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Abstract. The shape theory and, relatively new, coarse shape theory
are very useful in studying of topological spaces, as well as of the corre-
sponding algebraic invariants, especially, shape and coarse shape groups.
By using certain ultrametrics on special sets of pro- and pro∗-morphisms,
we topologize those groups when they refer to compact metric spaces and
we get topological groups. In the shape case, they are isomorphic to re-
cently constructed topological shape homotopy groups, while in the coarse
shape case we get the coarse shape invariants, denoted by π̌∗d∗

k (X, x0). We
have proven some important properties of π̌∗d∗

k (X, x0) and provided few
interesting examples.

1. Introduction

The shape and coarse shape groups are important invariants of shape and
coarse shape theory, respectively. Recently, certain topology has been con-
structed on shape groups which turns them into topological groups (naturally
called topological shape homotopy groups, see [5]) and it has been shown that
they are new shape invariants, with ability to differ shape of some pairs of
topological spaces which regular shape groups cannot differ. It is important to
emphasize that topology shape (homotopy) groups of compact metric spaces
are metrizable.

N. Uglešić has constructed ultrametrics d and d∗ on pro-C(X,Y ) and
pro∗-C(X,Y ), respectively, for any category C and any inverse systems X,Y
in C, where Y is cofinite (each element of the corresponding index set has
at most finitely many predecessors). Ultrametric spaces which we get by
applying those ultrametrics are denoted by (Y X, d) and (Y X∗, d∗). Also, he
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showed that those topological spaces can be quite different if codomain is
changed up to isomorphism. However, this problem can be solved if one
restricts this consideration to inverse sequences only, precisely to subcategories
tow-C, tow∗-C.

So, clearly, the sets of shape and coarse shape morphisms between topo-
logical spaces X and Y, with the extra condition that X and Y admits se-
quential HPol-expansions (compact metric spaces make a special case), can
be turned into ultrametric spaces, independently of choosing specific sequen-
tial expansions.

The previous construction can be applied to sets of pointed shape and
coarse shape morphisms, as well. Therefore, by restricting the domain to the
pointed sphere, the shape groups and coarse shape groups (of compact metric
spaces or, more general, of spaces admitting sequential expansions) can be
topologized. We will prove that, in the both cases, topological groups are
obtained, which will be denoted by π̌dk(X,x0) and π̌∗d

∗

k (X,x0).
In the case of shape groups, these topological groups are isomorphic to

topological shape groups ([5]) (according to this, no new name will be needed).
Thus we obtain an explicit (complete) metric for those spaces. Nevertheless,
in the case of coarse shape, we get a benefit of the new topological-algebraic
invariant, which will be named by a topological coarse shape group. A certain
topology (similar to the topology given in Lemma 4.5) which induces a struc-
ture of a topological group on the coarse shape group is already considered in
([6]).

The shape and coarse shape case is going to be mutually related by show-
ing that a topological shape group can be considered as a closed topological
subgroup of the corresponding topological coarse shape group. Some inter-
esting properties of topological coarse shape groups will be considered.

At the end, we will discuss few examples, one of which will be a non stable
space whose topological coarse shape group is nontrivial and discrete.

2. Preliminaries

Let us give a brief review of main notions and categories important for
this paper. Let C be any category. Categories inv-C and inv∗-C are defined
as follows.

Objects of inv-C are all the inverse systems X = (Xλ, pλλ′ ,Λ) in C and
inv-C(X,Y ) is the set of all pairs (f, fµ) : X → Y = (Yµ, qµµ′ ,M) which
consists of an index function f : M → Λ and of morphisms fµ : Xf(µ) → Yµ
in C, for every µ ∈ M, satisfying following condition: for every µ ≤ µ′ in M
there is a λ ∈ Λ, λ ≥ f(µ), f(µ′) such that fµpf(µ)λ = qµµ′fµ′pf(µ′)λ holds.

Objects of inv∗-C are also all the inverse systems X in C and inv∗-C(X,Y )
is the set of all pairs (f, fnµ ) : X → Y (called ∗-morphisms) which consists of
an index function f : M → Λ and of sequences of morphisms fnµ : Xf(µ) → Yµ
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in C, n ∈ N, for every µ ∈ M , such that following condition is satisfied: for
every µ ≤ µ′ in M there is a λ ∈ Λ, λ ≥ f(µ), f(µ′) and there is an n ∈ N, so
that, for every n′ ≥ n, relation fn

′

µ pf(µ)λ = qµµ′fn
′

µ′ pf(µ′)λ holds.
The composition of (∗-)morphisms (f, fµ) : X → Y and (g, gν) :

Y → Z = (Zν , rνν′ , N)
(
(f, fnµ ) : X → Y and (g, gnν ) : Y → Z

)
is the

(∗-)morphism (f ◦g, gν ◦fg(ν)) : X → Z
(

(f ◦ g, gnν ◦ fng(ν)) : X → Z
)

and the
identity (∗-)morphism on X is (1Λ, 1xλ

) : X →X
(
(1Λ, 1nxλ

= 1xλ
) : X→X

)
,

where 1Λ : Λ → Λ is the identity index function and 1xλ
are identity mor-

phisms in C.
Two morphisms (f, fµ), (f ′, f ′µ) : X → Y of inv-C are said to be

equivalent, denoted by (f, fµ) ∼ (f ′, f ′µ), if every µ ∈ M admits λ ∈ Λ,
λ ≥ f(µ), f ′(µ) such that fµpf(µ)λ = f ′µpf ′(µ)λ holds, and two ∗-morphisms
(f, fnµ ), (f ′, f ′nµ ) : X → Y of inv∗-C are said to be equivalent, denoted by
(f, fnµ ) ∼ (f ′, f ′nµ ), if every µ ∈ M admits λ ∈ Λ, λ ≥ f(µ), f ′(µ) and n ∈ N,
such that, for every n′ ≥ n, relation fn

′

µ pf(µ)λ = f ′n
′

µ pf ′(µ)λ is satisfied.
Previously defined relations are equivalence relations which are compati-

ble with composition in inv-C and inv∗-C, respectively. So, there exists corre-
sponding quotient categories inv-C/∼ ≡ pro-C and inv∗-C/∼ ≡ pro∗-C. Mor-
phisms [(f, fµ)], [(f, fnµ )] of pro-C, pro∗-C, respectively, are denoted by f and
f∗. Especially, in this paper we will be interested into two full subcategories
tow-C ⊂pro-C, tow∗-C ⊂pro∗-C, whose objects are all inverse sequences in C.

Also, there is a functor J : pro-C →pro∗-C, defined as follows: J(X) = X,
for every X ∈ Ob(pro-C) and J(f = [(f, fµ)]) = f∗ = [(f, fnµ )], for every
f ∈ pro-C(X,Y ), where fnµ = fµ for every µ ∈ M and n ∈ N (f∗ is said to
be induced by f). Whereas functor J is faithful and fixes objects, we can
consider pro-C as a subcategory of pro∗-C.

Now, let D be a pro-reflective and full subcategory of C, which means
that every X ∈ Ob(C) admits a D-expansion (see more in [7]). Let p : X →
X, p′ : X →X ′ be D-expansions of X ∈ Ob(C) and q : Y → Y , q′ : Y → Y ′

be D-expansions of Y ∈ Ob(C), and let i : X →X ′, j : Y → Y ′ be canonical
(by definition of D-expansion) isomorphisms in pro-D. We say that two pro-
morphisms f : X → Y , f ′ : X ′ → Y ′ are pro-D equivalent if j ◦ f = f ′ ◦ i
and two pro∗-D morphisms f∗ : X → Y , f ′∗ : X ′ → Y ′ are said to be pro∗-
D equivalent provided J(j) ◦ f∗ = f ′∗ ◦ J(i) holds. These two relations are
equivalence relations on the appropriate subclass of Mor(pro-D), Mor(pro∗-
D), respectively, and they are compatible with composition whenever it is
defined. Equivalence classes of f and f∗ are denoted by ⟨f⟩ and ⟨f∗⟩ .

At this step we can introduce the (abstract) shape category Sh(C,D) and
(abstract) coarse shape category Sh∗(C,D) for a pair (C,D) (see more in [4]
and [7]). Objects of these two categories are all objects of C and morphisms
F ∈ Sh(C,D)(X,Y ), F ∗ ∈ Sh∗(C,D)(X,Y ) (naturally called shape and coarse
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shape morphisms) are pro-D and pro∗-D equivalence classes of morphisms in
pro-D(X,Y ) and pro∗-D(X,Y ), respectively, with respect to any choice of
a pair of D-expansions p : X →X, q : Y → Y . The composition in the both
categories is defined via the representatives and the identities on an object X
are ⟨1X⟩ , ⟨1∗X⟩ , where 1X ,1∗X : X → X are identity morphisms in pro-D,
pro∗-D, respectively, and p : X →X is any D-expansion of X.

Here are some main functorial relations. Let p : X → X, q : Y → Y be
D-expansions of X and Y, respectively. Then, for every morphism f : X → Y
in C there is a unique f : X → Y in pro-D such that q ◦ [(f)] = f ◦ p in
pro-C. Shape functor S : C → Sh(C,D) is defined as S(X) = X, S(f) = ⟨f⟩
and coarse shape functor S∗ : C → Sh∗(C,D) as S∗(X) = X, S∗(f) = ⟨J(f)⟩.
It can be easily seen that S∗ = J(C,D) ◦ S , where J(C,D) is the functor from
shape to coarse shape category, induced by the previously mentioned functor
J restricted to pro-D. Since J(C,D) is a faithful functor the shape category
can be considered as a subcategory of the coarse shape category.

At last, let us recall the well known facts that HPol (the homotopy
category of all polyhedra) is a pro-reflective full subcategory of HTop (the
homotopy category of all topological spaces). Also, the analogous result holds
for pointed topological spaces "case" HPol0 ⊂ HTop0. In this paper we will
mainly restrict our consideration to Sh0 ≡ Sh(HTop0,HPol0) (the pointed shape
category) and Sh∗0 ≡ Sh∗(HTop0,HPol0) (the pointed coarse shape category)
because main objects of our research are shape and coarse shape groups of
topological spaces, although most of constructions and conclusions can be
applicable to a more general case.

3. Ultrametrization of shape and coarse shape group

First, we give a quick reminder about definition of shape and coarse shape
group of (pointed) topological space (X,x0). For k ∈ N let (Sk, s0) be the
pointed k-dimensional sphere and let p = [(pλ)] : (X,x0)→ ((Xλ, xλ), pλλ′ ,Λ)
be anyHPol0-expansion of (X,x0). The k-dimensional shape group of (X,x0),
denoted by π̌k(X,x0), is the set Sh0((Sk, s0), (X,x0)), with the binary oper-
ation defined as follows:

A+B = ⟨[(aλ)]⟩+ ⟨[(bλ)]⟩ = ⟨[(aλ + bλ)]⟩ .

Similarly, the k-dimensional coarse shape group of (X,x0), denoted by
π̌∗k(X,x0), is the set Sh∗0((Sk, s0), (X,x0)), with the binary operation

A∗ +B∗ = ⟨[(anλ)]⟩+ ⟨[(bnλ)]⟩ = ⟨[(anλ + bnλ)]⟩ .

Notice that for an HPol0-expansion of sphere we may choose "identity". These
two structures are groups (for k ≥ 2 Abelian groups) with adding operation
independent of choosing HPol0-expansion p. For a (coarse) shape morphism
(A∗) A, ((A∗)−1 = ⟨

[(
(anλ)−1

)]
⟩ ∈ π̌∗k (X,x0)) (A)−1 = ⟨

[(
(aλ)−1

)]
⟩ ∈
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π̌k (X,x0) is the inverse element, where ((anλ)−1) (aλ)−1 :
(
Sk, s0

)
→ (Xλ, xλ)

is the inverse for (anλ) aλ in πk (Xλ, xλ), for all n ∈ N and λ ∈ Λ. From now
on, we will consider only topological spaces admitting sequential polyhedral
expansions (compact metric spaces make a special case ). Let (X,x0) be any
such pointed space and let p = [(pi)] : (X,x0)→ (X,x0) = ((Xi, xi), pii+1,N)
be its polyhedral expansion. Let (Sk,s0) denotes a rudimentary inverse system
having only one object (Sk, s0) and let

(X,x0)(Sk,s0) := pro-HPol0((Sk,s0), (X,x0)),

(X,x0)(Sk,s0)∗ := pro∗-HPol0((Sk,s0), (X,x0)).

By [8] and [9], ((X,x0)(Sk,s0)
, d) and ((X,x0)(Sk,s0)∗

, d∗) are complete ultra-
metric spaces, where

d : (X,x0)(Sk,s0) × (X,x0)(Sk,s0) → R,

d([(ai)], [(bi)]) =

{
inf
{

1
m+1 | am = bm,m ∈ N

}
1, otherwise

}
and

d∗ : (X,x0)(Sk,s0)∗ × (X,x0)(Sk,s0)∗ → R,

d∗([(ani )], [(bni )]) =

{
inf
{

1
m+1 | a

n
m = bnm for almost all n ∈ N; m ∈ N

}
1, otherwise

}
.

If we take another sequential polyhedral expansion of (X,x0) then the ob-
tained ultrametric spaces are mutually homeomorphic. The corresponding
homeomorphisms are induced by natural isomorphisms between expansions
(Theorem 6. in [8] and Theorem 6. in [9]). Thus, the natural bijections
(X,x0)(Sk,s0) ≈ π̌k(X,x0) and (X,x0)(Sk,s0)∗ ≈ π̌∗k(X,x0) can be used to
topologize the shape and coarse shape group, independently of specifying se-
quential expansion. The obtained structures will be denoted by π̌dk(X,x0) and
π̌∗d

∗

k (X,x0), respectively.

Proposition 3.1. Let ⟨[(ai)]⟩ , ⟨[(bi)]⟩ ∈ π̌k(X,x0) (⟨[(ani )]⟩ , ⟨[(bni )]⟩ ∈
π̌∗k(X,x0)). If d ([(ai)] , ⟨[(bi)]⟩) = 1

m (d∗ ([(ani )] , [(bni )]) = 1
m), m ∈ N, m > 1,

then ai = bi (ani = bni for almost all n ∈ N), for every i = 1, ...,m− 1.

Proof. Since am = bm (anm = bnm for almost all n ∈ N) implies pimam =
pimbm (pimanm = pimb

n
m for almost all n ∈ N) the statement follows by the

definition of (∗-) morphism.

Theorem 3.2. π̌dk(X,x0) and π̌∗d∗

k (X,x0) are topological groups, for every
k ∈ N.



210 N. KOCEIĆ BILAN AND Z. ČUKA

Proof. We will prove the coarse shape case only. The proof of the
first one is analogous and even easier. Let k ∈ N. Let A∗ = ⟨[(ani )]⟩
and B∗ = ⟨[(bni )]⟩ be any elements of π̌∗d∗

k (X,x0), and let m ∈ N. By
properties of the homotopy classes addition on each coordinate it is easy
to check that for any (C∗, D∗) ∈ Bd∗(A∗, 1/m) × Bd∗(B∗, 1/m) we have
C∗+D∗ ∈ Bd∗(A∗+B∗, 1/m), so continuity of the addition on the π̌∗d∗

k (X,x0)
follows. Now take any A∗ = ⟨[(ani )]⟩ and any m ∈ N. Consider the inverse
(A∗)−1 =

⟨
[((ani )−1)]

⟩
. If we choose any B∗ = ⟨[(bni )]⟩ ∈ Bd∗(A∗, 1/m), by

properties of taking inverses in the k-dimensional homotopy groups of poly-
hedra (Xi, xi), it follows directly that (B∗)−1 ∈ Bd∗((A∗)−1, 1/m). Now we
infer that the operation of taking inverses is continuous on π̌∗d∗

k (X,x0). Hence
π̌∗d

∗

k (X,x0) is a topological group.

The topological shape group π̌topk (X,x0), constructed in [5], has for ele-
ments of its topological basis the sets

V
A=⟨[(aλ)]⟩
λ0

= {B = ⟨[(bλ)]⟩ ∈ π̌k(X,x0)|bλ0 = aλ0} ,
for all A ∈ π̌k(X,x0) and λ0 ∈ Λ, where

p = [(pλ)] : (X,x0)→ ((Xλ, xλ), pλλ′ ,Λ)
is any HPol0-expansion of (X,x0). By restricting our consideration only to
compact metric spaces (X,x0) and by using any sequential polyhedral ex-
pansion p = [(pi)] : (X,x0) → ((Xi, xi), pii+1,N) it can be easily proved
that the natural bijection π̌dk(X,x0)→ π̌topk (X,x0) induces an isomorphism of
topological groups, for every k ∈ N. Indeed, for any base element V Am0

of the
topological shape group π̌topk (X,x0), by using Proposition 3.1, one can prove
that the ball B

(
A = [(ai)], 1

m0

)
of the metric space π̌dk(X,x0) is contained in

V Am0
. Also, any ball B (A = [(ai)], r) contains V Am , m ≥ 1

r . This leads us to
few conclusions.

Corollary 3.3. π̌topk (X,x0) is a metrizable space, for any k ∈ N and
any space (X,x0) which admits a sequential HPol0-expansion. Furthermore,
π̌topk (X,x0) is homeomorphic to the complete ultrametric space π̌dk(X,x0).

Corollary 3.4. Let Sh0cM be the full subcategory of Sh0 restricted to the
all compact metric spaces and let TopGrpMc be the full subcategory of TopGrp
(the category of topological groups) restricted to the all metrizable topologi-
cal groups admitting metrization by a complete metric. There is a functor
π̌dk : Sh0cM → TopGrpMc which associates π̌dk(X,x0) with any (X,x0) ∈
Ob(Sh0cM ) and continuous homomorphism π̌dk(F ) : π̌dk(X,x0) → π̌dk(Y, y0),
π̌dk(F )(A) = FA, with any F ∈ Sh0cM ((X,x0), (Y, y0)).

Corollary 3.5. For every shape path connected space X, the topological
group π̌dk(X,x0) does not depend on the choice of a base point x0.
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Corollary 3.6. π̌dk(X,x0) can be considered as the inverse limit of
((πdk(Xi, xi), πdk(S(pii+1)),N) taken in TopGrp.

4. Topological coarse shape groups of compact metric spaces

Now let us research several main properties of the topological group
π̌∗d

∗

k (X,x0), which will be naturally called (sequential) topological coarse shape
group of the space (X,x0) (recall that it is only defined for spaces admitting
sequential polyhedral expansion). Since all described constructions are rather
natural, we are able to define an appropriate functor.

Proposition 4.1. Let Sh∗0N
be the full subcategory of Sh∗0 restricted to

the all spaces admitting sequential HPol0-expansions. Then π̌∗d
∗

k : Sh∗0N
→

TopGrpMc , which associates π̌∗d∗

k (X,x0) with any (X,x0) ∈ Sh∗0N
and

π̌∗d
∗

k (F ∗) : π̌∗d∗

k (X,x0) → π̌∗d
∗

k (Y, y0), π̌∗d∗

k (F ∗)(A∗) = F ∗A∗, with any F ∗ ∈
Sh∗0N

((X,x0), (Y, y0)), is a well defined functor.

Proof. This proposition follows by Theorem 3.2, properties of the coarse
shape functor defined in [1] and Corollary 3.3 of [9].

We are going to call the functor π̌∗d∗

k : Sh∗0N
→ TopGrpMc (sequential)

topological coarse shape group functor. By composing it with the forgetful
functor TopGrpMc → Grp, we get the coarse shape group functor restricted
to Sh∗0N

. Also, it is known that shape groups can be embedded into coarse
shape groups by the homomorphism induced by the functor J(HTop0,HPol0)
(see [1]). By combining this fact with Theorem 2.3. of [9], we can deduce the
next proposition.

Proposition 4.2. The function j : π̌dk(X,x0) → π̌∗d
∗

k (X,x0), j(A) =
J(A) is an injective homomorphism and a closed topological embedding.

Therefore π̌dk(X,x0) can be considered as a closed topological subgroup
of π̌∗d∗

k (X,x0). Also, it would be interesting if one can somehow relate a
topological coarse shape group of a subspace to the topological coarse shape
group of the whole space. We will give a complete answer when a subspace is
a retract, which will be an analogy of the "shape" case, already considered in
[5], with a slight improvement.

Definition 4.3. Let X be a topological space and let X0 be its subspace.
We say that X0 is normally embedded in X if for every normal covering U0 of
X0 there exists a normal covering U of X such that U|X0 = (U ∩X0 : U ∈ U)
refines U0.

Proposition 4.4. Let X be a topological space which admits a sequen-
tial HPol0-expansion and let X0 be a subspace normally embedded in X
which also admits a sequential HPol0-expansion. Let x0 ∈ X0 ⊆ X be
any point, i : (X0, x0) ↪→ (X,x0) the inclusion and i∗# := π̌∗d

∗

k (S∗(H0(i))) :
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π̌∗d
∗

k (X0, x0)→ π̌∗d
∗

k (X,x0), where H0 is the pointed homotopy functor. Then
i∗#(π̌∗d∗

k (X0, x0)) is closed in π̌∗d
∗

k (X,x0).

Proof. Because X0 is normally embedded in X, by Theorem 6.11. of [7]
there is a morphism p = [(pλ)] : (X,X0)→ (X,X0) = ((Xλ, X0λ), pλλ′ ,Λ) in
pro-Top2, where (X,X0) is an inverse system in Pol2 (category of polyhedral
pairs), such that p|X = [(pλ)] : X → (Xλ, pλλ′ ,Λ) and p|X0 = [(pλ|X0)] :
X0 → (X0λ, pλλ′ |X0λ′ ,Λ) are polyhedral resolutions of spaces X and X0,
respectively (more on polyhedral resolutions in [7]). Further, by Lemma 2.3
of [3], if we put xλ = pλ(x0) = pλ|X0(x0) and use the functor H0 : pro-
Top0 → pro-HTop0 which is induced by H0, we have that

H0(p|X) = [([pλ])] : (X,x0)→ (X,x0) =((Xλ, xλ), [pλλ′ ],Λ),
H0(p|X0) = [([pλ|X0 ])] : (X0, x0)→ (X0,x0) =((X0λ, xλ), [pλλ′ |X0λ′ ],Λ)

are HPol0-expansions of spaces (X,x0) and (X0, x0), respectively.
Now, let q = [([qi])] : (X,x0) → (Y ,y0) = ((Yi, yi), [qii+1],N), r =

[([ri])] : (X0, x0) → (Z,z0) = ((Zi, zi), [rii+1],N) be any sequential HPol0-
expansions of (X,x0), (X0, x0) , respectively. Then, because of natural bijec-
tive relations

π̌∗k(X,x0) ≈ pro∗-HPol0((Sk,s0), (Y ,y0))

≈ pro∗-HPol0((Sk, s0), (X,x0)),

π̌∗k(X0, x0) ≈ pro∗-HPol0((Sk,s0), (Z,z0))

≈ pro∗-HPol0((Sk,s0), (X0,x0)),

by using Lemma 4.5 below, in order to prove that i∗#(π̌∗d∗

k (X0, x0)) is closed
in π̌∗d∗

k (X,x0), it is enough to prove that k(pro∗-HPol0((Sk,s0), (X0,x0))) is
closed in pro∗-HPol0((Sk,s0), (X,x0)), where the topology on
pro∗-HPol0((Sk,s0), (X,x0)) is defined as in Lemma 4.5, while k is the func-
tion

k : pro∗-HPol0((Sk, s0), (X0,x0))→ pro∗-HPol0((Sk,s0), (X,x0)),

k ([([anλ])]) = [(j, [jnλ ])] ◦ [([anλ])],
where [(j, [jnλ ])] represents S∗(H0(i)) for given and fixed HPol0-expansions
H0(p|X0) and H0(p|X).

Now, by using the obvious fact that H0(p|X) ◦ [([i])] = [(1λ, [iλ])] ◦
H0(p|X0) in pro-HTop0, where [(1Λ, [iλ])] : (X0,x0)→ (X,x0), 1Λ : Λ → Λ
is the identity, iλ : (X0λ, xλ) ↪→ (Xλ, xλ) are inclusions, for every λ ∈ Λ, we
conclude that j = 1Λ, [jnλ ] = [iλ], for every λ ∈ Λ, n ∈ N.

We will complete this proof by showing that

K = pro∗-HPol0((Sk, s0), (X,x0)) \ k(pro∗-HPol0((Sk,s0), (X0,x0)))
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is open in pro∗-HPol0((Sk,s0), (X,x0)). Let a = [([anλ])] ∈ K. Then there
exists λ0 ∈ Λ such that for every n0 ∈ N there exists n′ ∈ N, n′ ≥ n0, such
that [an′

λ0
] ̸= [iλ0f ], for every continuous mapping f : (Sk, s0) → (X0λ0 , xλ0).

Namely, if it is not so, then for every λ ∈ Λ we can choose n(λ) ∈ N such
that for every n′ ≥ n(λ) we can find the continuous mapping ān′

0λ : (Sk, s0)→
(X0λ, xλ) such that [an′

λ ] = [jn′

λ ā
n′

0λ]. It allows us to define mappings an0λ :
(Sk, s0)→ (X0λ, xλ),

an0λ =
{
const, n < n(λ)
ān0λ, n ≥ n(λ)

}
for every λ ∈ Λ, n ∈ N, and to infer that a0 = [([an0λ])] is an element of pro∗-
HPol0((Sk,s0), (X0,x0)) (easily verified) and k(a0) = a, which contradicts
the assumption a ∈ K.

Finally, the set Ua
λ0

(notation from Lemma 4.5), is open in pro∗-
HPol0((Sk, s0), (X,x0)), it contains a, and obviously Ua

λ0
⊆ K, which com-

pletes the proof.

In the previous proof we have used the notation [f ] for some pointed
homotopy class of a mapping f , while in the rest of this paper we only use
the notation f .

Lemma 4.5. Let (X,x0) ∈ Ob(Sh∗0N
), let p : (X,x0)→ (X,x0) =

((Xi, xi), pii+1,N) be any sequential HPol0-expansion of (X,x0) and let p′ :
(X,x0) → (X ′,x′0) = ((X ′λ, x′λ), p′λλ′ ,Λ) be any HPol0-expansion of (X,x0).
Let f = [(f, fλ)] : (X,x0)→ (X ′,x′0) be the canonical isomorphism between
those expansions. Then the collection

U =
{
U

[(an
λ)]

λ′ : [(anλ)] ∈ pro∗-HPol0((Sk,s0), (X ′,x′0)), λ′ ∈ Λ
}
,

where
U

[(an
λ)]

λ′ ={[(bnλ)] ∈ pro∗-HPol0((Sk,s0), (X ′,x′0)) :
bnλ′ = anλ′ for almost all n ∈ N},

satisfies properties of topological basis of pro∗-HPol0((Sk,s0), (X ′,x′0)), and
therefore it generates a unique topology denoted by T . Further, the function

h : ((X,x0)(Sk,s0)∗
, d∗)→ (pro∗-HPol0((Sk,s0), (X ′,x′0), T ),
h([(ani )] = J(f) ◦ [(ani )]

is a homeomorphism.

Proof. First notice that, for every [(cnλ)] ∈ U
[(an

λ)]
λ′ , it holds U [(an

λ)]
λ′ =

U
[(cn

λ)]
λ′ . Now for [(cnλ)] ∈ U [(an

1λ)]
λ1

∩U [(an
2λ)]

λ2
, we have [(cnλ)] ∈ U [(cn

λ)]
λ1

∩U [(cn
λ)]

λ2
=

U
[(an

1λ)]
λ1

∩ U [(an
2λ)]

λ2
. It follows [(cnλ)] ∈ U

[(cn
λ)]

λ0
⊆ U

[(cn
λ)]

λ1
∩ U [(cn

λ)]
λ2

for any
λ0 ≥ λ1, λ2. Since U is obviously a cover of pro∗-HPol0((Sk,s0), (X ′,x′0)) it
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satisfies properties of topological basis. Further, it is obvious that the function
h is a bijection. Namely, the function

g : (pro∗-HPol0((Sk,s0), (X ′,x′0), T )→ ((X,x0)(Sk,s0)∗
, d∗),

g([(anλ)]) = J(f−1) ◦ [(anλ)]

is the inverse of h. Further, if we take any [(ani )] ∈ ((X,x0)(Sk,s0)∗
, d∗) and

any λ′ ∈ Λ, using Proposition 3.1, we can check that h
(
Bd∗

(
[(ani )] , 1

f(λ′)

))
⊆

U
h([(an

i )])
λ′ . Therefore, the continuity of h follows. The continuity of g can be

checked analogously.

Proposition 4.6. Let (X0, x0) be a subspace of (X,x0), where (X0, x0),
(X,x0) ∈ Ob(Sh∗0N

), let r : (X,x0) → (X0, x0) be a retraction and
i : (X0, x0) ↪→ (X,x0) the inclusion. Then i∗# := π̌∗d

∗

k (S∗(H0(i))) :
π̌∗d

∗

k (X0, x0) → π̌∗d
∗

k (X,x0), where H0 is the pointed homotopy functor, is
an injective homomorphism of groups and a topological embedding.

Proof. Let r∗# := π̌∗d
∗

k (S∗(H0(r))) : π̌∗d∗

k (X,x0) → π̌∗d
∗

k (X0, x0) and
G = Im(i∗#). It is obvious that i∗# and r∗#|G are continuous homomorphisms.
By showing that i∗# and r∗#|G are mutual inverses we will end this proof. Let
A∗ ∈ π̌∗d∗

k (X0, x0). Then

(r∗#|G ◦ i∗#)(A∗) = (r∗# ◦ i∗#)(A∗) = (S∗(H0(r)) ◦ S∗ (H0 (i))) ◦A∗

= (S∗(H0(r ◦ i))) ◦ (A∗) = 1∗(X0,x0) ◦A
∗ = A∗.

Hereby 1∗(X0,x0) denotes the identity of Sh∗0N
, and we used r ◦ i = id and the

functorial properties. This also implies that i∗# is injective.
Now let B∗ ∈ G. Then there is a unique B∗0 ∈ π̌∗d

∗

k (X0, x0) such that
B∗ = i∗#(B∗0). Therefore

(i∗#◦r∗#|G)(B∗) = (i∗#◦r∗#|G)(i∗#(B∗0)) = i∗#((r∗#|G◦i∗#)(B∗0)) = i∗#(B∗0) = B∗,

where in the third equality we used the first part of the proof.

Corollary 4.7. Let X be a compact metric space, X0 ⊆ X its retract
and x0 ∈ X0 ⊆ X any point. Then π̌∗d

∗

k (X0, x0) can be considered as a closed
topological subgroup of π̌∗d∗

k (X,x0).

Proof. This follows from Propositions 4.4, 4.6 and the following facts:
X0 is closed in X as a retract of Hausdorff space; X0 is a compact metric
space; every closed subspace of paracompact space X is normally embedded
in X.

Thus, not only that we can consider π̌∗d∗

k (X0, x0) as a topological sub-
group of π̌∗d∗

k (X,x0), provided X0 is a retract of compact metric space X,
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but also the "closeness" property of X0 in X is translated to relation between
topological coarse shape groups.

Now let us recall the notion of coarse shape path connectedness (see more
in [3]) and show that π̌∗d∗

k (X,x0) do not depend on x0 ∈ X.
A coarse shape path in a topological space X from x0 to x1, x0, x1 ∈

X, is every morphism Ω∗ : (I, 0, 1) → (X,x0, x1) of the category Sh∗00 ≡
Sh∗(HTop00,HPol00). A space X is said to be coarse shape path connected if for
every two points x0, x1 ∈ X there is a coarse shape path in X from x0 to x1.
It is known that the path connectedness implies shape path connectedness,
which further implies the coarse shape path connectedness.

Proposition 4.8. Let Ω∗ : (I, 0, 1) → (X,x0, x1) be a coarse shape path
from x0 to x1 in a space X, where (X,x0, x1) admits a sequential HPol00-
expansion. Let p : (X,x0, x1) → (X,x0,x1) = ((Xi, xi, xi′), pii+1,N) be an
HPol00-expansion of (X,x0, x1) and let [(ωni )] : (I, 0, 1) → (X,x0,x1) rep-
resent Ω∗ in pro∗-HPol00((I, 0, 1), (X,x0,x1)). Then iΩ∗ : π̌∗d∗

k (X,x0) →
π̌∗d

∗

k (X,x1),
iΩ∗ (A∗ = ⟨[(ani )]⟩) =

⟨[(
iωn

i
(ani )

)]⟩
,

is an isomorphism of topological groups, for every k ∈ N, where iωn
i

:
πk(Xi, xi) → πk(Xi, x

′
i) is the isomorphism of homotopy groups induced by

ωni .

Remark 4.9. There are HPol0-expansions of (X,x0) and (X,x1) that
are induced by p (by forgetting base points x1, x0, respectively).

Proof. It is well known that iΩ∗ is an isomorphism of groups having
the inverse (iΩ∗)−1 = i⟨[(ω̄n

i
)]⟩, where ω̄ni is the inverse path (precisely the

homotopy class of inverse path) of ωni , for every i, n ∈ N. We have to prove the
continuity of iΩ∗ and (iΩ∗)−1 only. Let m ∈ N and A∗ ∈ π̌∗d∗

k (X,x0). Then,
by the fact that iωn

i
: πk(Xi, xi) → πk(Xi, x

′
i) is an isomorphism, for every

i, n ∈ N, we can easily see that iΩ∗(Bd∗(A∗, 1/m) ⊆ Bd∗(iΩ∗(A∗), 1/m), so
continuity of iΩ∗ follows. The continuity of (iΩ∗)−1 can be proven analogously.

Corollary 4.10. If X is a coarse shape path connected topological space
admitting a sequential HPol0-expansion, then π̌∗d

∗

k (X,x0) ≃ π̌∗d∗

k (X,x1), for
any choice of x0, x1 ∈ X.

Corollary 4.11. If X is a metrizable continuum, then π̌∗d
∗

k (X,x0) does
not depend on x0 ∈ X.

Proof. Every connected compact metric space is coarse shape path con-
nected.

At the end we provide few interesting examples.



216 N. KOCEIĆ BILAN AND Z. ČUKA

Example 4.12. If X is a stable space (a space which admits a rudimen-
tary expansion) then π̌∗d

∗

k (X,x0) is discrete for every k ∈ N and x0 ∈ X.
Namely, it is obvious that if we take an HPol0-expansion p : (X,x0) →
((Y, y0)) of (X,x0), where ((Y, y0)) is a rudimentary inverse system in HPol0
containing only one object (Y, y0), then the ball Bd∗(A∗, 1) = {A∗} is the
singleton, for every A∗ = ⟨[(an)]⟩ ∈ π̌∗d

∗

k (X,x0). Let us recall that polyhe-
dra are stable spaces. Also, classical example of a stable space which is not
polyhedron is the Warsaw circle.

Example 4.13. Let X be the Hawaiian earring. Then, by Example 4.5.
of [5] we have that π̌d1(X) is not discrete. Therefore, by using Proposition
4.2 we infer that π̌∗d∗

1 (X) is not discrete (we are not specifying a base point
since X is connected compact metric space). Also, there is an uncountable
discrete closed topological subgroup of π̌∗d∗

1 (X). Namely, the 1-dimensional
sphere S1 (also any finite wedge of 1-dimensional spheres) is a retract of X,
so the conclusion follows by Corollary 4.7, previous example and well known

fact that π̌∗1(S1, s0) =
( ∏
n∈N

Z
)
/

(⊕
Z

n∈N

)
.

Example 4.14. We give an example of a space which is not stable,
but still has a (nontrivial) discrete topological coarse shape group at ev-
ery point. Let (D, ⋆) be the dyadic solenoid, meaning that (D, ⋆) = lim

←
((Xi, xi), pii+1,N) taken in Top0, where Xi = S1 = {z ∈ C : |z| = 1} and
pii+1(z) = z2, for every i ∈ N. It is known that π̌1(D, ⋆) is trivial, so π̌d1(D, ⋆)
is trivial discrete. Also, by Example 2. from [1] we know that π̌∗1(D, ⋆) is
uncountable and every element of that group can be represented by a pro∗-
HPol0 morphism [([ani ])] : (S1, s0)→ ((Xi, xi), [pii+1],N),

ani : (S1, s0)→ (Xi, xi) = (S1, s0), ani =
{
pinαn, i ≤ n
const, i > n

}
,

where α = ([αk]) is a sequence of pointed homotopy maps [αk] : (S1, s0) →
(S1, s0), which can be considered as a sequence in Z = π1

(
S1) . Also, we

know that α = α′ almost everywhere is equivalent to [([ani ])] = [([a′ni ])] , where
[([ani ])], [([a′ni ])] are generated by α, α′ with respect to the previous relations
(see [2]). We will prove that π̌∗d∗

1 (D, ⋆) is discrete by proving that a distance
between two different points is always 1. Let us assume to the contrary that
there are two different points A∗ = ⟨[([ani ])]⟩ , A′∗ = ⟨[([a′ni ])]⟩ ∈ π̌

∗d∗

1 (D, ⋆)
such that d∗([([ani ])], [([a′ni ])]) < 1 (because the distance is always less or equal
1). By the definition of d∗, that means d∗([([ani ])], [([a′ni ])]) ≤ 1/2, which
implies that [p1nαn] = [p1nα

′

n] for almost all n ∈ N, where the sequences
α = ([αk]) and α′ = ([α′

k]) generate [([ani ])] and [([a′ni ])] , respectively. Since,
p1n (z) = z2n−1

, and π1 ([p1n]) : Z→ Z, π1 ([p1n]) ([αn]) = [p1nαn] is actually
the multiplication by 2n−1, it follows that π1 ([p1n]) is a monomorphism and
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we infer that [αk] = [α′

k] for almost all k ∈ N. Therefore [([ani ])] = [([a′ni ])]
i.e. A∗ = A′∗, which is a contradiction.
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Topološke grupe gruboga oblika kompaktnih metričkih prostora

Nikola Koceić Bilan i Zdravko Čuka
Sažetak. Teorija oblika i, relativno nova, teorija gruboga

oblika su se pokazale vrlo korisnima u proučavanju topoloških
prostora kao i odgovarajućih algebarskih invarijanti, posebno,
grupa oblika i gruboga oblika. Primjenom pogodnih ultrametrika
na posebne skupove pro i pro∗-morfizama topologiziramo grupe
(gruboga) oblika kompaktnih metričkih prostora tako da one
postaju topološke grupe. Kod oblika, ove topološke grupe su
izomorfne nedavno konstruiranim topološkim homotopskim gru-
pama oblika, dok kod gruboga oblika dobivamo nove invarijante
koje označujemo sa π̌∗d∗

k (X, x0). Dokazujemo i neka važna svoj-
stva grupa π̌∗d∗

k (X, x0) i navodimo nekoliko zanimljivih primjera.
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