MATHEMATICAL COMMUNICATIONS 273
Math. Commun. 22(2017), 273-285

The generalized multiplier space and its Kothe-Toeplitz and
null duals

DAvOUD FOROUTANNIA*AND HADI ROOPAEI

Department of Mathematics, Vali-e-Asr University of Rafsanjan, P. O. Box 7713936 417
Rafsanjan, Iran

Received November 14, 2016; accepted February 18, 2017

Abstract. The purpose of the present study is to generalize the multiplier space for intro-
ducing the concepts of aB-, $B-, yB-duals and N B-duals, where B = (b, %) is an infinite
matrix with real entries. Moreover, these duals are computed for the sequence spaces X
and X (A), where X € {l,,c,co} and 1 < p < 0.
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1. Introduction

Let w denote the space of all real-valued sequences. Any vector subspace of w is
called a sequence space. For 1 < p < 0o, denote by I, the space of all real sequences
x = (z,) € w such that

0 1/p
lzllp = (Z |$n|p> < o0.

n=1

For p =00, (3°,2, |:1:n|p)1/p is interpreted as sup,,>; |zn|. We write ¢ and ¢y for the
spaces of all convergent and null sequences, respectively. Also, bs and cs are used for
the spaces of all bounded and convergent series, respectively. Kizmaz [8, 9] defined
the forward and backward difference sequence spaces. In this paper, we focus on the
backward difference space

X(A)={z=(z): Az e X},

for X € {loo,c,co}, where Az = (z, — x—1)501, o = 0. Observe that X (A) is a
Banach space with the norm

|z]la = sup |z — zp—1].
k>1
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In summability theory, the S-dual of a sequence space is very important in con-
nection with inclusion theorems. The idea of dual sequence space was introduced by
Kothe and Toeplitz [10], and it is generalized to the vector-valued sequence spaces
by Maddox [11]. For the sequence spaces X and Y, the set M (X,Y") defined by

MX,)Y)={2=(2x) Ew : (2kak)je, €Y Vo= (z3)€ X}

is called the multiplier space of X and Y. With the above notation, the a-, 8- v
and N-duals of a sequence space X, which are respectively denoted by X, X8 X7
and XV, are defined by

X =M(X,l), X°=MX,cs), X7 =MX,bs), XN =M(X,c).

For a sequence space X, the matrix domain X(A) of an infinite matrix A is
defined by
X(A)={z=(rn) Ew : Az € X}, (1)

which is a sequence space. The new sequence space X (A) generated by the limitation
matrix A from a sequence space X can be the expansion or the contraction and the
overlap of the original space X.

In the past, several authors studied Kéthe-Toeplitz duals of sequence spaces that
are the matrix domains in classical spaces [, I, c and cg. For instance, some matrix
domains of the difference operator were studied in [4]. The domain of the backward
difference matrix in the space [, was investigated for 1 < p < co by Bagar and Altay
in [3] and was studied for 0 < p < 1 by Altay and Basar in [1]. Recently the Kothe-
Toeplitz duals were computed for some new sequence spaces by Erfanmanesh and
Foroutannia [5], [6] and Foroutannia [7]. For more details on the domain of triangle
matrices in some sequence spaces, the reader may refer to Chapter 4 of [2].

In the present study, the concept of the multiplier space is generalized and the
aB-, BB-, yB- and N B-duals are determined for the classical sequence spaces [, c
and ¢y, where 1 < p < co. Moreover, the 1B-dual are investigated for the difference
sequence spaces X (A), where X € {l,¢,c0} and T € {a, 5, N}.

2. The aB-, fB-, vB- and N B-duals of sequence spaces

In this section, we generalize the concept of multiplier space to introduce new gener-
alizations of Kothe-Toeplitz duals and null duals of sequence spaces. Furthermore,
we obtain these duals for the sequence spaces [, ¢ and cg, where 1 < p < oo.

Let A = (an) and B = (by k) be two infinite matrices of real numbers and X
and Y two sequence spaces. We write A,, = (an x)5e, for the sequence in the n-th
row of A. We say that A defines a matrix mapping from X into Y, and denote it
by A: X — Y, if and only if A, € X5 for all n and Az € Y for all z € X. If we
conside the matrix AB!, where B! is the transpose of matrix B, then the matrix
AB! defines a matrix mapping from X into Y, if and only if (AB?),, € X? for all n
and (AB)z € Y for all z € X. Note that the condition (AB*),, € X? implies that

oo

Z (xk i an_,ibi_,k> < 00.
i=1

k=1
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Based on this fact, we generalize the multiplier space M (X,Y).

Definition 1. Suppose that B = (by k) is an infinite matriz with real entries. For
the sequence spaces X and Y, the set Mp(X,Y) defined by

Mp(X,Y) = {z Cw: mekzk < 00, Vn and (anbmkzk) eY, Vx e X}
k=1 k=1 n=1
is called the generalized multiplier space of X and Y .

The aB-, BB-, vB- and N B-duals of a sequence space X, which are denoted by
XaB XPBB X7B and XNEB, respectively, are defined by

XaB:MB(Xall)a XBB:MB(chS)v XVB:MB(XabS)a XNB:MB(XaCO)'

It should be noted that in the special case B = I, we have Mp(X,Y) = M(X,Y).
So
xoB _ Xa, XﬁB _ Xﬁ, X8 — X'y, xNB _ xN

Theorem 1. If B = (by ) is an invertible matriz, then Mp(X,Y) ~ M(X,Y).

Proof. With the map T': Mp(X,Y) — M(X,Y), which is defined by

Tz = <Z bnykzk> )
k=1 n=1

the proof is obvious. O

We determine the generalized multiplier space for some sequence spaces. In order
to do this, we state the following lemma which is essential in the study.

Lemma 1. If XY, Z C w, then

(i) X C Z implies Mp(Z,Y) C Mp(X,Y),

(i1) Y C Z implies Mp(X,Y) C Mp(X, Z).
Proof. The proof is elementary and so omitted. O
Remark 1. If B =1, we have Lemma 1.25 from [12].

Corollary 1. Suppose that X,Y C w and | denotes either of the symbols «, 3,
or N. Then

(i) X*B c XBB ¢ X7B C w; in particular, X1B is a sequence space.
(1) X C Z implies ZTB c XTB.

Remark 2. If B =1, we have Corollary 1.26 from [12].
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With the notation of (1), we can define the spaces X (B) for X € {l,,c,co} and
1 < p < o0, as follows:

X(B)—{x—(xn)Ew : (ibn,kxk> EX}.
k=1 n=1

Theorem 2. We have the following statements.
(1) Mp(co, X) =lo(B), where X € {loo, ¢, o},

(17) Mp(lso, X) = co(B), where X € {c,co},
(i1) Mp(e, X) = o(B), where X € {c,co} -
):

Proof. (i): Since ¢y C ¢ C I, by applying Lemma 1(i¢), we have

MBg(co, co) C Mp(co,c) C Mp(co,loo)-

So it is sufficient to verify oo (B) C Mp(co, co) and Mp(co,loc) C loo(B). Suppose
that z € loo(B) and z € ¢g. We have

nler;O (xn an k2k> =0.
k=1
This means that z € Mp(co, o). Thus loo(B) C Mp(co, o).

Now we assume z € lo(B). Then there is a subsequence (220:1 bnjﬁkzk);il of

the sequence (377 b kzk), ., such that

)
nj,kZk| > 17,

for j =1,2,---. If the sequence = = (z;) is defined by

()75 T
X =4 2z bk if i =n, ;
0, otherwise

fori=1,2,---, we have z € ¢o and z; ey bn, K2k = (—=1)74, for all j. Hence

(:Z?n Z bnykzk> € loo
k=1

n=1

This shows Mp(co, loo) C loo(B).
(ii): We have
ME(loo, co) € Mp(l, ©),
by applying Lemma 1(ii). It is sufficient to prove c¢o(B) C Mp(lx,co) and
Mp(ls, ¢) C co(B). Suppose that z € co(B). We have

nl;rgo (:cn an kzk> =0,

k=1
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for all « € I, that is, 2 € Mp(leo, co). Thus ¢g(B) C Mp(leo, co)-

Now we assume z ¢ co(B). Then there are a real number as b > 0 and a
subsequence (377, bnjykzk);il of the sequence (Y 7o, bnykzk)zozl such that

o0
E bn; k2
k=1

for all j =1,2,--- . If the sequence z = (x;) is defined by

> b,

(=17 T
xT; = 2t bikzr’ if £ = " R
0, otherwise

for all 7 € N, then we have x € o, and

00 )
Tn § bn,kzk ¢ c,
k=1 n=1

which implies z ¢ Mp(ls,c). This shows that Mp(lso,¢) C co(B).

(iii): Suppose that z € ¢(B). We deduce that lim, o (Zr, Y pe bnk2k) exists
for all x € ¢g. So z € Mp(c,cp) and ¢(B) C Mp(c,co).

Conversely, we assume z € Mp(c,¢). Let x = (1,1,---). It is obvious that = € ¢
and

(Z bmkzk) = (CL‘n Z bmkzk) € c.
k=1 k=1 k=1 k=1
So z € ¢(B). This shows Mg(c,c) C ¢(B). O

Remark 3. If B = I, we have Ezample 1.28 from [12].
Corollary 2. We have c}'B =1 (B), INB = ¢o(B) and NP = ¢y(B).

Below we recall the concept of normal and similarly to the Kéthe-Toeplitz duals,
we show that X8 = XAB = X7B when X is a normal set.

Definition 2. A subset X of w is said to be normal if y € X and |x,| < |ynl, for
n=172 ---, together imply x € X.

Example 1. The sequence spaces cg and lo, are normal, but ¢ is not normal.
Theorem 3. Let X be a normal subset of w. We have
XoB = xPB = X7B,

Proof. Obviously, X*B ¢ X#8 c X7B by Corollary 1(i). To prove the statement,
it is sufficient to verify X2 ¢ X*B. Let z € X7P and = € X be given. We define
the sequence y such that

k=1

oo
Yn = (sgnz bnﬁkzk> | ],
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for n =1,2,---. Tt is clear |y,| < |z,|, for all n. Consequently, y € X since X is
normal. So
n o0
sup Z (yannﬁkzk> < 0.
k=1 k=1
Furthermore, by the definition of the sequence v,
o0 o0
Z Tp an)kzk < 00.
n=1 k=1
Since x € X was arbitrary, z € X*B. This finishes the proof of the theorem. O

Remark 4. If B=1 and X is a normal subset of w, we have
X* =X =X,
hence Remark 1.27 from [12].

Now, we investigate the aB-, B- and yB-duals for the sequence spaces I, ¢
and cg.

Theorem 4. Suppose that T denotes either of the symbols o, B or ~v. We have
WP =B =18 =1,(B).

Proof. We only prove the statement for the case 1 = (; the other cases are proved
by Theorem 3. Obviously, I2B c ¢#F c ch by Corollary 1(i7). So it is sufficient to

show that Iy (B) C I2B and ¢®  I,(B).
Let z € 11(B) and z € [ be given. Hence

o0 o o0 o0
Z Tn Z bn,k2k| < sup |z, Z Z b, kzi| < 00, (2)
n=1| k=1 n=1|k=1

which shows (zn Y5 ; bnkzk),., € c¢s. Thus z € 188 and I;(B) C 155, Now let
z ¢ 11(B). We may choose an index subsequence (n;) in N with no =0 and

njfl

>

n=n;—-1

oo

Z b,k 2k

k=1

>4, j=12,....

We define the sequence x € ¢y such that

. { %sgn O rey bukzk), ifnj—1 <n<n;
n — .

0, otherwise
We get
’ﬂj—l o0 1 ’Ilj—l o0
3 ( zbn,kzk) Sl ST
n=n;_1 k=1 J n=n;_1 |k=1
for j =1,2,---. Therefore (zn Yoy bnkzk) e, & CS, and z & ch. This completes

the proof of the theorem. O
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Remark 5. If B =1 and 7 denotes either of the symbols o, 8 or v. We have

cg):cT:llo:ll,

hence Theorem 1.29 from [12].

In the next theorem, we examine the aB-, 8B- and yB-duals for the sequence
space [,.

Theorem 5. If 1 < p < oo and ¢ =p/(p— 1), then
198 =108 = 7P = 1,(B).
Moreover for p =1, we have I$P = lfB =172 =1.(B).

Proof. We only prove the statement for the case 1 < p < o0; the case p = 1 is
proved similarly. Let z € 4(B) be given. By Holder’s inequality, we have

o0 e e} [e%s) [e%s} a 1/q o 1/P
Z Tk Z brzi || < Z Z bi, % (Z |$k|p> < 00, (3)
k=1 Jj=1 k=1 |j=1 k=1

for all x € I,,. This shows z € lgB and hence [4(B) C lgB.

Now, let z € lgB be given. We consider the linear functional f, : [, — R defined
by

fnlz) = Z T Zbk,jzj , X E€lp,
k=1 j=1
forn=1,2,---. Similarly to (3), we obtain
. . q 1/q IS 1/p
< (S omas) | (Lwmr)
k=1 |j=1 k=1

for every = € l,. So the linear functional f, is bounded and

q\ 1/a

fall < { D2 1D brszs ;

k=1 |j=1

for all n. We now prove the reverse of the above inequality. We define the sequence
x = (z1) such that

q—1

n n
Ty = SgnE br,j%; E brjzi| s
=1 =1
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for 1 < k < n, and put the remaining elements zero. Obviously, z € [, so

En En b q q\ 1/q

fula) o [ b * |

[ fnll > Iz, = - - PN Z Zbk7jzj J
(Ek:l ‘Ej:lbk;jzj ) k=1]5=1

forn=1,2,---. Since z € lgB, the map f, : I, — R defined by

fz(x)zz Zbk,jzj Tp, x€lp,

k=1 \j=1

is well-defined and linear, and also the sequence (f;,) is pointwise convergent to f..
By using the Banach-Steinhaus theorem, it can be shown that || f.|| < sup, ||f.|l <
00, SO

o | s q\ 1/a
DD bz < oo,
k=1 |j=1
and z € [4(B). This establishes the proof of the theorem. O

Remark 6. If B=1 and 1 <p < oo and ¢ =p/(p — 1). Then we have
=100=0 =1,

Moreover, for p =1, we have I{ = l? =] =lw.

3. The aB-, fB- and N B-duals of sequence spaces X (A)

The purpose of this section is to compute the TB-dual of the difference sequence
spaces X (A), where X € {l,¢,co} and T € {a, 3, N}. In order to do this, we first

give a preliminary lemma.
Lemma 2.
(i) If x € loo(A), then supy | 2| < co.
(id) If x € c(A), then = — & (k — o0), where Axy — & (k — 00).
(i) If x € co(A), then Z= — 0 (k — 00).
Proof. The proof is trivial and so omitted. |

For convenience of the notations, we use X2(A) instead of X (A)'2, where f
denotes either of the symbols a, g or N.

Theorem 6. Define the set as follows:

d| = {z = (2x) : (annﬁkzk> € Co} .
k=1 n=1

ANB(A) =INB(A) = d;.

Then
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Proof. By using Corollary 1(ii), we have I[P (A) € ¢VB(A). So it is sufficient to
show that d; C IYB(A) and VB (A) C dy.
Let z € di and x € l(A). By Lemma 2 sup,, ‘ ‘ < 00, 50

lim anbn B2k = hm ann kzk— =
n—oo

This implies that 2 € I¥B(A). Now suppose that 2z € ¢NB(A), we have
nh_}rrgo Ty mekzk =0,
k=1
for all x € ¢(A). If . = (1,2,3,---), we have 2 € ¢(A) and
nh_)rrgonz bn.kzk = 0.
k=1
So z € d; and the proof of the theorem is finished. O
Remark 7. If B = I, we have ¢N (A) = IN(A) = {z = (2) : (kax) € o}, [9].
Now, we recall the following theorem from [12] which is important to continue

the discussion. Let A = (an) be an infinite matrix of real numbers a, ,, where
n,k € N=1{1,2,---}. We consider the conditions

sup <Z |an)k|> < 00, (4)

n

k=1
lim ap, =0, k=1,2,..., (5)
n—oo
lim a,, =k, forsomel, e R k=1,2,.... (6)
n—oo

By (X,Y), we denote the class of all infinite matrices A such that A: X — Y.
Theorem 7 (see [13]). We have

(i) A€ (co,co) if and only if conditions (4) and (5) hold;

(13) A € (co,c) if and only if conditions (4) and (6) hold.

Theorem 8. Define the set as follows:

dy = {z = (2k) : <ann7kzk> € loo} .
k=1 n=1

Then c§’P(A) = ds.
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Proof. Suppose that z € dy. For z € ¢g(A), by Lemma 2 we have lim,,_, = = (.
So

hm Tn anﬁka = hrn nzbnykzkx—n = O7
n—00 P n—00 — n
this implies that z € ¢)YZ(A).
Now let z € ¢)YB(A). We define the matrix D = (d,, ;) by

{Ziolbmkzk, if1<j<n
dn,j = - 0 .
b) j > n?

and prove that D € (co,co). To do this, we show that D), = (dy ;)32 € ¢ for all n
and moreover Dy € ¢q for all y € ¢g.
Since z € ¢}/ B(A), we deduce that Y p-; by k2 < oo for all n; hence for y € g

o0 n o0 n o0
Zdnﬁjyﬂ' = Z ( bn,ka) Y = Zyj <Z bn,kzk> < 00,
j=1 1 j=1 k=1

j=1 \k=

for all n, so D,, € cg for all n. Moreover, z € ¢)/Z(A) implies that

oo
lim =z, E bn,kzr =0,

for all z € ¢p(A). There exists one and only one y = (yx) € co such that =, =
> i-1Yj- So

oo n oo oo

lim E dp,;y; = lim E E bn.kzry; = lim x, E bnkzr =0,

n—oo n—oo n—o0
=1 j=1k=1 k=1

for all y € ¢p. Hence lim, o, Dy =0 and Dy € ¢y for all y € ¢g.
By applying Theorem 7(i) for D € (co, ¢p), we obtain

o0 n o0 o0
sup annykzk = sup b k2| = sup Z dn,;| < o0.
" k=1 "o lj=1k=1 "o lj=1
This completes the proof of the theorem. O

Remark 8. If B = I, we have ¢} (A) = {z = (21) : (k2k) € l}, Lemma 2 from
[9]-
In what follows, we consider the aB-dual for the sequence spaces ¢(A) and [ (A).

Theorem 9. Define the set ds as follows:

ds = {z = (zx) : <ann7kzk> € l1} .
k=1 k=1

Then c*B(A) = 12B(A) = d.
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Proof. By applying Corollary 1(ii), we have (2P (A) C ¢*B(A). So it is sufficient

to show that d3 C 12P(A) and c*B(A) C ds.
Let z € d3 and z € I (A) be given. By Lemma 2 sup,, ‘%"‘ < 00, SO

o o0 T oo oo
g x E b, k2K SSUp’—n’E nE bn k2K
n
n=1 k=1

n=1 k=1
which shows z € ¢*P(A) and d3 C I12B(A). Now suppose that z € c*B(A). Since
x=(1,2,3,--+) € ¢(A), we conclude that

< 00,

oo oo oo o0
503 | = 3o S| <0
n=1 k=1 n=1 k=1
So z € ds, and this completes the proof of the theorem. O

Remark 9. If B = I, we have ¢*(A) =1L (A) ={z = (z) : (kzx) € l1}.

In order to investigate the SB-dual of the difference sequence space co(A), we
need the following lemma.

Lemma 3 (see [9, Lemma 1]). If z € l1, © € ¢o(A) and limg—, o |2r2K| = L, then
L=0.

For the next result we introduce the sequence (Rj) given by
Re =) bz
t=k j=1
Theorem 10. If
di = {a=(ax) € h(B) : (R € hnef(A)},
then we have ch(A) = dy.

Proof. Suppose that z € dy and z € ¢o(A), by using Abel’s summation formula,
we have

(5] = 35 (S5 s | v+ (3
n=1

n=1 \t=1 j=1

o0

bn,kzk> Tm+1
k=1

(R1 — Rnt1) (T — Tng1) + (R1 — R 1) Tt

I
gt

3
A

Rn (xn - xn—l) - Rm-l—lxm-i-l- (7)

3
Il
-

This implies that

n=1 k=1
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is convergent, so z € ch(A).

Let 2z € co(A)PB, by applying Corollary 1(ii) and Theorem 4 we have co(A)PP C
P = 1,(B); hence z € I,(B). If z € ¢o(A), then there exists y = (yx) € ¢o such
that x, = 2521 y;. By applying Abel’s summation formula

Z Rnyn = Z(Rn - Rn-‘rl) Z Yj + Z Rm+1yn
n=1 n=1 j=1 n=1

n

= Z Z Yj Z bnjzj | + Z Ros1Yn.
j=1 n=1

n=1 j=1
Thus
Z ( bn,kzkxn> = Z(Rn - Rm—i—l)yn = Z Z Zbi,jzj Yn- (8)
n=1 \k=1 n=1 n=1 \i=n j=1

Now we define the matrix D = (dy ) by

d - Z?:k Z;}il bi,jzj; if 1 S k S n
mk = 0, k>mn,

and we prove that D € (co,c). To do this, we show that D,, = (dy,;)52, € cf for all

n, and moreover Dy € ¢ for all y € ¢p.

Since z € ch(A), we deduce that

o0
E bmkzk < 00,
k=1

for all n; hence for y € ¢

oo n n oo
Zdn,kyk = Z Zzbi,jzj Yr < 00,
k=1

k=1 \i=k j=1

for all n. So D,, € cg for all n. Moreover, z € ch(A) implies that

> (o0 X e
n=1 k=1
is convergent for all x € ¢o(A). Hence by (8), we deduce that

n n o0
i Doy =l 3o = i 3 | 3 by

i=1 j=1
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exists. So Dy € ¢g for all y € ¢p and D € (¢, c). This implies that

oo n n o0
supz |dn | = supz Zmezj < o0,
k=1 " k=1|i=k j=

j=1
by Theorem 7(ii). Thus we get

oo

Z|Rk| < Q0.

k=1

Furthermore, (7) implies that lim, o Rnt12n+1 exists for each © € ¢o(A); hence
(R,) € c)’'(A) by Lemma 3. This completes the proof of the theorem. O

Remark 10. If B = I, then we have
BA)={z=(z) el : (Rx) eline)(A)},

where the sequence (Ry,) given by Ry, = > -~ z;, hence Lemma 3 from [9] is resulted.
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