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Existence and behaviour of some radial solutions of
a semilinear elliptic equation with a gradient-term*

Bo0Z0 VRDOLJAKT

Abstract. In this paper we study the existence, behaviour and
approzimation of some positive radial solutions u (|z|) of the equation
Au+ 2aVu+uP — Mt =0, 2 € R" V|z| > a > 0. The errors of the
approximations for solution u and the first derivative v’ are defined by
the functions which can be sufficiently small ¥V |x| > a.
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1. Introduction
Let us consider the equation
1
Au + §xVu+up—)\uq:0, z € R", (1)

where A € R, p > 1 and n > 2. Since we are interested in radial solutions u =
u(r), r = |z|, we shall study the ordinary differential equation (" = d/dr)

~1
u”+<n +g)“/+up—>\uq=07 r>a>0. (2)
T

Many authors have studied the equation (2). For example, in [2] the equation (2)
is considered and the existence of a positive radial solution satisfying the condition

T (T ) o

2
A=0, 1<p<i and n > 3.
n—2

is proved for

In this paper we shall establish the existence of some positive solutions of (2)
satisfying condition (3) and their approximation for every r > a.

*This paper was presented at the Special Section: Appl. Math. Comput. at the 7t" International
Conference on OR, Roving, 1998.
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2. The main results

Theorem 1. Let a,n,s € Ry = (0,00), A =0,

p>1+2 0<s<2, (4)
n
1 p 5—2 s
- [2(20)" 4+ 4naa®?] < n < aa®, (5)
s
a>1 and sa®>4na® 244 (2a)"". (6)

Then the equation (2) (A = 0) has at least one positive solution u (r) satisfying the
conditions

r? » 2
u(r) —ar”"exp (Z) ‘ < nr~ "% exp <Z> ) (7)

1 n r? 1 n+s . r?
u (r)+a (5 + 7"_2) " exp (_Z)‘ < (5 + 3 ) P~ exp (_Z) (8)
Vr > a.

Theorem 2. Let (4), (5) and (6) hold true, a,n,s € Ry,

S sn q
>14+—-, 0<A<—(2 .
g1+, < 5 (20)

Then the equation (2) has at least one positive solution u (1) satisfying the conditions
(7) and (8) Vr > a.
Theorems 1 and 2 can be generalised. Let ¢ € C? (Ry,R,) and

I n—1 r ,

Theorem 3. Let A\=0, p,p € C? (Ry,Ry) such that

p(r)>p(r), p(r)<0 Vr>a, 9)
w(r)—0 and p(r) -0 as r— oco. (10)
If the functions ¢ and p satisfy the conditions
H(p)+H(p)+(p—pP >0 and

~H(p)+H(p)—(p+p)’ >0 Vr>a,

then the equation (2) (A =0) has at least one positive solution u (r) satisfying the
conditions

lu(r) =@ (r)f <p(r) and (11)
W' (r) =" (M| < =p'(r) Vrza (12)

Theorem 4. Let p,p € C?(Ry,Ry), such that the conditions (9) and (10)
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hold true. If the functions ¢ and p satisfy the conditions
H(p)+H(p)+(p—p)’ = Ap+p)?>0 and

—H(p)+H(p)—(p+p)’ +A(e—p)?>0 Vr>a,

then the equation (2) has at least one positive solution u () satisfying the conditions
(11) and (12).

3. Proofs of the theorems
We shall study the equation (2) by means of the equivalent system

u' (r) =wv,

v’(r)<”1+g)vu”+kuq, (13)

r=1 r>a.

According to known theorems, the Cauchy problem for the system (13) has the
unique solution in =Ry x R x Ry.

Let us consider the behaviour of integral curves (u(r),v(r),r) of (13) with
respect to the set

w={(u,v,r) EQ:|lu—¢|<p, [v—y¢'|<=p,r>a},

where ¢, p € C? (R4, R,) such that the conditions (9) and (10) hold true.
The boundary surfaces of w are

Or,

}
0},1:1,2,

— {T €w:® = (—1)"[u—;(r)

U;
v, = {T €W = (—1) [u— i ()]

where
ei(r) =@ )+ (=1)'p(r), %i(r)=¢ (r)—(=1)"p (r).

Let us denote the tangent vector field to an integral curve (u (r),v (r),r) of (13)

by X, i.e.
-1
X:(U7 _(n +C)v—up+)\uq, 1).
r 2

The vectors V®; and VV,;, i = 1, 2, are the external normals on surfaces U; and V;,
respectively:

ve, = (1 0. ()T el),
Ve, = (0, (—1)", (~1)"F 1y (r)), i=1,2.
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By means of scalar products
P = (VCI)“ X) on Uia Qi = (V\Ijia X) on Via i= 172a

we shall establish the behaviour of integral curves of the system (13) with respect
to the set w. For the proof of Theorems 1-4 we shall use the same scalar products
P;, i =1,2. We have

Pl=—v+¢) >+ =00nU\L, Pr=0on L=U;NV,
Po=v—g¢h>1—ph=00nUs\M, Po=0on M =UsNV;

and

!’

u (L) = v(L)=12=¢,

) = v =- (-
) = v ==,
)

n—1 r
von=- (" u - <

"
u

h

= &

r
+§)1/)28011)>90I1,a

u’ (

=

u' (M

For scalar products @;, i = 1,2, first note that (in all theorems)

Qr= (ZL+5)v+ul— i+

T

(=L + 5) 1 + 9 4 u? =

T

v

Qo= — (=2 +5)v—w+ Mt — 4

r

> (2 5) Yo — gy — uP +

r

Moreover, in case of Theorem I we have

2 2
@ (r) =ar "exp (Z) ;op(r)=nrT"Cexp (Z) (16)
and in view of (14) and (15) scalar products @Q; on V; are

1
Q1> [Qna + 57)57"2*5 +n(n+s)(s+2) 7’5] r" " Zexp (TZ) >0 on Vy,

2
Q2 > {% —2nar* % +n(n+s)(s+2) 7"*2} r~ " %exp <%)

2
— (2a)? r~"P exp (%p)

ns 59 2 : 7"2
> {7 —2nar*“4+nn+s)(s+2)r ° — (204)]”} "% exp (Z)

2
> {% —2nar®™? — (204)’)} r "% exp (%) >0 on Vs.
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Consequently, F = U; UUs UV, UV; is a set of points of strict exit of integral curves
of (13) with respect to sets Q and w. Hence, according to the retraction method
(see [5]), the system (13) has at least one solution (u (r),v (r)) which satisfies the
conditions

lu() =) <p), E)—¢ @)|<—=p () Vr>a

That means that Theorem I holds true.
In case of Theorem 2 we have the functions ¢ and p which are defined by (16).
Here, it is sufficient to notice that scalar products @Q); are

[ 1 » 5
Q1 > |2nar "4 57757“_"_‘5} exp (—%) —A(2¢)?

' | )
> 38— A (204)‘1} r " %exp (—%) >0 on Vi,

[ —n—2 1 —n—s TQ p
Q2 > |—2nar + 78T exp |~ | = (2¢)

' )
> 38— 2naa®"? — (204)’;} r " % exp (—%) >0 on V.

In case of the Theorem 3 we have

n—1 r n—1 r
Q > "+ (—+5 )+ (——+5)0 (-0
r 2 r 2
= H(p)+H(p)+(p—p)" >0 onVy,
n—1 r n—1 r
Q2 = so”<—+—>s0’+p”+<—+—>p’(</>+p)p
r 2 r 2
= —H(p)+H(p)—(p+p)">0 onVa.

For the proof of Theorem 4 it is sufficient to notice that

o)

v

n—1 r n—1 r
so”+<—+—> o +p"+ (—+—)p’+(¢p)pk(w+p)q
r 2 r 2
= H(p)+H(p)+(@@—p)"=A(e+p)?>0 onVy,

n—1 r n—1 r
Q > —so”—( - +—)so’+p”+(T+—)p'—(so+p)p+A(<p—p)q

2 2
= —H(p)+H(p)—(p+p)+A(—p)?>0 on Vs

4. Some particular results

Using the obtained theorems (and their proofs), we can give the following particular

results, with
2
o (r) =ar "exp (Z) .
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Corollary 1. If A =0,

1 n 1
p>14+—, a>max4d, —————— >, O0<a< -, 17
{ 1- (2P 2 ()

then the equation (2) (A =0) has at least one positive solution u (r) satisfying the
conditions

2 r?
u(r) —ar " exp (—Z) ‘ < 4ar " lexp (‘Z) ) (18)

1 n r? 1 n+1 r?
l 7 —n+1 _ - -n _
u(r)+a(2+r2)r exp( 4)‘<4a(2+ 3 )r exp( 4) (19)

Vr > a.
Here we have

7,2

p(r) =4ar " Lexp <Z) :

Corollary 2. If A =0,
2 _
p>1+=, a®>>2m+202a)"", a>0, (20)
n

then the equation (2) (A =0) has at least one positive solution u (r) satisfying the
conditions

2 2
u(r) —ar~"exp (—%) ‘ < aa®r " ?exp (—%) ) (21)

1 n r? 1 n+1 r?
/ - —n+1 0 2 (= —n—1 _
u (T)+Oz<2+r2>7’ exp< 4>‘<aa <2+ 2 >r exp( 4) (22)

Vr > a.

Here we have )
p(r) = aa®r "2 exp (—%) . (23)

Corollary 3. Let (17) hold true and
1 -
qu-FE, O<)\<(20¢) .

Then the equation (2) has at least one positive solution u (1) satisfying the conditions
(18) and (19) Vr > a.

Corollary 4. Let (20) hold true and
2 _
qzl—i—ﬁ, 0< A< (2na+n) (2a) 7.

Then the equation (2) has at least one positive solution u (1) satisfying the conditions
(21) and (22) Vr > a.

Remark 1. We can note that the obtained results also contain an answer to
the question on approximation of solutions u (r) whose existence is established. The
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errors of the approzimations for solutions u(r) and the first derivative u' (r) are
defined by the function p (r) which can be sufficiently small Vr > a. For example, in
case of the Corollaries 2 and 4 the function p (r) is defined by (23). This function
tends to zero as v — oo and can be sufficiently small ¥r > a, because parameter
a > 0 can be arbitrarily small.
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