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The paper describes research state of a new iterative method for solving systems of 
linear algebraic equations. The method is suitable for extremely large systems with 
sparse matrices. In addition to its own characteristics, it also has a feature of generality, 
as many iterative methods are only special cases of this approach. The algorithm was 
developed independently, and then implemented into the open source code program 
FEAP. Also, various checks were conducted, especially on practical models. Although 
the method has been only partially studied, good results have already been obtained.
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Iterirani Ritzov postupak za rješavanje sustava linearnih algebarskih 
jednadžbi

U radu je opisano stanje razvoja nove iteracijske metode za rješavanje sustava linearnih 
algebarskih jednadžbi. Metoda je pogodna za izrazito velike sustave slabo popunjenih 
matrica. Osim vlastitih obilježja, posjeduje i svojstvo općenitosti, jer su mnogi iteracijski 
postupci samo poseban slučaj ovoga pristupa. Algoritam je realiziran samostalno, a 
potom je pridružen programu otvorena koda FEAP. Provedene su i raznolike provjere, 
posebice na praktičnim modelima. Premda je postupak tek djelomice istražen, već 
pokazuje dobre rezultate.
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In der Arbeit wird der aktuelle Entwicklungsstand des neuen Iterationsverfahrens für 
die Lösung von linearen Gleichungssystemen beschrieben. Das Verfahren eignet sich 
insbesondere für sehr große Systeme mit schwach gefüllten Matrizen. Es besitzt neben 
eigenen Merkmalen auch das Merkmal der Allgemeinheit, da viele Iterationsverfahren nur 
ein Spezialfall dieses Ansatzes sind. Der Algorithmus wurde selbständig ermittelt und 
danach dem FEAP Programm mit einem offenen Programmcode zugeordnet. Es wurden 
auch zahlreiche Prüfungen vorgenommen, insbesondere an praktischen Modellen. 
Obwohl das Verfahren erst teilweise untersucht wurde, zeigt es gute Ergebnisse.
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1. Brief theoretical introduction

In the analysis of engineering models using numerical methods, 
usually system of algebraic equations

 (1)

(often very large) has to be efficiently solved. If displacement 
method is considered, the system of equations is related to 
equilibrium conditions. In this case, K is the stiffness matrix, u is 
the vector of unknown displacements, and f is the external load 
vector. If system matrix is symmetric and positive definite, the 
solution is equivalent to the minimization of the quadratic form 
that represents potential energy of a static system:

 (2)

The first term is the strain energy, and the second one is the 
work (potential) of external load. This equation is a discretized 
approximation of the Lagrange energy functional of the 
continuous (mathematical) model of a linearly elastic body. The 
surface of the constant energy level Π(u) = c is the ellipsoid 
(hyperellipsoid) that can be represented by the

 (3)

It is a body of n – dimensional space, where n denotes the number 
of unknown degrees of freedom. From the geometric viewpoint, 
components of vector u are point space coordinates, while 
components of vector u0 are ellipsoid centres. The matrix K (of 
the order n) is given by the product QTDQ. The orthogonal matrix Q 
consists of the columns that define ellipsoid axes, i.e. eigenvectors. 
The elements of diagonal matrix D are (2c/λi)2, where c is the energy 
level, and λi is corresponding eigenvalue. The lengths of ellipsoid 
semi-axes are 2c/λi. Centre is defined at c = 0. The possibilities 
in plane (n = 2) and in space (n = 3) are shown on Figures 1.a and 
1.b. According to the principle of minimum potential energy of a 
stable body, the point in space with the lowest energy level is the 
solution to the problem, and lies at the centre of all ellipsoids. It 
can be considered as degenerate ellipsoid, with the lengths of all 

main axes equal to zero. In numerical realization, depending on 
the accepted accuracy, it is however a very small ellipsoid with the 
energy level just a little higher than the minimum one.

2. Iteration idea

An approximate solution, while keeping the symbol u, can be 
found by successive application of the discretized Ritz method. 
The idea is based on the selection of linearly independent 
coordinate vectors ɸi in the direction of which, with appropriate 
scalars ai, solution increment can be expanded [1]: 

ɸI (4)

In the traditional realization of the procedure, the unknowns ai 
and vectors ɸi are known as Ritz coefficients and Ritz vectors. 
The number of vectors must satisfy the inequality 1 ≤ m ≤ n. If a 
rectangular matrix with m columns and n rows is defined in such 
a way that the columns are coordinate vectors, i.e. 

Φ = [ɸ1 ɸ2 ... ɸm] (5)

and if vector a comprises scalars 

a = [a1 a2 ... an]T (6)

the solution increment can be written as 

∆u = Φ a (7)

Now, in the sense of iterative process:

ui+1 = ui + ∆ui (8)

where indices denote two consecutive iteration steps. If the 
energy in the i – th step is

 (9)

Figure 1. Energy ellipse and ellipsoid
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then, considering (7) and (8), in the next step it is 

 (10)

By multiplying sub-expressions in parentheses and arranging 
the newly created terms, we obtain:

 (11)

where the unbalanced load, or the residual is given by 

ri =f-Kui (12)

Since the energy Π does not depend on the displacement 
increment ∆ui, and hence also not on variables ai, it can be 
omitted from the minimization procedure, i.e. it is sufficient to 
differentiate the energy increase

 (13)

If the generalized Ritz stiffness matrix is introduced

 (14)

which is also symmetric, and in the case of linearly independent 
coordinate vectors also positive definite, and if the generalized 
Ritz load vector is defined as 

 (15)

the energy increase can be written in an abbreviated form

 (16)

to which after minimization (differentiation) according to , the 
following equation system can be related 

 (17)

In the sense of the Ritz method, this system is used to 
approximate the initial one (1). As the approximation is usually 
unsatisfactory, an iterative improvement should be made. By 
solving the system (17), symbolically written as

 (18)

the coefficients ai are obtained and then an approximate 
displacement increment ∆ui is calculated according to (7) ui+1. 
The new displacement is determined according to (8). The 
procedure terminates after the stopping criterion is satisfied. 
Usually, the Euclidean norm of the residual is adopted, i.e. 
iterative process is finished if 

║ri║2 ≤ e║r0║2 (19)

where r0 is the initial residual (r0 = f if u0 = 0), while is a very small 
positive number. It should be noted that the current residual can 
also be determined from the recursive formula 

ri = ri-1-K∆ui-1 (20)

obtained using expression (12) in which, according to (8), should be 
inserted ui = ui-1+∆ui-1 and recognized that ri-1 = f-Kui-1. The method 
is accelerated by expression (20) as, unlike expression (12), the 
total displacement does not need to be calculated in each step. In 
fact, it is determined only at the very end, when stopping criterion 
is reached. However, if (20) is applied, based on equilibrium 
conditions (12) the residual must be updated occasionally, because 
of accumulation of rounding errors. Equilibrium condition is also 
needed in the very beginning of the method (for ), to calculate 
the initial residual if u0 is not a null vector. In case of convergence 
problems, the maximum number of steps must be limited, in order 
to avoid time consuming calculation.

3. Overrelaxation (underrelaxation) of displacement

Motivated by the known method of successive overrelaxation, 
the procedure can be accelerated using the relaxation factor Ωi, 
by which the solution increment is multiplied. Then instead of 
using (8), the new displacement is defined as

ui+1= ui + Ωi∆ui (21)

In fact, in most cases the local energy minimum (within the 
subspace used) is not globally optimal. The convergence can 
often be accelerated by overrelaxation (using Ωi > 1), or by 
underrelaxation (Ωi < 1). In both cases system (17) will not be 
satisfied, and the energy will not achieve a minimum within the 
given subspace. However, although such a step is not locally 
optimal, it can speed up global convergence of the method. 
Unfortunately, an appropriate value of the relaxation factor is 
not easily selected from one step to another. It is only known 
that the relation 0 < Ωi < 2 is valid. Although a mathematical proof 
of these limits exists [2], it can be given a clear interpretation. As 
Π is a quadratic function, search for a minimum along a certain 
direction pi (Figure 2), which usually coincides with ∆ui, can be 
described by the following function:

where Π0 represents the energy at the starting point of the 
search direction (at the beginning of the step), Πmin is the local 
minimum along this direction, and Π(Ωi) is the value at some 
point of the quadratic function. Based on the condition of 
monotone convergence of the method Π(Ωi) < Π0, the following 
can be written: (Ωi - 1)2 < 1 or 0 < Ωi < 2. At interval boundaries 
the energy remains the same as the initial one, i.e. Π(0) = Π(2), 
and so the method does not converge. For the values Ωi outside 
of boundaries, the energy increases and the procedure diverges.



Građevinar 7/2017

524 GRAĐEVINAR 69 (2017) 7, 521-535

Josip Dvornik, Damir Lazarević

energy of a large system. The convergence is not guaranteed 
in the case of linearly dependent coordinate vectors (when the 
subspace degenerates), orthogonality of the residual on the 
current subspace, and the effect of rounding error at the end 
of iterative process (if the stopping criterion is too strict). These 
problems are additionally discussed in Section 7.

5. Basic pseudocode

A highly natural and not very complex idea behind this algorithm 
is easily noticed. Despite such advantages, this approach and 
interpretation have not been widely accepted by researchers in 
the field of efficient iterative methods for solving large systems 
[3]. Theoretically, this algorithm, just like many other iterative 
algorithms, can be considered as a Krylov approach [4, 5], and 
some similarities with ideas given in this paper can be found in 
[6]. It is interesting to note that the subspace iteration, which is 
in essence this procedure, has quite a wide application in solving 
eigenvalue problems. Main elements of the described method 
are briefly presented by a simple pseudocode.

The efficiency of the procedure is subject of compromise. If 
a large number of well-chosen coordinate vectors are used 
(spanning the subspace in which good approximate solution 
lies), the energy reduction per step will be greater, less steps 
will be needed for finding the solution, but individual steps will 
last longer. A smaller number of vectors imply shorter step time, 
but also a less efficient subspace, and more steps to obtain the 
solution. An optimal approach would be to find a good-quality 
small sized subspace, so that even a stronger stopping criterion 
can be reached after a smaller number of fast steps.

Table 1. Iterated Ritz procedure  

      Necessary: K, f, e stiffness matrix, load vector, stopping criterion

1.     Result: u displacement vector 

2.     i ← 0 step counter 

3.     ui ← 0 initial solution null – vector 

4.     ri ← f residual equal to load

5.     repeat

6.     Φi ← [Φ1,i Φ2,i ... Φm,i] definition of coordinate vectors

7.       formation of a "small" system matrix

8.       formation of a "small" right hand side vector

9.      solution of a "small" system

10.   ∆ui ← Φiai determination of an solution increment 

11.  ui+1 ← ui + ∆ui calculation of a new displacement 

12.   ri+1 ← f - Kui+1 new residual

13.   i ← i + 1 increase of the step counter

14.  until ║ri║2 ≤ e║r0║2

Figure 2. Dependence of energy on relaxation factor

4. Iteration by means of a small system

The procedure is started by selecting the initial approximation u0. 
Then, at each step, the set of coordinate vectors of the matrix is 
defined Φi, and the vector ∆ui is determined. This increase (which 
is in the subspace spanned by coordinate vectors determined 
by the vector ai), provides the largest reduction of energy ∆Πi 
within that subspace. This is why a system of linear algebraic 
equations (17) has to be solved, but with a small number of 
unknowns, equal to the number of coordinate vectors. In this 
way, solution of the initial system containing n equations is 
reduced to multiple solving of the system with m equations. In 
some of our examples, n was about 107, while m was no more 
than ten. Known schemes of matrix transformations that cause 
formation of a small system are shown on Figure 3. 

Figure 3. Formation of a small system: a) matrix , b) vector 

The solution of this system (matrix Ki is usually full), can 
be obtained using any direct solution method. Cholesky 
decomposition was used in our case. If the iterative process 
is convergent, the sum of small-system solutions approaches 
large-system solution and the sum of the small system 
energies increases monotonically and approaches minimum 
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6. Special cases of the method

The rectangular matrix Φi is called the subspace matrix. As already 
pointed out, matrix columns are coordinate vectors ɸ1,i to ɸm,i that 
form this subspace. Depending on the choice of these vectors, 
many known iterative methods can be distinguished. They will 
however not be explained in this text [7-11], i.e. only the well-
known ones will be presented as special cases of this approach. 
It is only necessary to use appropriate coordinate vectors. Brief 
descriptions given below are not intended for faster realization 
of these methods, compared to traditional strategies [12], i.e. 
they only contribute to proper understanding and emphasize the 
generality of this iterative algorithm. It should also be mentioned 
that very popular single or multiple preconditioning [13, 14] can 
be interpreted using (one or several) coordinate vectors. For this 
procedure, the preconditioning does not imply any significant 
change of the algorithm (cf. Section 7.2.3).

6.1. The Jacobi method

The Jacobi method is obtained if only one coordinate vector ɸm,i 
= D-1ri is defined at each step. Here, D is the diagonal matrix with 
diagonal elements of K. Thus the matrix Φi becomes the column 
matrix, i.e. Φi = [ɸi], and Ki and ri  degenerate into scalars. 
Therefore, a small system (17) is reduced to a single equation. 
Solution in every step defines the displacement increment.

6.2.  The methods of Gauß – Seidel and Successive 
overrelaxation

The procedure can be described by a sequence of cycles or "crosses" 
through all degrees of freedom. Then the cycle consists of steps. 
Only one degree of freedom is solved at each step (using node 
numbering sequence). The process is often called relaxation, and 
contains the matrix Φi which in every step has one coordinate vector 
equal to the orth, i.e. ɸi = ei. The component corresponding to the 
degree of freedom that is currently relaxed is equal to one, while all 
others are equal to zero. Matrix Ki and vector ri degenerate into scalar, 
therefore, only one equation needs to be solved. The equilibrium of 
only the corresponding degree of freedom is satisfied in this way, as 
the residual of the previous equation is disturbed at the same time. 
During the convergent iterative process, the disturbance gradually 
decreases. The cycle ends when all equations (steps) are solved, 
and only the last one is in equilibrium. This is followed by the start 
of a new cycle, with the same coordinate vectors. With the steps 
progress, the component equal to one moves from the first to the 
last vector component again.
If the matrix approach is applied (by cycles that correspond to 
steps in other methods), and if the solution is sought using the 
node numbering order, each cycle has one coordinate vector ɸi 
= L-1ri, where L is the lower triangular matrix (contains the lower 
triangular part and diagonal elements of K). In this interpretation, 
the method of successive overrelaxation is described by the 
same matrix, but the diagonal elements are multiplied by the 
local relaxation factor ω, which should be distinguished from the 

global . Then, even the equilibrium of the degree of freedom just 
solved is no longer valid (In the Gauß – Seidel method Ω = ω =1). 
If the solution is sought opposite to the node numbering, then 
the lower triangular matrix should be replaced with the upper 
one, i.e. ɸi = U-1ri.
There are also other ways of relaxation, for instance, there is the 
known "chessboard scheme" on the rectangular mesh. In the first 
half of the cycle only "black" nodes are solved, while "white" ones are 
solved in the second half of the cycle. Relaxation is also possible by 
numbering from right to left (instead of using the traditional left to 
right). If diagonal connections between nodes are used, the number 
of possible relaxation paths will increase. New access possibilities 
are obtained if, in addition, the columns and rows interchange places. 
Further possibilities exist in the three dimensional rectangular 
meshes, especially with diagonal connections between nodes, both, 
in coordinate planes and along space diagonals. Irregular meshes 
from the finite element method are even more complex, and have a 
huge number of meaningful connections between nodes, and hence 
numerous ways of load (residual) propagation.
An interesting idea is to go from the highest (by absolute value) 
to the lowest residual of the current cycle. However, reordering 
is needed after solution of each equation (after every step), due 
to the change of residual in the current node and its topological 
neighbours. Of course, continuous correction (sorting) of residual 
requires additional time, which affects the numerical efficiency.
In principle, the algorithm redefined in this way needs a smaller 
number of steps to reach the solution. In fact, known methods 
of Cross and Werner-Csonka, converge better if started from 
the node with the largest residual established. Then, residual 
vector has to be updated and the node with the largest residual 
has to be equilibrated again. The procedure no longer depends 
on nodes numbering, but rather on the distribution of residual 
(load). That is why the notion of cycle loses its real meaning as, 
before some nodes are equilibrated for the first time, the other 
ones have already been solved several times.

6.3. Method of steepest descent 

In this method also, only one coordinate vector equal to residual vector 
is used in each step. Thus, ɸi = ri. It is also a gradient of the energy 
functional with a negative sign, usually used for traditional realization 
of the procedure, i.e. ri = -∇Π(ui). If matrix K is symmetric and positive 
definite, the method is convergent, but the convergence is usually 
slow, especially in the case of a poorly conditioned matrix. Although 
this method is not efficient, it is used as a pedagogical introduction and 
motivation for improvement of other iterative methods.

6.4. Conjugate gradient method

In the first step there is only one coordinate vector, the residual, 
as in the method of steepest descent. After that, the vector of 
previous solution increment is added, which accelerates the 
convergence. That is why this method is much faster than the 
previous one. It can be written: ɸ1,i = ri and ɸ2,i = ∆ui-1. Thus, the 
small matrix is of the order two, i.e. Φi = [ɸ1,i ɸ2,i], and a system with 
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two unknowns should be solved at each step. This description 
differs from the usual ones where the K- orthogonalization of 
vectors is used. However, this orthogonalization equal to solving 
of the abovementioned system with two unknowns.
The orthogonality property of these two vectors is gradually lost 
due to accumulating of round-off errors. Nevertheless, even the 
approximate orthogonality from adjacent steps greatly speeds 
up the convergence, compared to the steepest descent method. 
This theory has been confirmed by numerical tests on relatively 
small systems. The residual norm suddenly drops to zero (or more 
precisely to the numerical approximation of zero) exactlyin the n – 
th step. On the other hand, the tests conducted on large systems 
show smooth behaviour in the n – th step, when drop could 
theoretically be expected. That is why the method needs stopping 
criterion. In other words, it behaves like usual iterative method.
Although the method is relatively fast, and in the case of symmetric 
and positive definite matrix has a practical use, the convergence 
in not always satisfying, especially if the matrix is ill conditioned. 
That is why many preconditioning techniques are often used, and 
the preconditioned conjugated gradient method is frequently 
adopted. Then the procedure can terminate (satisfy the stopping 
criterion) after a much smaller number of steps compared to the 
theoretically required . Let’s close this section with a somewhat 
optimistic citation [4]: "The choice of the [iterative] method is 
a delicate problem. If the [system] matrix A is symmetric and 
positive definite, then the choice is easy: Conjugate Gradients." In 
accordance with our method, that means that there is actually no 
better subspace of coordinate vectors than the plane? It seems 
that there should be enough room for improvement.

7.  On the selection of an efficient subspace of 
coordinate vectors

We would like to define the matrix Φi so that the method 
converges much faster compared to traditional procedures. 
Although we wish to keep the number of coordinate vectors 
small, we think that only one vector (such as in Jacobi, Gauß – 
Seidel, successive overrelaxation and steepest descent), or two 
(in the case of conjugate gradients), are less than optimum. 
Obviously, as the number of vectors is much smaller than , the 
solution increment ∆ui can only accidentally hit the solution u in 
the early phase of the calculation.
We can imagine that, in addition to (two) coordinate vectors 
of the conjugate gradient method, a third vector is introduced. 
In such a case, the subspace is extended to three vectors. 
Compared to the subspace that has two vectors only, a greater 
energy reduction per step can reasonably be expected. The 
contribution of this additional vector can, in the worst case, 
be equal to zero. The following conclusion is also possible: the 
minimum of the energy functional in a larger subspace cannot 
be greater (at a higher level) than the minimum in a smaller 
subspace. In that sense, it is possible to add the fourth, fifth 
and additional vectors and even greater reduction of energy 
per step can be expected. In this way, most of the energy from 
the static system should be exhausted in several steps and the 

system can be "damped out" to the lowest point – the solution 
of the problem. The idea of expanding the subspace is obviously 
quite attractive, but only up to a certain point. On the one hand, 
formation of vectors must not be time consuming process. On 
the other hand, if number of vectors is excessively increased, 
small system (to be solved in each step) could be unacceptably 
large. Ultimately, if the subspace dimensions are equal to the 
number of unknowns, the total energy can be minimized and 
the solution obtained in the first step (or maybe in the second 
step due to rounding errors), but at a "price" equal or greater 
than needed for finding direct solution of the problem.

7.1. Necessary conditions of the selection

A small matrix can be singular (or almost singular – ill 
conditioned) if some coordinate vectors are exactly (or almost 
exactly) linearly dependent. It should be recalled that vectors ɸi 
are linearly independent if the expression 

ɸi = 0 (22)

is valid only in the case of all ai = 0. In numerical realization, this 
condition should be even stronger: vectors should not be even 
"almost" linearly dependent. Then, the Euclidian norm of linear 
combination of vectors can be smaller than a small positive 
number δ, i.e.

 < δ (23)

only if all coefficients are |ai| < δ. The violation of condition (22), 
and especially (23) is not automatically prevented by the various 
strategies used to generate coordinate vectors. (as discussed 
below). The vectors that do not fulfil these conditions should 
be discarded. Although this reduces subspace dimension, the 
small matrix becomes regular and better conditioned. If more 
than two vectors are linearly dependent, it is not clearly defined 
which of them should be rejected. Then the exact or approximate 
orthogonalization of such vectors should be considered. In any 
case, the situation in which vectors are generated and then 
rejected, orthogonalized, or maybe even replaced by others, 
makes step more "expensive", and therefore should only 
occasionally happen. Obviously, procedure in which it is not 
possible (or it is rarely possible) to generate dependent vectors 
should be considered. For easier realization of such procedure the 
generation method can even be changed during the calculation. If 
the dependence nevertheless happens, there is a "last moment 
solution" as during decomposition some pivots of the matrix Ki 
become equal (close) to zero. This can be recognized and used for 
discarding the corresponding equations from calculation of the 
small system. This subspace reduction has proven to be a fast 
and simple solution of linear dependence problems.
However, formation of the subspace is one thing, but its quality is 
something completely different. For instance, if coordinate vectors 
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It can be observed that coefficients  (to which a greater is 
attributed) are multiplied by a larger eigenvalue and thus contribute 
more to (the increase of) stiffness ki,i. Let’s mention, very rough 
vectors also have a great squared norm of residual ║r║2

2. With the 
progress of the steps, smooth coordinate vectors effectively reduce 
contribution of low eigenvectors. After that, the procedure behaves 
like influence of these vectors does not exist. Thus, the condition 
number of the system matrix becomes smaller, and the speed of 
convergence increases. If additional similar vectors are added, the 
energy reduction should be greater. From the theoretical viewpoint, 
the "smoothness" property is not necessary, but it is included in this 
section, because it is important for an efficient realization of the 
method. Without it, the method is neither efficient nor competitive.
Although the above limitations reduce the possible choices, the 
set from which appropriate coordinate vectors can be selected 
still remains very large. Unfortunately, we are not (and as far as 
we know nobody is) familiar with good criteria for the selection 
of generally efficient vectors. In addition, the background theory 
that would make selection easier is also insufficiently known. 
The problem is that many possibilities arise and we can be only 
satisfied with the implementation and comparison of numerical 
tests on numerous examples. As a rule, a specific set of vectors 
works fine for some models, while it is quite bad for the others. In 
such circumstances, we would be satisfied with the selection of 
appropriate vectors, and finding the best set (several fast vectors 
not dependent on models) would be a great research result.

7.2. Several proposals for generation

There are two basic approaches to the generation of coordinate 
vectors: general and special. In the first approach, no additional 
data about the model are needed. The system matrix and the 
right hand side vector are sufficient. If they are properly defined, 
convergence of the method is satisfying in most practical cases. 
In the second approach some special features, valid only for the 
model that is currently considered, are exclusively used. Then, an 
excellent convergence is expected but only for this specific model 
(or perhaps for a small group of similar models). Some strategies 
for coordinate vectors generation are shown below, primarily 
according to the first and then to the second approach.

7.2.1. Selection of constant vectors

The simplest approach is to select a group of linearly independent 
vectors in advance. Such is the case in the methods of Gauß – 
Seidel or successive overrelaxation. The number of vectors 
coincides with the number of unknowns, and their sequence is 
cyclically repeated until convergence criterion is reached. This 
was considered in Section 6.

7.2.2. Selection based on current residual

An appropriate set of vectors can be defined using a current 
residual ri. In fact, as the "expensive" calculation of an initial error 
(we borrowed the symbol for the orth) immediately leads to the 

are perpendicular to the residual vector, the subspace is not useful. 
Then the right hand side of the small system (Ritz load vector) is 

 0. This results in ai = 0 and ∆Πi = 0, and so the energy 
is not reduced. In other words, the procedure does not converge. 
To avoid this problem, the norm ║ɸi ri║2 / ║ri║2

T  should be greater 
than a small constant. To achieve this, it is sufficient to have 
one coordinate vector ɸi that is not orthogonal to residual ri. For 
example, it can be determined by multiplying the selected positive 
definite matrix P (of order n) by vector of the residual: ɸi = Pri. Then, 
according to the definition of positive definiteness 
, unless ri is a null – vector, but this means that the solution 
has been achieved. To further explain this situation, something 
else should also be noted: If old coordinate vectors Φi (from the 
previous step) are kept during the calculation of new residual ri+1, 
then the unfavourable case (mentioned above) would be obtained, 
as the new vector of the residual is always orthogonal to the old 
subspace, i.e. the following is valid: Ω = 1 The statement is not valid 
in case of overrelaxation or underrelaxation of displacement, but 
only if . Using symbols and relations introduced during 
description of the method, a simple proof can be as follows: 

 (24)

Compared to the Ritz coordinate functions on the continuum, 
compatibility conditions and geometrical boundary conditions in this 
discrete alternative are not sought. If only the system of equations is 
known, rather than the static system from which it was generated, 
such properties are not even defined. It is only known that they are 
contained in the system matrix. However, a coordinate vector can 
intuitively be considered "smoother" if it contains a smaller relative 
contribution of "high modes" – eigenvectors of the matrix K with high 
eigenvalues. Such a vector forms more realistic coefficients of the 
Ritz matrix, because corresponding residual also has a small portion 
of high modes. The diagonal element of a small matrix related to such 
coordinate vector and the corresponding "generalized stiffness" are 
smaller. On the contrary, an excessively "rough" vector generates 
large stiffness in the Ritz matrix and causes locking of residual. This 
can easily be proven by expanding the coordinate vector ɸi in the 
base of matrix eigenvectors:

 (25)

In case of normalized vectors (  ), the corresponding 
diagonal element of the small matrix (briefly marked as system 
matrix) can be written as 

 (26)
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correct solution, we can try to find the matrix e0 = K-1r0, which 
correctly approximates P with the smallest possible amount of 
calculation K-1. A good choice is to use positive definite matrix, 
but it is not absolutely necessary. It can be nonsymmetric and 
ill conditioned, and even singular, as all this does not imply 
singularity of the matrix Ki. Of course, we must not generate all 
coordinate vectors with matrices of the same singularity.
As already pointed out, the coordinate vector is generated as P 
ri. There is also an additional advantage in the vector of current 
residual, as it ensures non-orthogonality of coordinate subspace 
to this vector, which is important for convergence of the method. 
For instance, if K is approximated by identity matrix (P = I) we 
obtain ɸi = ri, which is really the steepest descent method. The 
Jacobi iteration is based on the slightly better approximation by 
diagonal matrix (P = D-1). As already pointed out, then ɸi = D-1ri. 
These procedures are not efficient, as the ("cheap") replacement 
matrix P contains insufficient data about inverse of K. The 
following should be emphasized: if several coordinate vectors are 
used, it is not necessary that an individual vector approximates 
K-1ri well, but rather that the subspace spanned by all vectors 
contains the best possible approximation of this product.
More appropriate coordinate vectors can be generated using one 
(or several) cycles of the Gauß – Seidel method or the method of 
successive overrelaxation. In such cases it would be useful to try 
various ways of "visiting" the nodes. However, unlike the classical 
realization, in order to save a computer time, an incomplete 
procedure should be used: return to the already relaxed nodes 
should be prohibited. The idea is good, but increases "the price" 
of the cycle. Perhaps, the nodes could be sorted in the first cycle 
(according to absolute values of residual components), while 
keeping or rarely correcting the order afterwards. Between 
cycles (and maybe between steps) it is desirable to introduce the 
local relaxation factor , but in this case an optimum value should 
be researched. Let us mark with Lω and Uω the lower and upper 
triangular matrix of K, whose diagonal elements are multiplied by 
ω. These matrices can be simply and quickly inverted and multiplied 
by vector. The coordinate vector determined by one cycle of the 
successive overrelaxation procedure, using the order of unknowns 
numbering (from first to last), can be presented as ɸi = Lωri. Using 
the same procedure, but in the opposite order, ɸi = Uωri

-1  is obtained. 
In both cases, the cycle starts with the null-vector. The coordinate 
vector can be generated by multiple use of the sum or product of 
these two approaches. Thus we have: 

ɸi  (27)

ili:

ɸi  (28)

In the first approach, the matrix K can also be placed between the 
parentheses. The matrix P can easily be recognized in equations 
above. If such vectors are independently used, a smaller relaxation 
factor (close to one) makes the convergence slower, but guarantees 
faster process of "smoothing". It would therefore be efficient to use 

them as an addition to other coordinate vectors. The increase of 
the cycles number (successive changes of matrices  and ), 
results in the greater smoothness of the vector (the contribution 
of higher eigenvectors decreases, and contribution to convergence 
in the region of lower eigenvalues increases). In this way, it is 
also possible to generate coordinate vectors using other iterative 
methods. It is even possible to use algorithms that are neither 
convergent nor numerically stable. Thus, the local relaxation factor 
does not need to lie within theoretically determined limits of the 
global factor (which has to be between 0 and 2).
Interesting coordinate vectors can be generated using the 
smoothening of the residual vector. In this case, we are talking 
about "filtering". A component of such vector is equal to the sum of 
residual components in the neighbouring nodes, multiplied by the 
weighting factors. This approach was found to be efficient in some 
examples with large jumps of residual function. These jumps occur 
due to bad prediction of displacement in some steps, which often 
appears in the region of supports and free boundaries of the model.
Generally, if a residual is decomposed into eigenvectors of the 
matrix K, then two or three coordinate vectors that smoothen the 
lower part of the residual spectrum (low eigenvalues) should be 
formed, and additional two specialized for the upper part of the 
spectrum should be added. The previous displacement increment 
∆ui-1 should also be added, which is the origin of success of the 
conjugate gradient method. In this paper, coordinate vectors 
were generated using the symmetric successive overrelaxation 
procedure. Thus, the first vector was defined as 

ɸ1  (29)

and others were generated by recursive formula 

ɸj  (30)

The previous displacement increment was also added. 
Calculations were made using different number of coordinate 
vectors (Section 9). Somewhat greater local coefficient of 
relaxation ω = 1,65 was selected. The global one was kept to Ω = 
1. Let us now explain the product in parentheses. As one step in 
the direction of vector ɸ1 gives current displacement increment 
αɸ1, where α is a number, the residual ri - αKɸ1 is obtained 
according to (20). If the symmetric overrelaxation is applied 
to this residual, because of (29), the second vector becomes 
ɸ1 = ɸ1 - α LωDUω (K ɸ1).-1 -1 Vector ɸ1 already participates in the 
formation of the subspace, ɸ1 and α influences only the length of 
the new vector (it does not change the subspace that this vector 
expands), therefore and can be dropped. Thus, the form (30) is 
obtained. An interesting, faster realization of this procedure, 
could be if K is used instead of D. These considerations are also 
of general significance. In this way, coordinate vectors can be 
generated using any iterative method, i.e. not only the symmetric 
relaxation. Different methods can also be used for every vector as 
well. For instance, the incomplete Cholesky factorization can be 
used for the first vector. Then, forward and backward successive 
overrelaxations are used for the second and third vectors. The 
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symmetric version of these methods can be used for the fourth 
and fifth vector, etc. Similarly to the described effect of one vector, 
here the subspace is smoothened by all vectors obtained by 
relaxation. Residual is smoother with an increase of the vectors 
used (or cycles in the formation of one vector), which contributes 
to faster convergence. A similar effect is obtained by the vector 
from the Jacobi method, with components ri/ki,i.

7.2.3. Generation according to preconditioning

Various ideas used for traditional preconditioning of equation 
systems can be applied for generation of coordinate vectors. 
In addition to the matrices from the iterative procedures given 
above, the incomplete Cholesky factorization or the matrix 
polynomial of K are also used for the preconditioning matrix, let’s 
mark it as M It is used for reduction of the system matrix condition 
number. Symbolically, instead of solving K u= f we indirectly solve 

M-1 K u= M-1 f (31)

but the matrix M should be quite rapidly inverted. From our 
standpoint, M-1 is nothing else but P, and the coordinate vector 
is once again Pri. Interestingly, some of our examples converged 
better by coordinate vectors generated using backward 
node numbering. However, in literature it is quite usual to 
use preconditioning procedure by forward numbering only. It 
would therefore be worthwhile to implement preconditioning 
technique using backward procedure. In order to generate 
several coordinate vectors, two or more preconditioning 
methods (of matrices P) can be used at the same time. This is 
analogous to multiple preconditioning. Then the efficiency of 
the step can increase. Consequently, the matrix transformations 
used for preconditioning are not necessary, i.e. in the sense 
of our method, the preconditioning is just the way of forming 
coordinate vectors. During generation process, they can become 
(either exactly or approximately) linearly dependent and one or 
several vectors must be excluded.

7.2.4. Selection based on previous displacement increment

An appriopriate set of coordinate vectors is based on history 
recycling, i.e. on the use of previous displacement increment ∆ui-

1. It is known that this vector significantly improves convergence 
of conjugate gradients with respect to the steepest descent, 
and it also enables use of relaxation factor. Therefore, it can 
increase efficiency of the method. In our interpretation, one of 
subspace vectors is ɸi = ∆ui-1 and it has a similar effect, although 
(compared to the conjugate gradient method) the recursive 
orthogonality of the previous increments is lost. In our procedure 
(unlike many other procedures), there is only orthogonality 
between successive (not distant) solution increments, residuals 
or subspaces, as the orthogonalization makes the step "more 
expensive". If , successive orthogonality is also lost. That is why, 
during calculation, a small system can become ill conditioned 
and the convergence slower. The coordinate vectors could 

possibly be orthogonalized after a certain number of steps, 
but we are not inclined to do it. Additional vectors can be 
generated by multiplying the last displacement increment by 
some matrix, i.e. ɸi = S∆ui-1. The adding of earlier increments 
∆ui-2, ∆ui-3 and so on, was not sufficiently effective. Besides the 
last displacement increment, the current solution vector ui can 
similarly be used as one of coordinate vectors. The "recycling" of 
this vector makes sense due to the loss of orthogonality, and it 
could be efficiently applied to nonlinear systems without such a 
property. Finally, let’s mention that this group of vectors is not 
used independently.

7.2.5. Selection based on data about the model

Another strategy for generating coordinate vectors is to use 
some specific data about the model that is being solved. The 
approximate geometry and simplified model properties are 
frequently used. Often, it is sufficient to use only a problem that 
is in some way similar. For example, less important degrees 
of freedom can be excluded; the same geometry and element 
mesh can be used, but with simpler distribution of stiffness; 
hierarchical behaviour of a complex model can be used (as in 
manual calculation); coarse finite element mesh can be applied, 
etc. Generally, the displacements of these models under residual 
load can be used as appropriate coordinate vectors. This is most 
often associated with crude vectors that are most effective in 
the beginning of calculation. Later on, the solution needs to be 
smoothened, and it is better to use some of the more accurate 
approaches, described earlier. Nevertheless, such vectors can 
ensure very fast solution of many concrete problems, but the 
generation process has additional difficulty: lack of generality. 
Each type of equation requires separate approach.
For example, the substitute model for a thick beam can be a 
traditional thin beam, while a membrane could be used instead 
of a shell. If the solution of the substitute model uz, is known, 
then the coordinate vector is ɸ = Nuz, where N is the matrix 
of interpolation functions that connect degrees of freedom 
of default and substitute models. In the case of a beam, the 
substitute model is based on line elements (and can be simply 
supported), and the default model is defined by the mesh of 
planar finite elements (Figure 4). 

Figure 4. Model of a clamped beam 
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The nodes of both models that lie on the axis are connected 
by third-degree polynomials, and those of the default model 
(lying outside of the axis) are tied to the substitute model using 
cross section hypothesis of thin beam element. Columns of 
the matrix N are formed via polynomials and the hypothesis. 
The matrix defined in this way is singular, as displacements 
between models are linearly dependent, but the coordinate 
vector is correct and with the progress of the procedure leads 
toward solution for a thin beam. Of course, this solution is not 
good enough for original model. That is why a residual vector 
(or some other "correction") must be used as an additional 
coordinate vector to correct the assumption of straight cross 
sections, and provide a good solution of a high beam. 
The iterative solution procedure based on the model stiffness 
hierarchy can also be used for formation of a coordinate 
vector. The coordinate vector can be defined as a solution 
after only several iterations between parts of the model with 
different stiffness. Obviously, this would only be a very crude 
approximation of the final result (which would be obtained after 
a larger number of steps), but it is nevertheless quite acceptable 
for fast definition of a coordinate vector.
Vectors can be generated with crude finite element mesh, 
using several iterations of a multigrid method [15, 16], but 
also through direct use of the analytically defined (continuous) 
coordinate functions over approximate domain of the 
model, which meet geometric boundary conditions. Notable 
examples of these functions are the Ritz functions and, as an 
interesting extension, R-functions [17]. Both can be multiplied 
by polynomials. Even more freely selected smooth functions 
that do not satisfy natural and geometric boundary conditions 
(here polynomials can once again be mentioned) can be used 
as coordinate vectors. Openings and similar irregularities do not 
need to be taken into account. In these cases, components of 
coordinate vectors are equal to the values of functions in the 
nodes. Obviously, such vectors are "rough", and the elements 
of the corresponding Ritz matrix are "excessively stiff", but can 
be used in the first steps of the procedure. However, if they 
are kept, the solution will be smoothened at later stages of 
the procedure, but the convergence will not be impressive. It 
would be better to somehow smooth these vectors in advance, 
possibly, for each one to use two cycles of overrelaxation with 
small , first with increasing and second with decreasing node 
numbering sequence.
Coordinate vectors can also be generated by means of analogy. 

For instance, if we are solving a slab problem, then we can use 
the solution to the problem of magnetic or electric field, torsion, 
membrane, grid, etc. The solution for the same slab with 
different load can also be applied, or even a roughly sketched 
displacement field. Then, measuring from the picture, we can 
determine displacements as vector components. All such 
solutions can be columns of the matrix ɸi.
Coordinate vectors can be used for an efficient definition of 
kinematic constraints. The hypothesis of straight cross sections 
of beam elements is one of such constraints. If we write them in 
the form of Tu = f where T is the constraint matrix, then the initial 
approximation of the solution must satisfy nonhomogeneous 
constraints, i.e. Tu0 = f, while coordinate vectors must satisfy 
homogeneous constraints only, i.e. TΦi = 0. 
Let us finally mention the mixed approach to the generation 
of coordinate vectors. Thus the displacement increment ∆ui or 
the current approximation ui is multiplied by some functions 
of coordinates. They can be Ritz functions or R-functions, and 
even polynomials, as mentioned above.

7.2.6. Coordinate vectors as input data

Finally, if someone finds a better set of (one or several) coordinate 
vectors, the matrix ɸi could be formed without difficulties, and 
described procedure easily used. In this way, the proposed 
algorithm can be considered as a general approach to the iterative 
solution methods, where coordinate vectors are set as input data 
(in addition to the necessary ones required by all iterative methods).

8. Briefly about realization

The proposed pseudocode was realised using the programming 
language gfortran [18]. 64 bit Ubuntu version 5.3.1 and OS X 
version 6.1.0 were used. Once the program was verified on small 
equation systems, stiffness matrices and loads were generated 
for a considerable number of planar and space trusses. The 
formation of model was carried out in two ways. On the one 
hand, elements were placed in a traditional way, so that the 
trusses can form a good static system. On the other hand, to 
make condition number of the corresponding system much 
larger, we irregularly connected distant nodes by truss elements 
with large differences in stiffness values. In this way, we formed 
illogical trusses that cannot be regarded as structures. Thus, 
from the numerical viewpoint, we tested the program on both 

Figure No. Number of nodes Number of elements Number of unknowns Number of elements saved Matrix fill rate

5.
Left 1.030.301 1.000.000 3.060.300 123.026.091 1,31·10-5

Right 276.244 1.461.134 820.446 17.723.235 2,63·10-5

6.
Left 71.307 278.499 206.527 3.826.156 8,97·10-5

Right 11.844 11.664 69.984 1.635.876 3,34·10-4

7.
Left 3.018.960 2.918.728 8.955.164 358.190.300 4,47·10-6

Right 486 1.782 2.754 54.594 7,20·10-3

Table 2. Basic data about numerical models
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a)

Figure 5.  Cube model (left) and HPP Rama powerhouse model (right; only a half of the model is shown) [22]: a) distribution of vertical 
displacements; b) decrease of residual; c) decrease of energy

b)

c)
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Figure 6.  Models of the Rector’s Palace atrium in Dubrovnik (left) [23] and Krešimir Ćosić Sports Hall dome in Zadar (right) [24]: a) distribution 
of vertical displacements; b) decrease of residual; c) decrease of energy

a)

b)

c)
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Figure 7.  Models of the underground quarry in Kanfanar with the surrounding area (left; internal rooms and columns are not visible) [25] and 
roof structure of the future Kantrida Stadium in Rijeka (right) [26]: a) distribution of vertical displacements; b) decrease of residual; 
c) decrease of energy

a)

b)

c)
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good and bad models. System matrix is saved sparsely, using 
full bookkeeping method by columns, and we also tried to do 
it by rows [19]. A very similar strategy also exists in the open 
source code program for the finite element method FEAP [20].
So, it was possible to easily connect our code with this package. 
The version 8.4.1 was used [21]. The compilation with the FEAP 
was also realized using the gfortran language.

9. Results of practical models

After fundamental checks, we analysed several models from 
structural engineering practice, on which we worked in previous 
years (Figures 5 to 7). For clarity reasons, the loads and supports 
are omitted from the figures. Models contain various types 
and shapes of finite elements. The unknowns are primarily 
displacements, although somewhere rotations are also present. 
Basic data about the models are given in Table 3. The fill rate 
of matrices is defined as the ratio between the number of 
elements saved and the number of all elements of the matrix.
Various checks of iterative algorithms are necessary as their 
dependence on the type of problem is fairly known. In other 
words, they can be adjusted for very fast calculation of typical 
examples, with the data known in advance, used to set key 
parameters of the method. However, the efficiency decreases as 
soon as the problem deviates from the expected. Figures show 
distribution of vertical displacements of the models [under a)], 
and dependence of the logarithm of the residual ||ri||2/||r0||2 and 
energy ratio (Π0 - ∑i∆Πi)/Π0 on the number of iterations [under b) 
and c)]. Red and purple colours denote the area of the smallest 
and the greatest displacement, respectively. Calculations were 
made based on the iterated Ritz procedure (IRP) with two, four, 
six and ten coordinate vectors (argument of IRP), and using 
the method of conjugate gradients without preconditioning 
(KG) and with diagonal preconditioning (KGD). The following 
can be observed in figures b) and c): the number of iterations 
decrease with an increase in subspace, i.e. the reduction of 
residual and energy norm per step is larger. Even for two 
coordinate vectors, the method converges faster than KG and 
KGD (which can also be interpreted with two vectors). However, 
it has to be mentioned that there is a better preconditioning 

Table 3. Comparison of methods according to the number of steps

Figure No.
Number of steps until convergence is achieved

KG KGD IRP(2) IRP(4) IRP(6) IRP(10)

5.
Left 580 567 243 102 67 38

Right >104 5083 2381 1097 682 410

6.
Left >105 53.002 24.995 8608 5166 2871 

Right  11 091 8966 4142 1381 888 498 

7.
Left  2 157 1936 623 208 126 71 

Right  2 769 987 703 269 169 94 

technique for the conjugate gradient method, e.g. by incomplete 
Cholesky factorization, although the results show that there is 
an adequate reserve for greater number of coordinate vectors 
(which has to be additionally checked). This is also confirmed 
by Table 3, with the number of steps needed for reducing the 
residual ratio to 10-8. It should also be emphasized that the 
results from all examples are in good agreement with solutions 
obtained by direct and iterative methods used inside FEAP.

10. Conclusion

According to the described properties and our experience, 
the iterated Ritz method can be advantageous when solving 
large linear systems with sparse matrices. In some of our 
examples, as many as 10-7 unknowns were used, with the fill 
rate of approximately 10-6. The explanation of the procedure 
is close to the engineering way of thinking, i.e. to the Ritz 
energy interpretation, unlike for instance the method of 
conjugate gradient that is normally explained geometrically, 
in the abstract -dimensional space. This procedure should 
not be worse than the conjugate gradient method (with and 
without preconditioning). In fact, a good subspace extension 
does not result in worse convergence. Additionally, several 
strategies for generating coordinate vectors can be used (as 
if several iterative methods are simultaneously applied). In 
case of a selection of appropriate vectors, the convergence is 
much faster compared to convergence based on an individual 
procedure. The preconditioning that transforms original 
system is not necessary here, but the algorithms developed 
for preconditioning can successfully be used in the generation 
of vectors. The restart known from the traditional method of 
conjugate gradients, by which the procedure is restarted due to 
loss of orthogonality, cannot be justified in this case. Only the 
displacement increment from the previous step is used, which 
improves the solution in the current step. As the orthogonality 
between iteration values is not required, additional advantages 
could be expected in the nonlinear problems. In such problems 
orthogonality properties, favoured by numerous iterative 
algorithms, are lost by definition. Therefore, the method can 
successfully be applied in the field of optimization as well.
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It is clear that it would not be efficient to solve extremely large 
system using one processor only. In that case parallel approach 
is necessary. It would be interesting to use one processor for 
each coordinate vector. Because the proposed algorithm is 
(due to numerous possibilities) still in the intensive research 
phase (already a mere change in the amount of Ω and ω greatly 
influence the rate of convergence), currently there is no need to 
measure overall performance of the method and compare it to 
other direct and iterative solvers. This could only be done after 
careful programming and compilation of the final version of the 

program, including optimization options that contribute to the 
code efficiency. Therefore, this paper is more of methodological 
(algorithmic) than practical nature.
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