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VIBRATION OF PLATES 

Summary 

The paper concerns parameter uncertainty effects of rib-stiffeners on the vibro-acoustics of 
thin plate structures. To gain a deep insight into the uncertainty propagation mechanism, a simple 
beam-stiffened plate model is built up in the first instance. By a simple mode-based hybrid 
technique, both the dynamic response of the beam and the statistical energy response of the plate 
can be approximated as functions of the beam natural frequency variations. It is found that if the 
amount of beam uncertainty is small enough (e.g., the generated set of natural frequency 
variations is narrower than the corresponding half-power bandwidth of the resonant modes), the 
real part of the beam mobility tends to be affected relatively little compared to the imaginary part. 
As a result, only the phase part of the dynamic response of the beam tends to be affected while the 
amplitude part can be affected relatively slightly. This is especially true when the beam and the 
plate have a large dynamic mismatch. One can thus deduce that, for stiffened-panel structures, the 
parameter uncertainties of stiffeners tend to affect little the structure-borne-sound transmission 
between ribs and the panel foundations. Numerical investigations of different rib-stiffened plates 
were conducted to validate the main conclusions. 
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1. Introduction 

Mid-frequency vibration is characterized by a simultaneous occurrence of both long- 
and short-wavelength deformations within the same model [1]. Typical examples are beam-
stiffened plates, in which the beam components are usually very stiff with low modal density 
while the plates are very flexible with high modal density. When excited by external 
excitations, the system can exhibit significant mid-frequency behaviour in a quite large 
frequency range. Among the currently existing mid-frequency methods, the hybrid modelling 
technique is among the most widely used and well developed [2]. By describing the stiff 
components deterministically and the flexible ones statistically, the technique can provide a 
good compromise between the computational accuracy and efficiency. In recent years, the 
influence of subsystem parameter uncertainties on the mid-frequency vibration of built-up 
systems has drawn more and more attention from both academics and engineers [3], which 
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has resulted in a number of publications, e.g. [4-5]. However, the current investigations are 
found to be mainly on the uncertainty effects of the flexible components on the vibro-
acoustics of the built-up systems, while the uncertainty effects of the stiff components still 
require more research efforts [6].  

With the above in mind, a simple mode-based hybrid technique is employed to 
investigate the parameter uncertainty effects of rib/stiffeners on the mid-frequency vibro-
acoustics of stiffened plates. A simple beam-stiffened plate model is set up in the first 
instance to gain a deep insight into the uncertainty propagation mechanism via the beam-plate 
coupling. Firstly, the mode-based approach is briefly reviewed in Section 2. Then the beam 
parameter uncertainty effects on both the displacement response of the beam and the power 
transmitted to the plate can be approximated in terms of the beam natural frequency variations 
in Section 3. Numerical examples are provided in Section 4 to illustrate the theoretical 
predictions, with the major conclusions being summarized in Section 5. 

2. Dynamic analysis of a simple generic built-up system 

A simple generic built-up structure is set up in the first instance, as shown in Fig. 1. The 
structure consists of only two subsystems, a  and b  , connected via a set of interface 
coordinates Iσ . If the model is excited by external force loadings at the local coordinates eσ , 
the dynamic response of the built-up system can be predicted in an analytical way by a so-
called “mode-based approach” in [7]. The main theoretical procedure of the approach can be 
briefly summarized as follows. For simplicity, the analysis assumes that both subsystems are 
uniform and homogeneous structures. 

 

a 

b

Interface Iσ

 
Fig. 1  A simple generic built-up structure 

2.1 Dynamic modelling procedure of the mode-based technique 
Step 1: modal analysis of each subsystem 
Fig. 2 shows the force loadings of subsystem a  for instance, where the external force 

loadings are represented by    a i t
eF eeσ   while the resulting interface force distributions at 

Iσ  by    a i t
IF eIσ  . Here is the excitation frequency, and 2 1i   . Because of the linearity 

of the system, i te   in both the excitation and the response terms have been omitted in the 
analysis.  

    a
eF eσ

   a
IF Iσ

a

 
Fig. 2  Dynamic illustration of subsystem a  
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By modal analysis, the displacement of the subsystem in Fig. 2 can be expressed as 
         a a a

n n
n

w wσ σ   (1) 

where nw  is the thn  generalized coordinate of the subsystem and n  is the corresponding 
dimension-normalized mode shape function which satisfies the condition 

           
 a

aa a a a
n nnn

V

dσ σ σ      (2) 

Under the force loading condition shown in Fig. 2,  a
nw can be determined by 

        e, I,
aa a a

n n n nw Y f f   (3) 

where  a
nY  is the thn modal receptance of the subsystem, while  

e,
a
nf  and  

I,
a
nf  are 

the thn modal forces corresponding to    a
eF eσ  and    a

IF Iσ  , respectively, given by 

 
    2 2

1 1

1
a

n a aa n n

Y
m i  

 
       

  (4) 

         
 

e

e, e
a

a a a
n n

V

f F de e eσ σ σ    (5) 

         
 

I

I,
a

a a a
nn

V

f F dI I II σ σ σ   (6) 

In the above equations, am ,  a
n and  a

n  are the mass distribution, the damping loss 

factor, and the thn natural frequency of subsystem a , respectively,  while  
e

aV and 
 
I

aV represent the regions in which the external and interface force loadings act. 
If a truncated set of modes is used, Eq. (3) can then be written in a matrix form as 

        aa a a
n n e,n I,nw Y f f    (7) 

where  a
nw ,  a

e,nf  and  a
I,nf  are the column vectors composed of  a

nw ,  
e,

a
nf  and  

I,
a
nf  , 

respectively, while  a
nY  is a diagonal matrix whose thn diagonal element is  a

nY .  
The above analytical procedures are also applicable to subsystem b  by replacing the 

superscript  a  by  b .  

Step 2: Interface decomposition 
Assume that the interface force and displacement distributions  IF Iσ  and  Iw Iσ  can 

be decomposed in terms of a set of complete basis functions  k Iσ  as 
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   I I, I,k k
k

F f I Iσ σ  (8) 

   I I, I,k k
k

w w I Iσ σ  (9) 

where, I,kf  is the so-called thk generalized interface force, and I,kw  is the thk  generalized 
interface coordinate. Here  k Iσ  is orthogonal such that 

   
I

I, I,k k kk
V

d     I I Iσ σ σ  (10) 

From Eqs. (8) - (9), one can see that the physical coupling DOFs of the built-up 
structure have been transferred into generalized coupling DOFs. This DOF-transferring 
technique is potentially very useful for reducing the number of DOFs involved in the 
calculation by truncating the set of (infinite) basis functions into a convenient finite number.  

Step 3: Impose the interface boundary condition on the set of basis functions 

Let  a
IT  and  b

IT  represent the transformation matrices which relate the local 

coordinates of  a
Iσ ,  b

Iσ  and Iσ  in the forms 

       a a b b
I II I I Iσ T σ σ T σ，   (11) 

Both  a
IT  and  b

IT  are orthogonal matrices which satisfy    T 1a a
I IT T



  and 
   T 1b b
I IT T



 , where the superscript T  represents the matrix transpose. The boundary 
conditions along the interfaces give 

           I I I
a a b bF F FI I Iσ σ σ    (12) 

           I
a ba bw w wI I Iσ σ σ   (13) 

Substituting Eq. (8)-(9) into (12) and (13) gives 
           

 
I

I, I,I,
a

a a a aa T
k n kn

k V

f f d     sI I Iσ T σ σ  (14) 

For the truncated sets of  a
n  and k  , Eq. (14) can be expressed in a matrix form as 

   a a
I,kI,n If α f   (15) 

where I,kf  is the column vector of ,I kf , and  a
Iα  is the n k  matrix, given by 

             

 
I

T
I,I,

a

a a a a aa
n knk

V

d    I I I Iσ T σ σ  (16) 

 a
nw  can now be written, by Eq. (7), as 

        aa a a
n n e,n I,kIw Y f α f   (17) 
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Similarly, for subsystem b , one can derive 

        bb b b
m m e,n I,kIw Y f α f   (18) 

Applying the displacement continuity boundary condition along the interface leads to  
       T Ta ba b

n m I,kI Iα w α w w   (19) 

Combining Eq. (17) - (19), the interface force and displacement distributions can finally 
be obtained in terms of the generalized interface coordinates as 

                  1
T Tb a b a ba a b b

I,k n e,n m e,mI I I I Iw Α Α Α α Y f α Y f


     
 (20) 

                1
T Ta b a ba a b b

I,k n e,n m e,mI I I If Α Α α Y f α Y f


     
 (21) 

where 
               T Ta a a b b ba b

n mI I I I I IΑ α Y α Α α Y α，   (22) 

Physically,  a
IΑ  and  b

IΑ provide the inter-modal couplings between subsystems a  
and b via the interface. 

Step 4: Solve the vibration response of the built-up system 
Following Eq. (20) - (21), the modal coordinates of subsystem a , after coupling with b , 

can then be finally obtained as 

               

             

1
T

1
T        

a a b aa a a a

a a b ba b b

n n n e,nI I I I

n m e,mI I I I

w Y I α Α Α α Y f

Y α Α Α α Y f





        

    

 (23) 

Similar expression can be obtained for  b
mw  (modal coordinates of subsystem b ) by 

replacing the superscript  a  by  b  and  b  by  a  in Eq. (23).  

The power transmitted between the two subsystems can finally be estimated by 
substituting Eq. (20) - (21) into 

*
tr I, I,

1 Re
2 k k

k
P i w f

    
  
  (24) 

The above predicting procedures can be extended to built-up systems with more than 
two subsystem components straightforwardly as long as the corresponding matrices in Eq. (23) 
- (24) are extended properly.  

2.2 Application to a simple beam-stiffened plate model 
Assume that the system consists of a beam attached to a rectangular plate along a line 

parallel to the two opposite edges of the plate.  
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Let the beam modes be described as     bb
n x , and the plate modes along the interface 

line as               I x y

p p p p pp
m m mI Iσ x y    . If it is assumed that the plate has the same 

spatial variations along the coupling line as the beam, one may choose the set of beam modes 
as the interface basis functions, i.e.  

           I,
b pb p

n n nI Ix x x      (25) 

If the beam is assumed to be the source subsystem, by Eq. (16), one may obtain 
   ;b p

pcI Iα I α I   (26) 

where pc  is a constant, given by 

      y
y

p pp
n m

m
c

 
  
 
 
 Iy  (27) 

The modal coordinates of the beam, by Eq. (23), can then be written in a simple form as 

 
   

     
   

p p2
b b b

,b p p2
n n

n n e n
n n n

c Yw Y f
Y c Y




 (28) 

where 
 

     2
2

, ,

1

1y
y y

p
n

p pm
n m n m

Y
i  


 

  (29) 

In this case, the corresponding interface modal force can be determined by 

 
 

     
 

I, ,2

b
b bn

n n e nb p p
n n n

Yf f f
Y c Y

 


 (30) 

And the transmitted power from the beam to the plate, by Eq. (25), can finally be 
estimated as 

 

     
     

2
22

,2
1 Re
2

b
p p bn

tr n n e nb p p
n nn n n

YP i c Y f
Y c Y


    
   

   (31) 

Eq. (28) and (31) explicitly show how the dynamic response of the beam and the power 
transmitted to the plate can be affected by the dynamic properties of the beam and the plate 
subsystems. Therefore, in the following sections, Eq. (28) - (31) will be used to quantify the 
parameter uncertainty effects of the beam on the vibro-acoustics of beam-stiffened plates.  

3. Parameter uncertainty effects of the stiff beam 

3.1 Effects on the displacements of the beam 
Assume that the parameter uncertainties of the stiff subsystem are represented by a set 

of known variations n  around its normal natural frequency set n . For a structure with a 
low mode count, it generally exists n n n n       such that 
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1n

n n


 

  (32) 

In this case, nY  in Eq. (4) can be modified as 

   2 2
1

1 2 1n
n n n n n

Y
i i     

 
   

 (33) 

It is indicated by Eq. (33) that the influence of n  tends to reach its maximum when   

tends to n . Consequently, Eq. (33) can be simply approximated as 

 
1

21
n n

n
n

n

Y Y
i 



 
 

  
    

 (34) 

Combined with Eq. (32), Eq. (34) is further reduced to 

1 ,n n
n n n n n n

n n
Y Y i Y Y Y i Y 

 
 

 
        

 (35) 

Substituting Eq. (35) into Eq. (28), the uncertainty effects of the stiff components on the 
vibrational response of the built-up system can be estimated in terms of  n n   as 

 
 

   
     

 

 

2

,2
1 1

p b
b b b br n n n

n n e n nb p b
nn r n n

c Yw Y i f w i
Y c Y

 
 

              
 (36) 

Equations (35) and (36) have a very similar form which implies that the parameter 
uncertainty of the beam tends to affect the modal displacement of the coupled beam and the 
modal receptance of the uncoupled beam in a similar way. Moreover, the uncertainty effects 
are mainly produced on the imaginary parts as far as the beam input mobility terms are 
concerned. This suggests that the beam parameter uncertainty effects on the dynamic response 
of the beam are mainly on the phase parts, while the magnitudes of the dynamic response of 
the beam tend to be little affected.  

3.2 Effects on the transmitted power to the plate 
Substituting Eq. (35) into Eq. (31) yields 

 

     
   

 
 

 

2
2

2

2 22
,

1 Re
2

          1 1

b
p pn

tr n nb p p
n nn n n

b
b n n

e n trb
nn

YP i c Y
Y c Y

f P



 


     
   

                          

 
 (37) 

Comparing Eq. (37) with Eq. (36), one can deduce that the influence level of the beam 
uncertainty on the transmitted power, and hence the statistical energy response of the plate, 
tends to be relatively much lower than that on the dynamic response of the beam. In case 

n n    , the influence of the beam uncertainty on the statistical response of the plate can 
be ignored. 

TRANSACTIONS OF FAMENA XLI-3 (2017) 7



Y. Wan, P. Zhang, Z. Huang, L. Ji, M. Jokić Parameter Uncertainty Effects of Stiffeners on the  
 Vibration of Plates 

It should be noted here that the parameter uncertainty of the plate was not involved 
during the analysis due to the independence of the beam and the plate parameter uncertainties. 

The validity of the above theoretical conclusions can be illustrated by the numerical 
examples in the section below.  

4. Numerical examples 

4.1 Model descriptions 
A set of numerical beam-stiffened plate models are built up, as shown in Fig. 3, where 

the beam component is assumed to be subjected to external force excitations. Although the 
system contains only a simple beam (stiff component) and a thin plate (flexible component), it 
enables the major features of uncertainty propagation within generic stiffened panel structures 
to be explicitly and efficiently highlighted.  

 
Fig. 3  Numerical model of the beam-stiffened plate 

The beam has a length of 2bL  m with a rectangular cross section of width ( bt ) × 
height ( bh ) = 0.03×0.04 m2. A point, harmonic, unit force is located at a distance of 
0.73m from the right end of the beam. The plate is a rectangle with an area of length ( ,x pL ) × 
width ( ,y pL ) = 2×0.8 m2. Both the beam and the plate are made of steel with Young’s 
modulus of 2.1×1011 N/m2, density of 7850 kg/m3, Poisson's ratio of 0.3 and damping loss 
factor of 0.01.  

The different dynamic mismatch conditions between the beam and the plate are 
achieved by varying the thicknesses of the plate. Two thicknesses are chosen: 5ph  mm and 

2ph  mm, which correspond to two wavelength ratios 2.76b p    and 4.37, respectively. 

Here, by the definition of flexural wavenumber and wavelength, b p b ph h   . 

The beam randomness is simulated by randomly varying its mass density within a range 
of 3% . In this case, the averaged natural frequency variation of the beam is only about a 
third of its averaged modal bandwidth up to the first 20 modes of the beam. Consequently, the 
condition of Eq. (32) can be considered as satisfied.  

The variations of real and imaginary parts of the input mobility of the beam at the 
forcing point as well as the power transmitted to the plate can then be calculated based on 
either analytical or FE modelling, as appropriate.  

In order to show clearly the uncertainty influential levels, a dimensionless variation 
ratio is defined as  0 0E u u u ; here, u  is the response of interest, 0u  is the response 
corresponding to the nominal parametric values of the model, and  E   represents the 
ensemble average. The whole ensemble contains 20 samples whose mass densities are 
randomly distributed from  3%, 3%   around its nominal value. 
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4.2 Analytical modelling  
In the first instance, both the beam and the plate in Fig. 3 are assumed to be simply 

supported so that an analytical modelling technique based on modal summation can be used.  
Figure 4 shows a comparison between the variation ratios of the real and imaginary 

parts of the input mobility of the beam at the forcing point and that of the transmitted power 
from the beam to the plate when the plate thickness is 5 mm. It is shown that, as expected 
from Eq. (36) - (37), the beam parameter uncertainty effects are much more significant on the 
imaginary part of the beam mobility than those on the real part and on the transmitted power, 
especially at many resonances of the coupled system.  
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Fig. 4  Comparison of the variation ratios when the plate thickness is 5 mm 

Figure 5 shows the relevant variation ratios when the plate thickness is 2 mm. When 
compared with the 5mm-plate coupling case, it is found that the beam parameter uncertainty 
influence on the imaginary part of the input mobility of the beam is actually stronger while 
the influence on the real part of beam mobility and the transmitted power is almost unchanged 
in both coupling cases.  
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Fig. 5  Comparison of the variation ratios when the plate thickness is 2 mm. 

In Fig. 5 one can see that the influence level of the parametric uncertainty of the beam 
on the imaginary part of the dynamic response of the beam increases as the large dynamic 
mismatch of the system increases. 
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Figures 4 and 5 are in very good agreement with the theoretical conclusions drawn from 
Section 3 (e.g., Eq. (35)-(37)). However, it should be noted that Eq. (35)-(37) will lose their 
validity for the frequency region where the plate possess very low modal density. In this case, 
the underlying theoretical assumption of Section 3 is not valid. 

4.3 FE Modelling  
To investigate the generic level of the theoretical conclusions drawn in Section 3, both 

the beam and the plate models in Fig. 3 are now assumed to be in fully-fixed boundaries, 
while the material properties of the beam/plate remain unchanged. In this case, FEM 
simulations done by the COMSOL Multiphysics software are employed to quantify the beam 
uncertainty effects by comparing the variation ratios of the different responses of the 
beam/plate system. During the calculation, the plate thickness employed was 5mm, and a 
tetrahedral mesh was used to model the beam and the plate with an element size of 30mm.  
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Fig. 6  Comparison of variation ratios of the real and imaginary parts of the input mobility of the beam at the 

forcing point for fully-fixed boundaries.  

Figure 6 shows a comparison between the variation ratios of the real and imaginary 
parts of the input mobility. It can be seen that, similar to the simply supported boundary cases 
shown in Fig. 4-5, the real part of the input mobility of the beam tends to be affected 
relatively much less than the imaginary part. 
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Fig. 7  Comparison of variation ratios of the magnitude and the phase of the input mobility of the beam at the 

forcing point for fully fixed boundaries.  
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In Fig. 7, the variation ratios of the magnitude and the phase of the input mobility are 
compared. As expected, it is seen from Fig. 7 that the beam parameter uncertainty does show 
relatively much less marked effects on the magnitude of the dynamic response than on the 
phase.  

The above FE modelling results thus suggest that the theoretical derivations in Section 3 
tend to be generic provided there is a relatively big dynamic mismatch between the beam and 
the plate.  

Moreover, one may deduce from Fig. 6-7 that if the receiver structure in a generic 
source/receiver built-up system is relatively much more flexible than the source structure, the 
input power to the source can be simply treated as unaffected by the small parameter 
uncertainties of the source structure. Consequently, the statistical energy response of the 
receiver can be considered as being mainly affected by the parameter uncertainty of the 
receiver itself, while the source uncertainty effect can be neglected. 

5. Concluding remarks 

In the present research, a so-called “mode-based hybrid technique” is employed to 
investigate the parameter uncertainty effects of stiff components on the mid-frequency 
vibration behavior of built-up systems. A simple beam-stiffened plate model is set up; it 
assumes that the beam and the plate have the same spatial variations along the coupling line in 
the first instance. The beam parameter uncertainty effects on both the displacement response 
of the beam and the power transmitted to the plate are then analyzed in terms of the natural 
frequency variations of the stiff beam.  

It is found that if the beam uncertainty is so small that the generated natural frequency 
variations are much narrower than a half power bandwidth of the resonant modes, then, the 
following conclusions can be made.  

(1) The beam uncertainty tends to affect mainly the imaginary part of the beam dynamic 
response, while its real part is affected slightly , i.e., the beam response magnitude part tends 
to be relatively much less affected than its phase part by the beam uncertainties; 

(2) As a result, one can deduce that the input power to the beam, and hence the 
transmitted power to the plate, tends to be affected by the beam uncertainties to a lesser 
degree;  

(3) Consequently, one may expect that the statistical energy response of the plate tends 
to be affected mainly by the parameter uncertainty of the plate itself, while the beam 
uncertainty effect can be neglected. 

The results in the present study can provide a certain level of simplification in 
predicting the structure-borne sound transmission within complex built-up systems when 
component parameter uncertainties need to be taken into account. 
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