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Abstract. The purpose of the present study is to generalize the multiplier space for intro-
ducing the concepts of αB-, βB-, γB-duals and NB-duals, where B = (bn,k) is an infinite
matrix with real entries. Moreover, these duals are computed for the sequence spaces X

and X(∆), where X ∈ {lp, c, c0} and 1 ≤ p ≤ ∞.
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1. Introduction

Let ω denote the space of all real-valued sequences. Any vector subspace of ω is
called a sequence space. For 1 ≤ p < ∞, denote by lp the space of all real sequences
x = (xn) ∈ ω such that

‖x‖p =

(

∞
∑

n=1

|xn|
p

)1/p

< ∞.

For p = ∞, (
∑∞

n=1 |xn|
p)

1/p
is interpreted as supn≥1 |xn|. We write c and c0 for the

spaces of all convergent and null sequences, respectively. Also, bs and cs are used for
the spaces of all bounded and convergent series, respectively. Kizmaz [8, 9] defined
the forward and backward difference sequence spaces. In this paper, we focus on the
backward difference space

X(∆) = {x = (xk) : ∆x ∈ X},

for X ∈ {l∞, c, c0}, where ∆x = (xk − xk−1)
∞

k=1, x0 = 0. Observe that X(∆) is a
Banach space with the norm

‖x‖∆ = sup
k≥1

|xk − xk−1|.
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In summability theory, the β-dual of a sequence space is very important in con-
nection with inclusion theorems. The idea of dual sequence space was introduced by
Köthe and Toeplitz [10], and it is generalized to the vector-valued sequence spaces
by Maddox [11]. For the sequence spaces X and Y , the set M(X,Y ) defined by

M(X,Y ) = {z = (zk) ∈ ω : (zkxk)
∞

k=1 ∈ Y ∀x = (xk) ∈ X}

is called the multiplier space of X and Y . With the above notation, the α-, β- γ
and N -duals of a sequence space X , which are respectively denoted by Xα, Xβ, Xγ

and XN , are defined by

Xα = M(X, l1), Xβ = M(X, cs), Xγ = M(X, bs), XN = M(X, c0).

For a sequence space X , the matrix domain X(A) of an infinite matrix A is
defined by

X(A) = {x = (xn) ∈ ω : Ax ∈ X}, (1)

which is a sequence space. The new sequence spaceX(A) generated by the limitation
matrix A from a sequence space X can be the expansion or the contraction and the
overlap of the original space X .

In the past, several authors studied Köthe-Toeplitz duals of sequence spaces that
are the matrix domains in classical spaces lp, l∞, c and c0. For instance, some matrix
domains of the difference operator were studied in [4]. The domain of the backward
difference matrix in the space lp was investigated for 1 ≤ p ≤ ∞ by Başar and Altay
in [3] and was studied for 0 < p < 1 by Altay and Başar in [1]. Recently the Köthe-
Toeplitz duals were computed for some new sequence spaces by Erfanmanesh and
Foroutannia [5], [6] and Foroutannia [7]. For more details on the domain of triangle
matrices in some sequence spaces, the reader may refer to Chapter 4 of [2].

In the present study, the concept of the multiplier space is generalized and the
αB-, βB-, γB- and NB-duals are determined for the classical sequence spaces lp, c
and c0, where 1 ≤ p ≤ ∞. Moreover, the †B-dual are investigated for the difference
sequence spaces X(∆), where X ∈ {l∞, c, c0} and † ∈ {α, β,N}.

2. The αB-, βB-, γB- and NB-duals of sequence spaces

In this section, we generalize the concept of multiplier space to introduce new gener-
alizations of Köthe-Toeplitz duals and null duals of sequence spaces. Furthermore,
we obtain these duals for the sequence spaces lp, c and c0, where 1 ≤ p ≤ ∞.

Let A = (an,k) and B = (bn,k) be two infinite matrices of real numbers and X
and Y two sequence spaces. We write An = (an,k)

∞
k=1 for the sequence in the n-th

row of A. We say that A defines a matrix mapping from X into Y , and denote it
by A : X → Y , if and only if An ∈ Xβ for all n and Ax ∈ Y for all x ∈ X . If we
conside the matrix ABt, where Bt is the transpose of matrix B, then the matrix
ABt defines a matrix mapping from X into Y , if and only if (ABt)n ∈ Xβ for all n
and (AB)x ∈ Y for all x ∈ X . Note that the condition (ABt)n ∈ Xβ implies that

∞
∑

k=1

(

xk

∞
∑

i=1

an,ibi,k

)

< ∞.



The generalized multiplier space 275

Based on this fact, we generalize the multiplier space M(X,Y ).

Definition 1. Suppose that B = (bn,k) is an infinite matrix with real entries. For
the sequence spaces X and Y , the set MB(X,Y ) defined by

MB(X,Y ) =

{

z ∈ ω :

∞
∑

k=1

bn,kzk < ∞, ∀n and

(

xn

∞
∑

k=1

bn,kzk

)∞

n=1

∈ Y, ∀x ∈ X

}

is called the generalized multiplier space of X and Y .

The αB-, βB-, γB- and NB-duals of a sequence space X , which are denoted by
XαB, XβB, XγB and XNB, respectively, are defined by

XαB=MB(X, l1), XβB=MB(X, cs), XγB = MB(X, bs), XNB = MB(X, c0).

It should be noted that in the special case B = I, we have MB(X,Y ) = M(X,Y ).
So

XαB = Xα, XβB = Xβ, XγB = Xγ , XNB = XN .

Theorem 1. If B = (bn,k) is an invertible matrix, then MB(X,Y ) ≃ M(X,Y ).

Proof. With the map T : MB(X,Y ) −→ M(X,Y ), which is defined by

Tz =

(

∞
∑

k=1

bn,kzk

)∞

n=1

,

the proof is obvious.

We determine the generalized multiplier space for some sequence spaces. In order
to do this, we state the following lemma which is essential in the study.

Lemma 1. If X,Y, Z ⊂ ω, then

(i) X ⊂ Z implies MB(Z, Y ) ⊂ MB(X,Y ),

(ii) Y ⊂ Z implies MB(X,Y ) ⊂ MB(X,Z).

Proof. The proof is elementary and so omitted.

Remark 1. If B = I, we have Lemma 1.25 from [12].

Corollary 1. Suppose that X,Y ⊂ ω and † denotes either of the symbols α, β, γ
or N . Then

(i) XαB ⊂ XβB ⊂ XγB ⊂ ω; in particular, X†B is a sequence space.

(ii) X ⊂ Z implies Z†B ⊂ X†B.

Remark 2. If B = I, we have Corollary 1.26 from [12].
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With the notation of (1), we can define the spaces X(B) for X ∈ {lp, c, c0} and
1 ≤ p ≤ ∞, as follows:

X(B) =

{

x = (xn) ∈ ω :

(

∞
∑

k=1

bn,kxk

)∞

n=1

∈ X

}

.

Theorem 2. We have the following statements.

(i) MB(c0, X) = l∞(B), where X ∈ {l∞, c, c0},

(ii) MB(l∞, X) = c0(B), where X ∈ {c, c0},

(iii) MB(c,X) = c(B), where X ∈ {c, c0} .

Proof. (i): Since c0 ⊂ c ⊂ l∞, by applying Lemma 1(ii), we have

MB(c0, c0) ⊂ MB(c0, c) ⊂ MB(c0, l∞).

So it is sufficient to verify l∞(B) ⊂ MB(c0, c0) and MB(c0, l∞) ⊂ l∞(B). Suppose
that z ∈ l∞(B) and x ∈ c0. We have

lim
n→∞

(

xn

∞
∑

k=1

bn,kzk

)

= 0.

This means that z ∈ MB(c0, c0). Thus l∞(B) ⊂ MB(c0, c0).
Now we assume z 6∈ l∞(B). Then there is a subsequence

(
∑∞

k=1 bnj,kzk
)∞

j=1
of

the sequence (
∑∞

k=1 bn,kzk)
∞

n=1 such that
∣

∣

∣

∣

∣

∞
∑

k=1

bnj ,kzk

∣

∣

∣

∣

∣

> j2,

for j = 1, 2, · · · . If the sequence x = (xi) is defined by

xi =

{

(−1)jj∑
∞

k=1
bi,kzk

, if i = nj

0, otherwise
,

for i = 1, 2, · · · , we have x ∈ c0 and xnj

∑∞
k=1 bnj ,kzk = (−1)jj, for all j. Hence

(

xn

∞
∑

k=1

bn,kzk

)∞

n=1

6∈ l∞.

This shows MB(c0, l∞) ⊂ l∞(B).
(ii): We have

MB(l∞, c0) ⊂ MB(l∞, c),

by applying Lemma 1(ii). It is sufficient to prove c0(B) ⊂ MB(l∞, c0) and
MB(l∞, c) ⊂ c0(B). Suppose that z ∈ c0(B). We have

lim
n→∞

(

xn

∞
∑

k=1

bn,kzk

)

= 0,
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for all x ∈ l∞, that is, z ∈ MB(l∞, c0). Thus c0(B) ⊂ MB(l∞, c0).
Now we assume z 6∈ c0(B). Then there are a real number as b > 0 and a

subsequence
(
∑∞

k=1 bnj ,kzk
)∞

j=1
of the sequence (

∑∞

k=1 bn,kzk)
∞

n=1 such that

∣

∣

∣

∣

∣

∞
∑

k=1

bnj,kzk

∣

∣

∣

∣

∣

> b,

for all j = 1, 2, · · · . If the sequence x = (xi) is defined by

xi =

{

(−1)j∑
∞

k=1
bi,kzk

, if i = nj

0, otherwise
,

for all i ∈ N, then we have x ∈ l∞ and

(

xn

∞
∑

k=1

bn,kzk

)∞

n=1

6∈ c,

which implies z 6∈ MB(l∞, c). This shows that MB(l∞, c) ⊂ c0(B).
(iii): Suppose that z ∈ c(B). We deduce that limn→∞ (xn

∑∞
k=1 bn,kzk) exists

for all x ∈ c0. So z ∈ MB(c, c0) and c(B) ⊂ MB(c, c0).
Conversely, we assume z ∈ MB(c, c). Let x = (1, 1, · · · ). It is obvious that x ∈ c

and
(

∞
∑

k=1

bn,kzk

)∞

k=1

=

(

xn

∞
∑

k=1

bn,kzk

)∞

k=1

∈ c.

So z ∈ c(B). This shows MB(c, c) ⊂ c(B).

Remark 3. If B = I, we have Example 1.28 from [12].

Corollary 2. We have cNB
0 = l∞(B), lNB

∞ = c0(B) and cNB = c0(B).

Below we recall the concept of normal and similarly to the Köthe-Toeplitz duals,
we show that XαB = XβB = XγB when X is a normal set.

Definition 2. A subset X of ω is said to be normal if y ∈ X and |xn| ≤ |yn|, for
n = 1, 2, · · · , together imply x ∈ X.

Example 1. The sequence spaces c0 and l∞ are normal, but c is not normal.

Theorem 3. Let X be a normal subset of ω. We have

XαB = XβB = XγB.

Proof. Obviously, XαB ⊂ XβB ⊂ XγB, by Corollary 1(i). To prove the statement,
it is sufficient to verify XγB ⊂ XαB. Let z ∈ XγB and x ∈ X be given. We define
the sequence y such that

yn =

(

sgn

∞
∑

k=1

bn,kzk

)

|xn| ,
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for n = 1, 2, · · · . It is clear |yn| ≤ |xn|, for all n. Consequently, y ∈ X since X is
normal. So

sup
n

∣

∣

∣

∣

∣

n
∑

k=1

(

yn

∞
∑

k=1

bn,kzk

)∣

∣

∣

∣

∣

< ∞.

Furthermore, by the definition of the sequence y,

∞
∑

n=1

∣

∣

∣

∣

∣

xn

∞
∑

k=1

bn,kzk

∣

∣

∣

∣

∣

< ∞.

Since x ∈ X was arbitrary, z ∈ XαB. This finishes the proof of the theorem.

Remark 4. If B = I and X is a normal subset of ω, we have

Xα = Xβ = Xγ ,

hence Remark 1.27 from [12].

Now, we investigate the αB-, βB- and γB-duals for the sequence spaces l∞, c
and c0.

Theorem 4. Suppose that † denotes either of the symbols α, β or γ. We have

c†B0 = c†B = l†B∞ = l1(B).

Proof. We only prove the statement for the case † = β; the other cases are proved
by Theorem 3. Obviously, lβB∞ ⊂ cβB ⊂ cβB0 by Corollary 1(ii). So it is sufficient to

show that l1(B) ⊂ lβB∞ and cβB0 ⊂ l1(B).
Let z ∈ l1(B) and x ∈ l∞ be given. Hence

∞
∑

n=1

∣

∣

∣

∣

∣

xn

∞
∑

k=1

bn,kzk

∣

∣

∣

∣

∣

≤ sup |xn|

∞
∑

n=1

∣

∣

∣

∣

∣

∞
∑

k=1

bn,kzk

∣

∣

∣

∣

∣

< ∞, (2)

which shows (xn

∑∞

k=1 bn,kzk)
∞

n=1 ∈ cs. Thus z ∈ lβB∞ and l1(B) ⊂ lβB∞ . Now let
z 6∈ l1(B). We may choose an index subsequence (nj) in N with n0 = 0 and

nj−1
∑

n=nj−1

∣

∣

∣

∣

∣

∞
∑

k=1

bn,kzk

∣

∣

∣

∣

∣

> j, j = 1, 2, . . . .

We define the sequence x ∈ c0 such that

xn =

{ 1
j sgn (

∑∞

k=1 bn,kzk) , if nj−1 ≤ n < nj

0, otherwise
.

We get
nj−1
∑

n=nj−1

(

xn

∞
∑

k=1

bn,kzk

)

=
1

j

nj−1
∑

n=nj−1

∣

∣

∣

∣

∣

∞
∑

k=1

bn,kzk

∣

∣

∣

∣

∣

> 1,

for j = 1, 2, · · · . Therefore (xn

∑∞

k=1 bn,kzk)
∞

k=1 6∈ cs, and z 6∈ cβB0 . This completes
the proof of the theorem.
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Remark 5. If B = I and † denotes either of the symbols α, β or γ. We have

c†0 = c† = l†∞ = l1,

hence Theorem 1.29 from [12].

In the next theorem, we examine the αB-, βB- and γB-duals for the sequence
space lp.

Theorem 5. If 1 < p < ∞ and q = p/(p− 1), then

lαBp = lβBp = lγBp = lq(B).

Moreover for p = 1, we have lαB1 = lβB1 = lγB1 = l∞(B).

Proof. We only prove the statement for the case 1 < p < ∞; the case p = 1 is
proved similarly. Let z ∈ lq(B) be given. By Hölder’s inequality, we have

∣

∣

∣

∣

∣

∣

∞
∑

k=1



xk

∞
∑

j=1

bk,jzj





∣

∣

∣

∣

∣

∣

≤





∞
∑

k=1

∣

∣

∣

∣

∣

∣

∞
∑

j=1

bk,jzj

∣

∣

∣

∣

∣

∣

q



1/q
(

∞
∑

k=1

|xk|
p

)1/p

< ∞, (3)

for all x ∈ lp. This shows z ∈ lβBp and hence lq(B) ⊂ lβBp .

Now, let z ∈ lβBp be given. We consider the linear functional fn : lp → R defined
by

fn(x) =
n
∑

k=1



xk

n
∑

j=1

bk,jzj



 , x ∈ lp,

for n = 1, 2, · · · . Similarly to (3), we obtain

|fn(x)| ≤





n
∑

k=1

∣

∣

∣

∣

∣

∣

n
∑

j=1

bk,jzj

∣

∣

∣

∣

∣

∣

q



1/q
(

∞
∑

k=1

|xk|
p

)1/p

,

for every x ∈ lp. So the linear functional fn is bounded and

‖fn‖ ≤





n
∑

k=1

∣

∣

∣

∣

∣

∣

n
∑

j=1

bk,jzj

∣

∣

∣

∣

∣

∣

q



1/q

,

for all n. We now prove the reverse of the above inequality. We define the sequence
x = (xk) such that

xk =



sgn
n
∑

j=1

bk,jzj





∣

∣

∣

∣

∣

∣

n
∑

j=1

bk,jzj

∣

∣

∣

∣

∣

∣

q−1

,
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for 1 ≤ k ≤ n, and put the remaining elements zero. Obviously, x ∈ lp, so

‖fn‖ ≥
|fn(x)|

‖x‖p
=

∑n
k=1

∣

∣

∣

∑n
j=1 bk,jzj

∣

∣

∣

q

(

∑n
k=1

∣

∣

∣

∑n
j=1 bk,jzj

∣

∣

∣

q)1/p
=





n
∑

k=1

∣

∣

∣

∣

∣

∣

n
∑

j=1

bk,jzj

∣

∣

∣

∣

∣

∣

q



1/q

,

for n = 1, 2, · · · . Since z ∈ lβBp , the map fz : lp → R defined by

fz(x) =

∞
∑

k=1





∞
∑

j=1

bk,jzj



xk, x ∈ lp ,

is well-defined and linear, and also the sequence (fn) is pointwise convergent to fz.
By using the Banach-Steinhaus theorem, it can be shown that ‖fz‖ ≤ supn ‖fn‖ <
∞, so





∞
∑

k=1

∣

∣

∣

∣

∣

∣

∞
∑

j=1

bk,jzj

∣

∣

∣

∣

∣

∣

q



1/q

< ∞,

and z ∈ lq(B). This establishes the proof of the theorem.

Remark 6. If B = I and 1 < p < ∞ and q = p/(p− 1).Then we have

lαp = lβp = lγp = lq.

Moreover, for p = 1, we have lα1 = lβ1 = lγ1 = l∞.

3. The αB-, βB- and NB-duals of sequence spaces X(∆)

The purpose of this section is to compute the †B-dual of the difference sequence
spaces X(∆), where X ∈ {l∞, c, c0} and † ∈ {α, β,N}. In order to do this, we first
give a preliminary lemma.

Lemma 2.

(i) If x ∈ l∞(∆), then supk
∣

∣

xk

k

∣

∣ < ∞.

(ii) If x ∈ c(∆), then xk

k → ξ (k → ∞), where ∆xk → ξ (k → ∞).

(iii) If x ∈ c0(∆), then xk

k → 0 (k → ∞).

Proof. The proof is trivial and so omitted.

For convenience of the notations, we use X†B(∆) instead of X(∆)†B, where †
denotes either of the symbols α, β or N .

Theorem 6. Define the set as follows:

d1 =

{

z = (zk) :

(

n

∞
∑

k=1

bn,kzk

)∞

n=1

∈ c0

}

.

Then
cNB(∆) = lNB

∞ (∆) = d1.
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Proof. By using Corollary 1(ii), we have lNB
∞ (∆) ⊂ cNB(∆). So it is sufficient to

show that d1 ⊂ lNB
∞ (∆) and cNB(∆) ⊂ d1.

Let z ∈ d1 and x ∈ l∞(∆). By Lemma 2 supn
∣

∣

xn

n

∣

∣ < ∞, so

lim
n→∞

xn

∞
∑

k=1

bn,kzk = lim
n→∞

n

∞
∑

k=1

bn,kzk
xn

n
= 0.

This implies that z ∈ lNB
∞ (∆). Now suppose that z ∈ cNB(∆), we have

lim
n→∞

xn

∞
∑

k=1

bn,kzk = 0,

for all x ∈ c(∆). If x = (1, 2, 3, · · · ), we have x ∈ c(∆) and

lim
n→∞

n

∞
∑

k=1

bn,kzk = 0.

So z ∈ d1 and the proof of the theorem is finished.

Remark 7. If B = I, we have cN (∆) = lN∞(∆) = {z = (zk) : (kak) ∈ c0}, [9].

Now, we recall the following theorem from [12] which is important to continue
the discussion. Let A = (an,k) be an infinite matrix of real numbers an,k, where
n, k ∈ N = {1, 2, · · · }. We consider the conditions

sup
n

(

∞
∑

k=1

|an,k|

)

< ∞, (4)

lim
n→∞

an,k = 0, k = 1, 2, . . . , (5)

lim
n→∞

an,k = lk, for some lk ∈ R, k = 1, 2, . . . . (6)

By (X,Y ), we denote the class of all infinite matrices A such that A : X → Y .

Theorem 7 (see [13]). We have

(i) A ∈ (c0, c0) if and only if conditions (4) and (5) hold;

(ii) A ∈ (c0, c) if and only if conditions (4) and (6) hold.

Theorem 8. Define the set as follows:

d2 =

{

z = (zk) :

(

n
∞
∑

k=1

bn,kzk

)∞

n=1

∈ l∞

}

.

Then cNB
0 (∆) = d2.
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Proof. Suppose that z ∈ d2. For x ∈ c0(∆), by Lemma 2 we have limn→∞
xn

n = 0.
So

lim
n→∞

xn

∞
∑

k=1

bn,kzk = lim
n→∞

n

∞
∑

k=1

bn,kzk
xn

n
= 0,

this implies that z ∈ cNB
0 (∆).

Now let z ∈ cNB
0 (∆). We define the matrix D = (dn,j) by

dn,j =

{∑∞

k=1 bn,kzk, if 1 ≤ j ≤ n
0, j > n,

and prove that D ∈ (c0, c0). To do this, we show that Dn = (dn,j)
∞
j=1 ∈ cβ0 for all n

and moreover Dy ∈ c0 for all y ∈ c0.
Since z ∈ cNB

0 (∆), we deduce that
∑∞

k=1 bn,kzk < ∞ for all n; hence for y ∈ c0

∞
∑

j=1

dn,jyj =

n
∑

j=1

(

∞
∑

k=1

bn,kzk

)

yj =





n
∑

j=1

yj





(

∞
∑

k=1

bn,kzk

)

< ∞,

for all n, so Dn ∈ cβ0 for all n. Moreover, z ∈ cNB
0 (∆) implies that

lim
n→∞

xn

∞
∑

k=1

bn,kzk = 0,

for all x ∈ c0(∆). There exists one and only one y = (yk) ∈ c0 such that xn =
∑n

j=1 yj . So

lim
n→∞

∞
∑

j=1

dn,jyj = lim
n→∞

n
∑

j=1

∞
∑

k=1

bn,kzkyj = lim
n→∞

xn

∞
∑

k=1

bn,kzk = 0,

for all y ∈ c0. Hence limn→∞ Dny = 0 and Dy ∈ c0 for all y ∈ c0.
By applying Theorem 7(i) for D ∈ (c0, c0), we obtain

sup
n

∣

∣

∣

∣

∣

n

∞
∑

k=1

bn,kzk

∣

∣

∣

∣

∣

= sup
n

∣

∣

∣

∣

∣

∣

n
∑

j=1

∞
∑

k=1

bn,kzk

∣

∣

∣

∣

∣

∣

= sup
n

∣

∣

∣

∣

∣

∣

∞
∑

j=1

dn,j

∣

∣

∣

∣

∣

∣

< ∞.

This completes the proof of the theorem.

Remark 8. If B = I, we have cN0 (∆) = {z = (zk) : (kzk) ∈ l∞}, Lemma 2 from
[9].

In what follows, we consider the αB-dual for the sequence spaces c(∆) and l∞(∆).

Theorem 9. Define the set d3 as follows:

d3 =

{

z = (zk) :

(

n

∞
∑

k=1

bn,kzk

)∞

k=1

∈ l1

}

.

Then cαB(∆) = lαB∞ (∆) = d3.
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Proof. By applying Corollary 1(ii), we have lαB∞ (∆) ⊂ cαB(∆). So it is sufficient
to show that d3 ⊂ lαB∞ (∆) and cαB(∆) ⊂ d3.

Let z ∈ d3 and x ∈ l∞(∆) be given. By Lemma 2 supn
∣

∣

xn

n

∣

∣ < ∞, so

∞
∑

n=1

∣

∣

∣

∣

∣

xn

∞
∑

k=1

bn,kzk

∣

∣

∣

∣

∣

≤ sup
∣

∣

∣

xn

n

∣

∣

∣

∞
∑

n=1

∣

∣

∣

∣

∣

n

∞
∑

k=1

bn,kzk

∣

∣

∣

∣

∣

< ∞,

which shows z ∈ cαB(∆) and d3 ⊂ lαB∞ (∆). Now suppose that z ∈ cαB(∆). Since
x = (1, 2, 3, · · · ) ∈ c(∆), we conclude that

∞
∑

n=1

∣

∣

∣

∣

∣

n

∞
∑

k=1

bn,kzk

∣

∣

∣

∣

∣

=

∞
∑

n=1

∣

∣

∣

∣

∣

xn

∞
∑

k=1

bn,kzk

∣

∣

∣

∣

∣

< ∞,

So z ∈ d3, and this completes the proof of the theorem.

Remark 9. If B = I, we have cα(∆) = lα∞(∆) = {z = (zk) : (kzk) ∈ l1}.

In order to investigate the βB-dual of the difference sequence space c0(∆), we
need the following lemma.

Lemma 3 (see [9, Lemma 1]). If z ∈ l1, x ∈ c0(∆) and limk→∞ |zkxk| = L, then
L = 0.

For the next result we introduce the sequence (Rk) given by

Rk =

∞
∑

t=k

∞
∑

j=1

bt,jzj .

Theorem 10. If

d4 = {a = (ak) ∈ l1(B) : (Rk) ∈ l1 ∩ cN0 (∆)},

then we have cβB0 (∆) = d4.

Proof. Suppose that z ∈ d4 and x ∈ c0(∆), by using Abel’s summation formula,
we have

m
∑

n=1

(

xn

∞
∑

k=1

bn,kzk

)

=

m
∑

n=1





n
∑

t=1

∞
∑

j=1

bt,jzj



 (xn − xn+1) +

(

m
∑

n=1

∞
∑

k=1

bn,kzk

)

xm+1

=

m
∑

n=1

(R1 −Rn+1) (xn − xn+1) + (R1 −Rm+1)xm+1

=

m+1
∑

n=1

Rn (xn − xn−1)−Rm+1xm+1. (7)

This implies that
∞
∑

n=1

(

xn

∞
∑

k=1

bn,kzk

)
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is convergent, so z ∈ cβB0 (∆).
Let z ∈ c0(∆)βB, by applying Corollary 1(ii) and Theorem 4 we have c0(∆)βB ⊂

cβB0 = l1(B); hence z ∈ l1(B). If x ∈ c0(∆), then there exists y = (yk) ∈ c0 such

that xn =
∑k

j=1 yj. By applying Abel’s summation formula

m
∑

n=1

Rnyn =

m
∑

n=1

(Rn −Rn+1)





n
∑

j=1

yj



+

m
∑

n=1

Rm+1yn

=

m
∑

n=1





n
∑

j=1

yj









∞
∑

j=1

bn,jzj



+

m
∑

n=1

Rm+1yn.

Thus

m
∑

n=1

(

∞
∑

k=1

bn,kzkxn

)

=

m
∑

n=1

(Rn −Rm+1)yn =

m
∑

n=1





m
∑

i=n

∞
∑

j=1

bi,jzj



 yn. (8)

Now we define the matrix D = (dn,k) by

dn,k =

{∑n
i=k

∑∞

j=1 bi,jzj , if 1 ≤ k ≤ n

0, k > n,

and we prove that D ∈ (c0, c). To do this, we show that Dn = (dn,j)
∞
j=1 ∈ cβ0 for all

n, and moreover Dy ∈ c for all y ∈ c0.
Since z ∈ cβB0 (∆), we deduce that

∞
∑

k=1

bn,kzk < ∞,

for all n; hence for y ∈ c0

∞
∑

k=1

dn,kyk =

n
∑

k=1





n
∑

i=k

∞
∑

j=1

bi,jzj



 yk < ∞,

for all n. So Dn ∈ cβ0 for all n. Moreover, z ∈ cβB0 (∆) implies that

∞
∑

n=1

(

xn

∞
∑

k=1

bn,kzk

)

is convergent for all x ∈ c0(∆). Hence by (8), we deduce that

lim
n→∞

Dny = lim
n→∞

n
∑

k=1

dn,kyk = lim
n→∞

n
∑

i=1

xi





∞
∑

j=1

bi,jzj




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exists. So Dy ∈ c0 for all y ∈ c0 and D ∈ (c0, c). This implies that

sup
n

∞
∑

k=1

|dn,k| = sup
n

n
∑

k=1

∣

∣

∣

∣

∣

∣

n
∑

i=k

∞
∑

j=1

bi,jzj

∣

∣

∣

∣

∣

∣

< ∞,

by Theorem 7(ii). Thus we get

∞
∑

k=1

|Rk| < ∞.

Furthermore, (7) implies that limn→∞ Rn+1xn+1 exists for each x ∈ c0(∆); hence
(Rn) ∈ cN0 (∆) by Lemma 3. This completes the proof of the theorem.

Remark 10. If B = I, then we have

cβ0 (∆) = {z = (zk) ∈ l1 : (Rk) ∈ l1 ∩ cN0 (∆)},

where the sequence (Rk) given by Rk =
∑∞

i=k zi, hence Lemma 3 from [9] is resulted.
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