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Symmetric indefinite factorization of quasidefinite

matrices∗

Sanja Singer† and Saša Singer‡

Abstract. Matrices with special structures arise in numerous ap-
plications. In some cases, such as quasidefinite matrices or their gen-
eralizations, we can exploit this special structure. If the matrix H is
quasidefinite, we propose a new variant of the symmetric indefinite fac-
torization. We show that linear system Hz = b, H quasidefinite with a
special structure, can be interpreted as an equilibrium system. So, even
if some blocks in H are ill–conditioned, the important part of solution
vector z can be accurately computed. In the case of a generalized quasi-
definite matrix, we derive bounds on number of its positive and negative
eigenvalues.
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1. Introduction

Quasidefinite matrices have the form

H =
[

A B
B∗ −D

]
, (1)

where A and D are symmetric (Hermitian) and positive definite. This class of
matrices arises in optimization when barrier or interior–point methods are applied
(see [6], [1]).

For example, to solve the damped linear least squares problem

min
x

‖b − Ax‖2
2 + δ2‖x‖2

2,
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one needs to solve the linear system[
A B
Bτ −D

] [
x
y

]
=

[
b
0

]
(2)

with A = D = δI, δ > 0.

2. Factorization of quasidefinite matrices

It is a well known fact that a symmetric indefinite factorization of the matrix (1)
can be computed using only 1 × 1 pivots. Here, we give a new, elementary and
constructive proof of this fact.

Let A = G∗
1G1 and D = G∗

3G3 be Cholesky factorizations of A and D, respec-
tively. The matrix H can be factorized as

H =
[

G∗
1 0

T ∗ G∗
2

] [
Ik 0
0 −I�

] [
G1 T
0 G2

]
=

[
G∗

1G1 G∗
1T

T ∗G1 T ∗T − G∗
2G2

]
(3)

with

T = G−∗
1 B,

G∗
2G2 = D + B∗A−1B = G∗

3G3 + T ∗T. (4)

From (4) we see that the matrix G2 can be computed as the upper triangular
factor from the QR factorization[

T
G3

]
= Q

[
G2

0

]
.

From (3) we can also conclude a somewhat surprising fact that the inertia of
H does not depend on B – the matrix H has exactly k positive and � negative
eigenvalues.

To ensure a numerical stability we usually use Bunch–Kaufman or Bunch–
Parlett pivoting. But, if the matrices A and D are both diagonal, this sparsity
pattern cannot be preserved. In this case, we can use diagonal pivoting in blocks A
and D to reduce the fill–in of nonzero elements.

Another reason why permutations should be avoided lies in parallel computation.
An algorithm which includes pivoting or permutation processes is almost strictly
sequential and cannot take advantage of parallel processing.

But, here lies a danger. If pivots in A are too small compared with elements of
B, big elements can occur in T and G2. Note, if A and D are diagonal, computed
elements of G1 and T have small relative errors. The diagonals of G1 and G3

are computed using only square roots and off diagonal elements of G1 and G3 are
exactly 0. Elements of T are computed from B and G1 using only one division for
each of them. For errors in computed matrices we have

|(δG1)ii| ≤ ε|(G1)ii|,
|(δG3)jj | ≤ ε|(G3)jj |, |(δT )ij | ≤ ε|(T )ij |, 1 ≤ i ≤ k, 1 ≤ j ≤ �, (5)
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where ε is a rounding error of basic floating–point operations.
What happens with the computed G2? Using Higham [2] Lemma 18.8., we may

interpret the computed QR factorization of the matrix

M =

[
T̃

G̃3

]
:=

[
T + δT

G3 + δG3

]
(6)

as an exact factorization of a slightly perturbed matrix M + δM . The backward
error matrix δM satisfies

|δM | ≤ f(m, �) ε m G |M |, (7)

where m = k + � and � are dimensions of M , f(m, �) is a moderate polynomial and
G = m−1eeτ , with e = [1, 1, . . . , 1]τ .

The following theorem can be proved.
Theorem 1. Let H be a quasidefinite matrix with A and D diagonal. Let G2 in

(3) be obtained by QR factorization. Suppose that in the floating point arithmetic
the symmetric indefinite factorization produces matrix

R̃ =

[
G̃1 T̃

0 G̃2

]
.

Then R̃ is an exact factor of the perturbed matrix

H̃ := H + δH =
[

A + δA B + δB
B∗ + δB∗ −D − δD

]
with

|δA| ≤ εpA

|δB| ≤ εp|B|
|δD| ≤ εpD + εm|M∗|G |M |

≤ εpD + (1 + ε)2εm

[ |B∗|G−1
1 G3

]
G

[
G−1

1 |B|
G3

]
,

where m = k + �, εp := 2ε + ε2, εm := εf(m, �)(2m + εf(m, �)m3).
Proof. Multiplication of computed factors gives

H̃ =

[
G̃∗

1G̃1 G̃∗
1T̃

T̃ ∗G̃1 T̃ ∗T̃ − G̃∗
2G̃2

]
.

From (5), it follows that |δG1| ≤ ε|G1|, and

G̃∗
1G̃1 = G∗

1G1 + δG∗
1G1 + G∗

1δG1 + δG∗
1δG1 := A + δA,

or
|δA| ≤ (2ε + ε2)A.
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The bound for |δB| can be obtained similarly, if we notice that |B| = G1|T |.
Finally, from (6) it follows

−D − δD = T̃ ∗T̃ − G̃∗
2G̃2

= T̃ ∗T̃ − (M∗ + δM∗)(M + δM)

= −G̃∗
3G̃3 − δM∗M − M∗δM − δM∗δM.

By definition of G̃3, we have

G̃∗
3G̃3 = D + δG∗

3G3 + G∗
3δG3 + δG∗

3δG3,

and

|δD| ≤ |δG∗
3G3 + G∗

3δG3 + δG∗
3δG3 + δM∗M + M∗δM + δM∗δM |

≤ εpD + |δM∗| |M | + |M∗| |δM | + |δM∗| |δM |.

The first inequality for |δD| follows from (7). The second inequality is a consequence
of

|M | =
[ |T + δT |

|G3 + δG3|
]
≤ (1 + ε)

[ |T |
|G3|

]
= (1 + ε)

[
G−1

1 |B|
G3

]
.

�

It is easy to see that the computed factorization of H is “good” if the elements
of |M∗|G |M | are comparable in magnitude with the elements of D.

3. Inertia of generalized quasidefinite matrices

Higham and Cheng [3] have studied the inertia of matrices arising in optimization.
In view of this, it is an interesting question how the inertia of H depends on off–
diagonal block B, if A and D from (1) are Hermitian, nonsingular, but possibly
indefinite.

Definition 1. A nonsingular matrix H is generalized quasidefinite if the blocks
A and D from (1) are nonsingular and indefinite.

In this case we can give some bounds on the inertia of H . The inertia of H is
an ordered triple (i+, i−, i0), where i+, i− and i0 are numbers of positive, negative
and zero eigenvalues of H , respectively.

Theorem 2. Let H be a generalized quasidefinite matrix. Then

inertia(H) = (i+(H), i−(H), 0)

satisfies

max{i+(A), � − i+(D)} ≤ i+(H) ≤ min{� + i+(A), k + i−(D)},

and
i−(H) = k + � − i+(H).
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Proof. If A and D are nonsingular, they have symmetric indefinite factorizations

A = P ∗
1 G∗

1J1G1P1, D = P ∗
3 G∗

3J3G3P3,

where, for i = 1, 3, Pi are permutation matrices, Ji are signature matrices and Gi

are block upper triangular matrices with diagonal blocks of order 1 or 2.
Let T = J1G

−∗
1 P1B and S = −D − T ∗J1T . The matrix H can be written as

H =
[

P ∗
1 G∗

1 0
T ∗ I�

] [
J1 0
0 S

] [
G1P1 T

0 I�

]
=

[
P ∗

1 G1J1G1P1 P ∗
1 G∗

1J1T
T ∗J1G1P1 T ∗J1T + S

]
.

Since H is nonsingular, we conclude that S is nonsingular too, and it can be
factorized as

S = P ∗
2 G∗

2J2G2P2.

Then
−D = T ∗J1T + S,

or

P ∗
2 G∗

2J2G2P2 = −P ∗
3 G∗

3J3G3P3 − T ∗J1T

= [ P ∗
3 G∗

3 T ∗ ]
[ −J3 0

0 −J1

] [
G3P3

T

]
.

Let inertia(A) = (i+(A), i−(A), 0) and inertia(D) = (i+(D), i−(D), 0). Nonsin-
gularity of S implies that G2 can be obtained by the indefinite QR factorization
of [

G3P3

T

]
where the indefinite inner product is generated by the matrix

J :=
[ −J3 0

0 −J1

]
(see Singer [5]). The inertia of J is equal to

inertia(J) = (i−(A) + i−(D), i+(A) + i+(D), 0).

Construction of the indefinite factorization implies that

inertia(J2) = (i+(J2), � − i+(J2), 0),

and
0 ≤ i+(J2) ≤ i−(A) + i−(D)
0 ≤ � − i+(J2) ≤ i+(A) + i+(D),

or
max{0, � − i+(A) − i+(D)} ≤ i+(J2) ≤ min{�, i−(A) + i−(D)}.

Finally, we conclude that

max{i+(A), � − i+(D)} ≤ i+(H) ≤ min{� + i+(A), k + i−(D)}.
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�

It is easy to show that the bounds from the previous theorem are nontrivial.
Example 1. Let H be a generalized quasidefinite matrix with indefinite blocks

A and D, such that inertia(A) = (1, 7, 0) and inertia(D) = (2, 4, 0). From the
previous theorem we have

max{1, 6 − 2} ≤ i+(H) ≤ min{6 + 1, 8 + 4},
or

4 ≤ i+(H) ≤ 7, i−(H) = 14 − i+(H).

4. Accurate solution of special linear systems

Finally, we consider a special case of quasidefinite linear system (2), when A and
D are diagonal matrices, with emphasis on accurate computation of the y part of
the solution z.

Such a system is a generalization of the so-called equilibrium system[
Â B̂

B̂τ 0

] [
x̂
ŷ

]
=

[
b̂
0

]
, (8)

with diagonal positive definite Â and full column rank B̂.
This system can be written as

Âx̂ + B̂ŷ = b̂

B̂τ x̂ = 0.

The first equation gives x̂ = Â−1 (̂b−B̂ŷ). Substituting this into the second equation
gives

ŷ = (B̂τ Â−1B̂)−1B̂τ Â−1b̂. (9)

So, if we can bound ‖(B̂τ Â−1B̂)−1B̂τ Â−1‖ independent of Â, ŷ cannot be much
larger than b̂, no matter how ill–conditioned Â is.

Vavasis in [7] proves the following result (originally proved independently by
Stewart and Todd).

Theorem 3. Let A denote the set of all k × k positive definite real diagonal
matrices. Let B̂ be a k× � real matrix of rank �. Then there exist constants χB and
χ̄B such that for any Â ∈ A
(a) ‖(B̂τ Â−1B̂)−1B̂τ Â−1‖ ≤ χB, and

(b) ‖B̂(B̂τ Â−1B̂)−1B̂τ Â−1‖ ≤ χ̄B.

Here we assume that the matrix norm ‖ ‖ is induced by some vector norm. �

Our quasidefinite problem[
A B
Bτ −D

] [
x
y

]
=

[
b
0

]
, (10)



Factorization of quasidefinite matrices 25

can be written in a componentwise form as

Ax + By = b

Bτx − Dy = 0.

Similarly, from the first equation we have x = A−1(b − By), and

y = (BτA−1B + D)−1BτA−1b. (11)

If ‖(BτA−1B + D)−1BτA−1‖ is bounded and depends only on B and D, ill–
condition of A should not destroy the components of y. To show this, we transform
the system (10) into the form (8).

Let D = ∆2 be the Cholesky factorization of D. Define

Â =
[

A 0
0 I�

]
, B̂ =

[
B
∆

]
, b̂ =

[
b
0

]
. (12)

It is obvious that if A is positive definite, Â is positive definite too. Also, matrix
B̂ has full column rank because ∆ is a nonsingular diagonal matrix.

The connection between the solution ŷ of linear system (8) and the y–part of
(10) is very simple.

Theorem 4. If matrices Â and B̂ and vector b̂ are defined by (12) then ŷ = y.

Proof. From (9), using (11) and (12), it follows

ŷ =
([

Bτ ∆
] [

A−1 0
0 I�

] [
B
∆

])−1 [
Bτ ∆

] [
A 0
0 I�

]−1 [
b
0

]
= (BτA−1B + D)−1

[
BτA−1 ∆

] [
b
0

]
= (BτA−1B + D)−1BτA−1b = y.

�

Vavasis [7] and Hough and Vavasis [4] have developed algorithms for stable
computation of ŷ component for the linear system (8). Theorem 4 shows that these
algorithms are suitable for quasidefinite linear systems (10) as well.

References

[1] P.E.Gill, M.A. Saunders, J. R. Shinnerl, On the stability of Cholesky
factorization for symmetric quasidefinite systems, SIAM J. Matrix Anal. Appl.
17(1996), 35–46.

[2] N. J.Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadel-
phia, 1996.

[3] N. J.Higham, S.H.Cheng, Modifying the inertia of matrices arising in opti-
mization, Linear Algebra Appl. 275–276(1998), 261–279.



26 Sanja Singer and Saša Singer
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