstone body (S5 reservoir) is clearly observed in the 
central part of the Ordinary Kriging map (Figure 12 right). It is 
clearly seen that the higher porosities are in the channel centre, 
while toward its borders porosity decreases. This could point to 
the existence of transitional lithofacies including sandy silts and 
silty sandstones. A smooth transition between neighbouring cells 
makes an Ordinary Kriging solution more acceptable in numeri-
cal modelling (Figure 13).

Figure 8. Histograms of porosity after applying the two equations.

Figure 9. Variograms of porosity for the S6 and S5 reservoirs.



G
eo

lo
gi

a 
C

ro
at

ic
a

Geologia Croatica 70/2112

Figure 11. Illustration of simulation duration for different property model realizations (SGS realizations 1-5).

Figure 12. Porosity distribution obtained by Ordinary Kriging in S6 (widely distributed over the area) and S5 (channels) reservoirs.
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5. CONCLUSION
The analysed reservoirs, recently defined as Lower Pontian, con-
sist of medium and fine-grained lithoarenites in continuous alter-
nation with marls. Marl layers are not always continuous and in 
some parts of the reservoirs sandstone layers are in direct contact 
with each other.

The input data set used for geological model construction 
comprised well log data, quantitative log analysis (vintage data), 
core data and previous geological model. All these data have been 
integrated and analysed. A structural model was defined with 21 
zones (11 sandstone reservoirs and 10 intercalated marl layers). 
Two different layering methods were applied; „Follow top“ for 
the reservoirs recognized as channel bodies with great lateral 
variability of thickness and „Proportional“ for all others that did 
not show the geometry of channel sandstones but rather laterally 
extensive layers over the study area. Corrections for overburden 
pressure and depth correlation of log analyses and coring data 
were performed. Relationships between log and core data were 
established by two equations; one for the low and the other for 
the high porosity values. After variogram analysis for each res-
ervoir was undertaken, different stochastic and deterministic 
methods of porosity distribution were examined. 10 realizations 
of Sequential Gaussian Simulations were performed which ena-
bled a clear insight into the reservoirs uncertainty. Areas with the 
highest uncertainty were caused by a lack of data. Realizations 
obtained by Sequential Gaussian Simulations had significant dif-
ferences between neighbouring cell values. Consequences of such 
differences were many problems that occurred in numerical si
mulation, e.g. simulation time drastically increased. It can be con-
cluded that well data alone are insufficient as an input for Sequen-
tial Gaussian Simulations as a reservoir property distribution 
method. Implementation of continuous data derived from 3D 

seismic volume as an additional input would certainly improve 
the results. Porosity distribution obtained by Ordinary Kriging 
was more acceptable in numerical modelling, since the transition 
between neighbouring cells was very smooth and most probably 
better reflects the real geological picture. In the reservoirs recog-
nized as channel bodies, higher porosities are located in the chan-
nel centre, while toward the channel margins porosities decrease. 
Higher porosity values could represent pure sandstones. Porosity 
decreasing towards the channel margins indicates sandstones 
with a more silty and marly component, i.e. to silty sandstones 
and sandy silts.

Dynamic simulation must match former production history 
as well as future production prediction. Taking into account that 
the geological model represents the main input for numerical si
mulation of fluid flow, it is important that it fulfils the require-
ments of dynamic modelling process. One of these requirements 
is a reasonable simulation time. The study showed that selection 
of the reservoir property distribution methods have a significant 
influence on the applicability of the geological model in dynamic 
modelling.
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