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Abstract 

Within this study we use a few computational tools for predicting absorption, distribution, metabolism, 
excretion and toxicity (ADME-Tox), pharmacokinetics profiles, toxic/adverse effects, carcinogenicity, 
cardiotoxicity and endocrine disruption of some of low molecular weight water soluble derivatives of 
chitosan that are used in wound healing. Investigated compounds do not possess drug-like properties, their 
pharmacokinetics profiles reveal poor gastrointestinal absorption and low skin penetration. Chitosan 
derivatives cannot pass the blood-brain barrier and they are not able to inhibit the enzymes of the 
cytochrome P450 that are involved in the metabolism of xenobiotics. They do not reflect carcinogenicity 
and cardiotoxicity and reveal only a low probability to be endocrine disruptors. The main side effects in 
humans of the investigated compounds are: weight loss, acidosis, gastrointestinal toxicity, respiratory 
failure. This information is especially important for professional exposure and accidental contamination 
with these compounds.  
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Introduction 

Chitosan is a cationic polysaccharide obtained from chitin and composed by glucosamine and N-acetyl 

glucosamine units, via β-(1,4) linkages. It differs from chitin by having free amino groups. Chitosan is 

considered to have favourable biological properties revealing nontoxicity, mucoadhesivity, biocompatibility 

and biodegradability, but it is only soluble in acidic environments [1-3]. Water soluble derivatives of 

chitosan (WSDC) are considered to have the similar favourable properties with chitosan, but they can be 

dissolved in aqueous media. WSDC are interesting biomaterials with numerous applications in 

bioengineering and biopharmaceutical fields [4], their preparation being one of the most commonly used 

chemical modifications of chitosan for biomedical purposes. As pharmaceutical applications, literature data 

reveal that chitosan and WSDC are used as carriers for radioactive elements, carriers for drug delivery and 

release systems and they have antimicrobial properties [2]. Some WSDC are used to accelerate wound 

healing [5]. Despite literature data revealing their use in biomedical applications, chitosan and its water 

soluble derivatives are not approved by the US Food and Drug Administration (FDA) for drug delivery, they 
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are only approved to be used for wound healing [6] and as dietary additives in Japan, Italy and Finland [7]. 

There are limited data in specific literature concerning the effects of chitosan and chitosan derivatives 

on humans, most in vivo data being obtained from studies performed on animals, usually rodents [3]. The 

aim of this study is to predict the ADME-Tox profiles, pharmacokinetics and toxic/adverse effects of some 

low molecular weight WSDC that can be used for wound healing and to compare them with those of 

deacetylated chitosan and partially deacetylated chitosan.  

Methodology  

In vitro studies revealed that chitosan and some of its water soluble derivatives have antifungal activity 

and may be used for wound healing purposes [5, 8-11]. According to these findings, we considered in this 

study 14 low molecular weight WSDC known to be useful for wound healing. In addition, for comparison 

purposes, we consider deacetylated chitosan and partially deacetylated chitosan, all investigated 

compounds being presented in Table 1. Their simplified molecular-input line-entry system (SMILES) 

structures were obtained using ACD/ChemSketch [12] and are used for further predictions. When the 

structural data files (SDF) of compounds are needed for predictions, the online translation of SMILES to SDF 

files is used [13]. 

Table 1. Molecules of WSCD considered in this study 

Compound common name SMILES 

Deacetylated chitosan (2 units) O[C@H]2C(O[C@@H]1OC(CO)[C@@H](O)[C@H](O)C1N)[C@H](CO)OC(
O)C2N 

Partially deacetylated chitosan  
(2 units) 

CC(=O)NC2C(O)[C@H](O[C@@H]1OC(CO)[C@@H](O)[C@H](O)C1N)C(C
O)O[C@H]2O 

N-carboxymethyl chitosan  O[C@@H]1OC(CO)[C@@H](O)[C@H](O)C1NCC(=O)O 

O-carboxymethyl chitosan  OC1[C@H](O)C(COCC(=O)O)O[C@@H](O)C1N 

N,N-carboxymethyl chitosan  O[C@@H]1OC(CO)[C@@H](O)[C@H](O)C1N(CC(=O)O)CC(=O)O 

N,O-carboxymethyl chitosan  O[C@@H]1OC(COCC(=O)O)[C@@H](O)C(O)C1NCC(=O)O 

N,N,O-carboxymethyl chitosan  O[C@@H]1OC(COCC(=O)O)[C@@H](O)[C@H](O)C1N(CC(=O)O)CC(=O)O 

N,N,N -trimethyl-chitosan  C[N+](C)(C)C2[C@@H](O)[C@H](O)C(CO)O[C@H]2O[C@@H]1C(CO)O[C
@@H](O)C(N)C1O 

Chitosan-lactate O[C@@H]1OC(CO)[C@@H](O)[C@H](O)C1NC(=O)C(C)O 

Hydroxyethyl chitosan CC(=O)NC2C(O)[C@H](O[C@@H]1OC(CO)[C@@H](O)[C@H](O)C1NCCO)
C(COCCO)O[C@H]2O 

Hydroxypropyl chitosan CC(=O)NC2C(O)[C@H](O[C@@H]1OC(CO)[C@@H](O)[C@H](O)C1NCC(C
)O)C(COCC(C)O)O[C@H]2O 

Dihydroxypropyl chitosan  CC(O)CN(CC(C)O)C2[C@@H](O)[C@H](O)C(CO)O[C@H]2O[C@@H]1C(C
O)O[C@@H](O)C(NC(C)=O)C1O 

N-(2-hydroxy)propyl-3-
trimethylammonium chitosan 

C[N+](C)(C)CC(O)CNC2[C@@H](O)[C@H](O)C(CO)O[C@H]2O[C@@H]1C(
CO)O[C@@H](O)C(NC(C)=O)C1O 

O-(2-hydroxy)propyl-3-
trimethylammonium chitosan 

C[N+](C)(C)CC(O)COCC2O[C@@H](O)C(NC(C)=O)C(O)[C@@H]2O[C@@H
]1OC(CO)[C@@H](O)[C@H](O)C1N 

N-(4-carboxybutyroyl) chitosan CC(=O)NC2C(O)[C@H](O[C@@H]1OC(CO)[C@@H](O)[C@H](O)C1NC(=O
)CCC)C(CO)O[C@H]2O 

N-trimethyl chitosan  CC(=O)NC2C(O)[C@H](O[C@@H]1OC(CO)[C@@H](O)[C@H](O)C1[N+](C
)(C)C)C(CO)O[C@H]2O 

For the compounds considered in this study we use the following computational tools: (i) SwissADME 

[14] and FAFDrugs [15, 16] to assess their pharmacokinetics and to predict their ADME-Tox profiles, (ii) 

PASS online [17] for envisaging their toxic/side effects, (iii) CarcinoPred-EL [18] to predict carcinogenicity, 

Pred-hERG4.0 [19] to assess cardiotoxicity and ENDOCRINE DISRUPTOME [20] to evaluate their endocrine 

disruption potential. These tools have been selected among the numerous computational utilities destined 
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to predict the ADME-Tox profile and pharmacokinetics because of their continuous update, accessibility by 

free-login on the websites and of their robustness, accompanied by easy inputs and interpretations.  

SwissADME is a free available on-line computational tool allowing online computation of the 

physicochemical properties of one or multiple molecules and prediction of pharmacokinetics, drug-likeness 

and medicinal chemistry friendliness [14]. It computes for every molecule: the chemical structure, 

physicochemical properties (such as molecular weight, topological polar surface area considering 

phosphorous and sulphur as polar atoms, molar refractivity, etc), lipophilicity, water solubility, 

bioavailability radar, pharmacokinetics, the skin permeability coefficient, drug-likeness and medicinal 

chemistry. Lipophilicity is expressed by the partition coefficient between n-octanol and water (log Po/w) 

which is computed under SwissADME tool by implementing five different methods based on distinct 

approaches and displaying both the values obtained using these methods and a consensus log Po/w as the 

arithmetic mean of the predicted values. Concerning the skin permeability coefficient, it is expressed in log 

units and a more negative log Kp value corresponds to a less skin permeant molecule. As an example, the 

skin permeability coefficient of diclofenac (that is known to have a good skin permeability) is predicted as 

log Kp = -4.96 cm/s and those of ouabain (that is not able to penetrate the skin) is predicted as  

log Kp = -10.94 cm/s [21]. When displaying the bioavailability radar, six physicochemical properties are 

taken into account: size, polarity, lipophilicity, solubility, flexibility and saturation. Concerning the 

pharmacokinetics, drug-likeness and medicinal chemistry predictions, the SwissADME classifiers reveal a 

similar accuracy of prediction as the other tools, demonstrating strong correlation between predicted and 

experimental values for molecules belonging to the training sets [14].  

FADrugs is another free available online computational toll allowing analysing or filtering of molecules 

with eight predefined physicochemical filters based on several simple ADME-Tox rules [15, 16]. This tool 

allows the following procedures: (i) a data curation stage by desalting molecules and removing large 

molecules and compounds containing some types of inorganic atoms or duplicates, (ii) the computation of 

several physicochemical properties of molecules and their filtering considering several ADME-Tox rules, (iii) 

the detection of potential toxic groups, aggregators and PAINS [15, 16]. FAFDrugs tool has been validated 

by using a list of 40 documented toxicophores and a list of 778 annotated oral drugs used in 19 therapeutic 

areas. An alert was detected in 36 among the 40 toxicophores with 100 % efficacy with regard to the 

nature of the alerts and among the 778 drugs, 81 % satisfied the rules [15, 16].  

Prediction of Activity Spectra of Substances (PASS) is a computational tool allowing prediction of 

biological activity and/or toxic and side effects of a chemical compound starting from its structural formula, 

the mean accuracy of prediction being about 90 % [17]. PASS algorithm estimates the probability that the 

investigated compound belongs to a particular class of active compounds (Pa) or inactive compounds (Pi). 

The value of Pa reveals the similarity of the molecule under investigation with the structures of those 

molecules within the training set which are the most typical in a subset of “actives”. Correspondingly, Pi 

reflects the similarity of the investigated compound with the molecules within the training set that belongs 

to the subset of “inactive”.  The two probabilities values (Pa and Pi) vary from 0 to 1 and are independent. 

Only those activities with Pa > Pi are considered as promising for a particular compound and a good 

accuracy of prediction is obtained when Pa > 0.7 [17].  

CarcinoPred-EL is a free prediction online server based on twelve different molecular fingerprints and 

ensemble machine learning methods allowing identification of the structural features related to 

carcinogenic effects of organic compounds [18]. It uses 1003 compounds with known carcinogenicity 

against rats (494 carcinogens and 509 non-carcinogens) that are found in the Carcinogenic Potency 
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Database [22] as the training dataset to develop models for predicting the carcinogenicity and an external 

validation dataset of 40 compounds (23 carcinogens and 17 non-carcinogens) from the ISSCAN database 

[23] that do not duplicate the training dataset and the accuracy of prediction is about 70 %.  

Pred-hERG is a free accessible web tool that builds predictive QSAR (Quantitative Structure Activity 

Relationship) models of hERG K+ channel blockage. The predictions are built using the largest free available 

dataset of structurally diverse compound with 16932 associated bioactivity records for the hERG liability 

that are contained in the ChEMBL database [24] with an accuracy up to 89 % [19].  

ENDOCRINE DISRUPTOME is a free web service able to assess the endocrine disruption potential of a 

chemical compound by using the molecular docking method based on AutoDock Vina algorithm [25]. 

Investigated compound is docked to 18 crystallographic structures available in the Protein Data Bank [26] 

for 14 distinct human nuclear receptors: androgen receptor; estrogen receptors α and β; glucocorticoid 

receptor; liver X receptors α and β; mineralocorticoid receptor; peroxisome proliferator activated 

receptors α, β/δ, and γ; progesterone receptor; retinoid X receptor α; thyroid receptors α and β [20]. The 

service was validated on small drug-like molecules with molecular weight under 600.  Results furnished by 

ENDOCRINE DISRUPTOME are dived in 4 classes based on three thresholds of sensitivity (SE) that are set 

per structure and are used to obtain the docking scores: one class with high probability of binding (SE < 

0.25), two classes with medium probability of binding (0.25 < SE < 0.50 and 0.50 < SE < 0.75) and one class 

with low probability of binding. (SE > 0.75) [20].  

Results and Discussion 

ADME-Tox profiles generated using the SwissADME tool and the drug-like and respiratory filters of 

implemented under FAFDrugs tool reflect that compounds considered in this study do not possess drug-

like characteristics, some of their physicochemical properties (partition coefficient – log P, number of 

hydrogen bonds donors - HBD, total number of hydrogen bonds donors and acceptors – HBD_HBA, 

topological polar surface area - tPSA) being outside the permitted limits for drugs (Figures 1 and 2), and 

such as violating many rules (Table 2).  

Figures 1a and 1b illustrate the use of FAFDrugs tool to obtain the positioning of the physicochemical 

properties of N-carboxymethyl chitosan (CMC) (a) and N,N,N-trimethyl chitosan (TMC) (b) respectively by 

compassion to the drug-like properties. Figures 2a and 2b show the positioning of the physicochemical 

properties of CMC (a) and TMC (b) respectively when the respiratory filter is applied under FAFDrugs tool.   

  

 Figure 1. Radar pictures of the positioning of the physicochemical properties of investigated compounds 
(dark blue line) by comparison to the properties corresponding to drug-like molecules (light blue region) (a) N-

carboxymethyl chitosan, (b) N,N,N-trimethyl-chitosan. 

(a) (b) 
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 Figure 2. Radar pictures of the positioning of the physicochemical properties of investigated compounds 

(dark blue line) by comparison to the properties corresponding to molecules that can be used as respiratory 
drugs (light blue region) (a) N-carboxymethyl chitosan, (b) N,N,N-trimethyl-chitosan. 

Table 2. Druglikeness of the WSCD considered in this study  

Compound Number of violations Lilly 
MedChem 

rules 

Bioavailability 
score  Lipinski Ghose 

(Bayer) 
Veber Egan Muege 

Deacetylated chitosan  
(2 units) 

2 1 1 1 4 Pass 0.17 

Partially deacetylated 
chitosan (2 units) 

2 3 1 1 4 Pass 0.17 

N-carboxymethyl chitosan 1 1 0 1 2 Pass 0.55 

O-carboxymethyl chitosan  0 1 1 1 1 Pass 0.55 

N,N-carboxymethyl 
chitosan  

1 1 1 1 3 Pass 0.11 

N,O-carboxymethyl 
chitosan  

1 1 1 1 3 Pass 0.11 

N,N,O-carboxymethyl 
chitosan  

2 1 1 1 4 Do not pass 0.11 

N,N,N-trimethyl-chitosan 1 1 1 1 3 Pass 0.55 

Chitosan-lactate 1 1 0 1 1 Pass 0.55 

Hydroxyethyl chitosan 2 1 2 1 4 Pass 0.17 

Hydroxypropyl chitosan 2 3 2 1 4 Pass 0.17 

Dihydroxypropyl chitosan  2 3 2 1 4 Pass 0.17 

N-(2-hydroxy)propyl-3-
trimethylammonium 
chitosan 

2 3 2 1 4 Do not pass 0.17 

O-(2-hydroxy)propyl-3-
trimethylammonium 
chitosan 

2 3 2 1 4 Do not pass 0.17 

N-(4-carboxybutyroyl) 
chitosan 

2 1 1 1 4 Pass 0.17 

N-trimethyl chitosan  2 1 1 1 3 Do not pass 0.17 

With the exception of N-carboxymethyl chitosan, O-carboxymethyl chitosan and N,N,N-trimethyl-

chitosan, chitosan and the other WSDC reveal a low oral bioavailability. From the point of view of safety, 

FAFDrugs tool exposes that all these compounds reflect no toxicity, but some of them are able to induce 

phospholipidosis.  It is not an unexpected result, as it is generally recognized that phospholipidosis is a 

response to cells exposed to cationic amphiphilic substances [27]. 

Pharmacokinetics of investigated compounds has been obtained using SwissADME tool and is revealed 

in Table 3. The results presented in Table 3 indicate that all investigated compounds present a low 

gastrointestinal absorption, low skin permeation and they are not able to inhibit any of the cytochromes 

P450 (CYP) involved in metabolism of xenobiotics. These compounds are predicted to be substrates for  

(a) (b) 
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P-gp, another pharmacokinetics-relevant protein, emphasizing their active efflux through biological 

membranes. 

Table 3. Pharmacokinetics of water soluble chitosan derivatives: GI- gastrointestinal absorption, BBB – blood brain 
barrier penetration, P-gp – substrate of the P-gp protein, CYP- cytochrome P450, Log Kp –skin permeation coefficient 

Compound GI BBB P-gp CYP1A2 CYP2D6 CYP2C9 CYP2C19 CYP3A
4 

Log Kp 
(cm/s) 

Deacetylated chitosan  low no yes no no no no no -12.10 

Partially deacetylated 
chitosan  

low no yes no no no no no -12.18 

O-carboxymethyl 
chitosan  

low no yes no no no no no -11.69 

N,N-carboxymethyl 
chitosan  

low no yes no no no no no -12.08 

N,O-carboxymethyl 
chitosan  

low no yes no no no no no -11.96 

N,N,O-carboxymethyl 
chitosan  

low no yes no no no no no -12.27 

N-carboxymethyl 
chitosan 

low no yes no no no no no -11.77 

N,N,N-trimethyl-
chitosan 

low no yes no no no no no -11.66 

Chitosan-lactate low no yes no no no no no -12.27 

Hydroxyethyl chitosan low no yes no no no no no -12.94 

Hydroxypropyl 
chitosan 

low no yes no no no no no -12.50 

Dihydroxypropyl 
chitosan  

low no yes no no no no no -12.55 

N-(2-hydroxy)propyl-3-
trimethylammonium 
chitosan 

low no yes no no no no no -12.92 

O-(2-hydroxy)propyl-3-
trimethylammonium 
chitosan 

low no yes no no no no no -12.92 

N-(4-carboxybutyroyl) 
chitosan 

low no yes no no no no no -11.94 

N-trimethyl chitosan  low no yes no no no no no -11.74 

Results concerning side/toxic effects of compounds considered in this study were obtained using PASS 

online and are presented in Table 4. When considering the predictions made by PASS online tool, we only 

took into account those results with the probability of a compound to be active higher than 0.9. These 

results illustrate that WSDC reflect fewer and less important side/toxic effects than deacetylated and 

partially deacetylated chitosan. 

CarcinoPred-EL tool reflects that all considered compounds belong to the non-carcinogen class of 

substances. Pred-hERG results also indicate that the investigated compounds are non-blockers for the 

hERG K+ channels and do not reflect cardiotoxicity.  

ENDOCRINE DISRUPTOME tool emphasizes that WSCD considered in this study have a low inhibitory 

potential of endocrine system-specific proteins. 
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Table 4. Toxic effects of compounds considered in this study 

Compound Toxic effects 

Deacetylated chitosan - 2 
units 

weight loss, acidosis, nausea, gastrointestinal toxicity, hematotoxicy, 
respiratory failure,  reproductive dysfunction, neurotoxicity 

Partially deacetylated 
chitosan -  2 units 

weight loss, acidosis, nausea, gastrointestinal toxicity, nephrotoxicity, 
hematotoxicity, thrombocytopenia, pain, respiratory failure, cyanosis, 
necrosis, reproductive dysfunction, neurotoxicity 

O-carboxymethyl chitosan 
(1 unit) 

Pa<0.9 

N,N-carboxymethyl 
chitosan (1 unit) 

Pa<0.9 

N,O-carboxymethyl 
chitosan (1 unit) 

Pa<0.9 

N,N,O-carboxymethyl 
chitosan  

Pa<0.9 

N-carboxymethyl chitosan weight loss, acidosis, respiratory failure, inflammation 

N,N,N-trimethyl-chitosan weight loss, acidosis, respiratory failure, gastrointestinal toxicity 

Chitosan-lactate acidosis, weight loss, nausea, hematotoxicity, gastrointestinal toxicity, 
hyperglycemic, respiratory failure,  cyanoses, leukopenia 

Hydroxyethyl chitosan hematotoxicity, nephrotoxicity, respiratory failure, acidosis, 
thrombocytopenia, allergic dermatitis,  gastrointestinal toxicity, nausea, 
asthma, necrosis, cyanosis, leukopenia, neurotoxicity 

Hydroxypropyl chitosan hematotoxicity, acidosis, nausea, gastrointestinal toxicity, dermatitis,  
nephrotoxicity 

Dihydroxypropyl chitosan  acidosis, nausea, gastrointestinal toxicity, respiratory failure 

N-(2-hydroxy)propyl-3-
trimethylammonium 
chitosan 

N/A 

O-(2-hydroxy)propyl-3-
trimethylammonium 
chitosan 

N/A 

N-(4-carboxybutyroyl) 
chitosan 

weight loss, acidosis, hematotoxicity, nausea, gastrointestinal toxicity, 
neurotoxicity, respiratory failure 

N-trimethyl chitosan  N/A 

 Conclusions 

As there are limited experimental in vivo studies concerning the pharmacological and toxicological 

effects of chitosan and its WSD on humans, computational predictions of their pharmacokinetics and 

adverse effects may provide useful information. Chitosan and its derivatives considered in this study reflect 

low skin permeability and low inhibitory potential for the proteins specific to the endocrine system. They 

are not able to penetrate the blood brain barrier and to affect the central nervous system and they are not 

predicted to have an inhibitory potential for the enzymes of the cytochrome P450 involved in drugs and 

other xenobiotics metabolism. They are predicted to be substrates for the P-gp protein and it illustrate that 

their systemic exposure could be reduced. By comparison to chitosan and deacetylated chitosan, some 

WSDC show good oral bioavailability. Furthermore, the investigated compounds do not reveal carcinogenic 

potential and cardiac toxicity, but they are predicted to induce phospholipidosis and to have some adverse 

effects: weight loss, acidosis, gastrointestinal toxicity, respiratory failure. Some of the predicted 

pharmacological and toxicological profiles of the considered WSDC are in good agreement with a few 

experimental studies revealing that WSDC have no or low cytotoxicity [28, 29], no genotoxicity [28], have 

fat- and cholesterol-binding capacities producing weight loss [30]. Their side effects increase with the 

molecular weight and degree of deacetylation [31]. This agreement strengthens the outcomes of this study 

and illustrates the utility of the methods.  
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To the best of our knowledge, this is a first study dealing with the ADME-Tox properties of chitosan and 

some of its water soluble derivatives that are used for wound healing. Chitosan and its water-soluble 

derivatives are approved by the US Food and Drug Administration only to be used for wound healing. As 

they reflect low skin penetration, people being treated with these compounds reveal only a low degree of 

exposure. The obtained information is important especially for people manufacturing and handling these 

compounds being occupationally exposed to these chemicals.  
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