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On collocation methods for Volterra integral

equations with delay arguments∗†

Vilmoš Horvat
‡

Abstract. In this paper we construct and give an analysis of the
global convergence and local superconvergence properties of polynomial
collocation solution u ∈ S

(d)
m+d(ZN ) of Volterra integral equations with

constant delay, thus extending the existing theory for d = −1 to the
general case.
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1. Introduction

We consider the numerical discretization of Volterra integral equations with (con-
stant) delay τ > 0,

y(t) = g(t) +
∫ t

0

k1(t, s, y(s))ds +
∫ t−τ

0

k2(t, s, y(s))ds, t ∈ I := [0, T ], (1)

with
y(t) = φ(t), t ∈ [−τ, 0), (2)

by collocation methods in certain polynomial spline spaces. The aim of this paper
is to introduce a new polynomial collocation method to approximate the solution
of (1). It will be assumed that the given functions, φ : [−τ, 0] → R, g : I → R,
k1 : S × R → R (S := {(t, s) : 0 ≤ s ≤ t ≤ T }), and k2 : Sτ × R → R (Sτ :=
I × [−τ, T − τ ]) are at least continuous on their domains. We will not discuss the
”classical” Volterra integral equations. So, assume that k2(t, s, y) does not vanish
identically on its domain. Existence and uniqueness results for (1) can be found in,
for example, [2] and [6].

The exact solution of (1), in the case k2 = 0, has been approximated by the col-
location method in polynomial spline spaces S

(−1)
m−1(ZN ) (see [3], [4]) and S

(d)
m+d(ZN )

for d > −1 (see [7], [8]). Details of the notation are given in §2. Recently, the
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collocation solution of (1) has been constructed in the piecewise polynomial space
S

(−1)
m−1(ZN ) (see [5]). The aim of this paper is to construct an approximate solution

of (1) in the polynomial space S
(d)
m+d(ZN ). The approximation u ∈ S

(d)
m+d(ZN ) will

be determined by collocation. The attainable order of global and local convergence
of these methods, both in exact and discretized case, is analysed in detail.

2. Collocation

Let tn = nh (n = 0, ..., N − 1, tN = T ) define a uniform partition for I = [0, T ],
and let ΠN := {t0, ..., tN}, σ0 := [t0, t1], σn := (tn, tn+1] (1 ≤ n ≤ N −1). The mesh
ΠN is constrained in the following sense:

h =
τ

r
for some r ∈ N. (3)

With a given mesh ΠN we associate the set of its interior points, ZN := {tn : n =
1, ..., N − 1}. For a fixed N ≥ 1 and, for given integers d ≥ −1 and m ≥ 1, the
piecewise polynomial space S

(d)
m+d(ZN ) is defined by

S
(d)
m+d(ZN ) := {u : I → R; u|σn =: un ∈ πm+d, u

(ν)
n−1(tn) = u(ν)

n (tn), ν = 0, ..., d}, (4)

where πm+d denotes the set of (real) polynomials of a degree not exceeding m + d.

The dimension of this space is given by dimS
(d)
m+d(ZN ) = Nm+d+1. Let un = u |σn ,

u ∈ S
(d)
m+d(ZN ), for all t ∈ σn we have

un(t) =
d∑

l=0

u
(l)
n−1(tn)

l!
(t − tn)l +

m∑
l=1

an,l(t − tn)d+l, n = 0, ..., N − 1, (5)

where u
(l)
−1(0) = y(l)(0), l = 0, ..., d.

From (5) we see that an element u ∈ S
(d)
m+d(ZN ) is well defined when we know

the coefficients {an,l} for all l = 0, ..., N − 1. In order to compute these coefficients,
we consider the set of collocation parameters {cj}, where 0 ≤ c1 < ... < cm ≤ 1,

and define the set XN := {tn,j}m,N−1
j=1,n=0 of collocation points by

tn,j := tn + cjh j = 1, ..., m; n = 0, ..., N − 1. (6)

The collocation solution u ∈ S
(d)
m+d(ZN ) will be determined by imposing the condi-

tion that u satisfies the integral equation (1) on the finite set XN

u(t) = g(t) +
∫ t

0

k1(t, s, u(s))ds +
∫ t−τ

0

k2(t, s, u(s))ds, with (7)

u(t) = φ(t) on [−τ, 0). (8)

If t = tn,j is such that tn,j − τ (= tn−r,j) < 0 (recall that, by (3), τ = rh = tr),
then (1) becomes

u(t) = g(t)+
∫ t

0

k1(t, s, u(s))ds−Φ(t), t = tn,j , (j = 1, ..., m; n = 0, ..., r−1), (9)
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where

Φ(t) :=
∫ 0

t−τ

k2(t, s, φ(s))ds. (10)

In contrast to classical Volterra integral equations corresponding to k2 = 0, the
occurrence of the term Φ(t) in the collocation equation (9) reveals that, for t =
tn,j < τ , we have to evaluate (or approximate) a functional containing the given
initial function φ(t).

In order to put (7) into a form amenable to numerical computation, let t ∈ σn,
and define

Fn(t) :=
∫ tn

0

k1(t, s, u(s))ds = h

n−1∑
i=0

∫ 1

0

k1(t, ti + vh, u(ti + vh))dv. (11)

Moreover, let

D(t) :=
∫ t−τ

0

k2(t, s, u(s))ds with (12)

D(t) := −Φ(t) if t < τ.

By using (6), equation (7) can be written as

u(tn,j) = g(tn,j) + Fn(tn,j) + D(tn,j) + h

∫ cj

0

k1(tn,j , tn + vh, u(tn + vh))dv, (13)

for j = 1, ..., m.
Consider now (13). Generally, the integrals on the right-hand side including

those in Fn(tn,j) and D(tn,j) cannot be evaluated analytically, but have to be
approximated by suitable quadrature formulae.

Let µ0 and µ1 be given positive integers. Suppose that the quadrature parame-
ters {dl} and {dj,l} satisfy 0 ≤ d1 < ... < dµ1 ≤ 1 and 0 ≤ dj,1 < ... < dj,µ0 ≤ cj

(j = 1, ..., m), respectively. The quadrature weights are then given by

wl :=
∫ 1

0

µ1∏
r=1,r �=l

v − dr

dl − dr
dv, l = 1, ..., µ1 and

wj,l :=
∫ cj

0

µ0∏
r=1,r �=l

v − dj,r

dj,l − dj,r
dv, l = 1, ..., µ0; j = 1, ..., m.

The fully discretized collocation equation corresponding to (13) is thus given by

û(tn,j) = g(tn,j)+F̂n(tn,j)+D̂(tn,j)+h

µ0∑
l=1

wj,lk1(tn,j , tn+dj,lh, û(tn+dj,lh)), (14)

j = 1, ..., m, with

F̂n(tn,j) := h

n−1∑
i=0

µ1∑
l=1

wlk1(tn,j , ti + dlh, û(ti + dlh)), (15)
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and, if n − r ≥ 0, then

D̂n(tn,j) := h

n−r−1∑
i=0

µ1∑
l=1

wlk2(tn,j , ti + dlh, û(ti + dlh)) (16)

+h

µ0∑
l=1

wj,lk2(tn,j , tn−r + dj,lh, û(tn−r + dj,lh)).

If n − r < 0, D̂n(tn,j) is given either by the exact value of −Φ(tn,j) (recall (10)),

D̂n(tn,j) = Dn(tn,j) = −h

∫ 1

cj

k2(tn,j , tn−r + vh, φ(tn−r + vh))dv (17)

−h
−1∑

i=n−r+1

k2(tn,j , ti + vh, φ(ti + vh))dv,

or by a suitable quadrature approximation to −Φ(tn,j),

D̂n(tn,j) = −h

µ1∑
l=1

w̃j,lk2(tn,j , tn−r + ξj,lh, φ(tn−r + ξj,lh)) (18)

−h
−1∑

i=n−r+1

µ1∑
l=1

wlk2(tn,j , ti + dlh, φ(ti + dlh))

where ξj,l := cj + (1 − cj)dl, w̃j,l := (1 − cj)wl (j, l = 1, ..., m).
Since the quadrature error terms will be disregarded, we generate an approximation
û ∈ S

(d)
m+d(ZN ) of the following form:

û(t) = ûn(t) =
d∑

l=0

û
(l)
n−1(tn)

l!
(t − tn)l +

m∑
l=1

ân,l(t − tn)d+l (19)

û
(l)
−1(0) = y(l)(0), l = 0, ..., d for all t ∈ σn, n = 0, ..., N − 1.

Equations (13) and (14) represent for each n = 0, ..., N−1, a recursive system of
m nonlinear algebraic equations with the unknowns {an,r} and {ân,r}, respectively.
Since the solutions of the systems have been found, the values u and û and their
derivatives on σn are determined by (5) and by (19), respectively.

3. Global convergence

Let u ∈ S
(d)
m+d(ZN ) denote the (exact) collocation solution to (1) defined by (7)-(9).

For simplicity of exposition we will focus on the linear version of (1),

y(t) = g(t) +
∫ t

0

K1(t, s)y(s)ds +
∫ t−τ

0

K2(t, s)y(s)ds, t ∈ I, (20)

where K1 ∈ C(S), K2 ∈ C(Sτ ). A comment on the extension of the convergence
results to the nonlinear equation (1) can be found at the end of this section.
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Theorem 1. Assume that the given functions in (20) and (2) satisfy g ∈
Cm+d+1(I), K1 ∈ Cm+d+1(S), K2 ∈ Cm+d+1(Sτ ), φ ∈ Cm+d+1([−τ, 0]), and that
for t ∈ [0, τ ] the integral (10)

Φ(t) :=
∫ 0

t−τ

K2(t, s)φ(s)ds (21)

is known exactly. Then for all sufficiently small h = τ/t (r ∈ N) the constrained
mesh collocation solution u ∈ S

(d)
m+d(ZN ) to (20) satisfies

‖y(k) − u(k)‖∞ ≤ Ckhm+d+1−k, for all k = 0, ..., m + d, (22)

where Ck are positive constants not depending on h. This estimate holds for all
collocation parameters {cj} with 0 ≤ c1 < ... < cm ≤ 1.

Proof. Assume for simplicity, and without any loss of generality, that T = Mτ
for some M ∈ N. In each interval Jµ := (µτ, (µ + 1)τ), the exact solution y of (20)
is m + d + 1 times continuously differentiable. This follows from the smoothness
hypotheses we have imposed on φ, g, K1 and K2, and from the expressions for
y(ν)(t) obtained by successively differentiating (20) with respect to t. From this it
is obvious that both the left and right limits of y(ν)(t) (ν = 0, ..., m + d + 1), as t
tends to µτ , exist and are finite.

We will prove the estimate (22) by induction. For n = 0, 1, ..., N − 1, and all
t = tn + vh ∈ σn (v ∈ (0, 1]), the exact solution of y can be expanded in Taylor
series:

y(tn + vh) =
m+d∑
l=0

y(l)(tn)
l!

vlhl + Rn(v)hm+d+1, where (23)

Rn(v) =
1

(m + d)!

∫ v

0

y(m+d+1)(tn + sh)(v − s)m+dds.

So, by (5) and (23) we have

e(tn + vh) =
d∑

l=0

e
(l)
n−1(tn)

l!
hlvl + hm+d+1

(
m∑

l=1

βn,lv
d+l + Rn(v)

)
, (24)

and

hm+1βn,l =
(

y(d+l)(tn) − an,l

(d + l)!

)
hl (l = 1, ..., m). (25)

As y is the solution of (20), and u ∈ S
(d)
m+d(ZN) satisfies the exact collocation

equation (7)-(9), the collocation error e := y − u satisfies

e(tn,j) =
∫ tn,j

0

K1(tn,j , s)e(s)ds +
∫ tn−r,j

0

K2(tn,j , s)e(s)ds, (26)

j = 1, ..., m (n = 0, ..., N − 1) .
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If tn < τ (= tr), then tn−r,j = tn + cjh − τ ≤ 0. Since u(t) = φ(t) on [−τ, 0),
equation (26) is reduced to

e(tn,j) =
∫ tn,j

0

K1(tn,j , s)e(s)ds (27)

and can be written as

e(tn,j) = h

∫ cj

0

K1(tn,j , tn+ vh)e(tn + vh)dv + h

n−1∑
i=0

K1(tn,j , ti + vh)e(ti+ vh)dv. (28)

If tn ≥ tr, the equation (26) can be written as

e(tn,j) = h

∫ cj

0

K1(tn,j , tn+ vh)e(tn+ vh)dv + h

n−1∑
i=0

∫ 1

0

K1(tn,j , ti+ vh)e(ti+ vh)dv

+h

∫ cj

0

K2(tn,j , tn−r + vh)e(tn−r + vh)dv (29)

+h

n−r−1∑
i=0

∫ 1

0

K2(tn,j , ti + vh)e(ti + vh)dv.

In order to make the following analysis more obvious, let

βn := (βn,1, ..., βn,m)τ , n = 0, ..., N − 1,

q
(1)
n := (q(1)

n,1, ..., q
(1)
n,m)τ , n = 0, ..., r − 1,

q
(2)
n := (q(2)

n,1, ..., q
(2)
n,m)τ , n = r, ..., N − 1,

with
q
(1)
n,j := −Rn(cj) + h

∫ cj

0 K1(tn,j , tn + vh)Rn(v)dv

+h
∑n−1

i=0

∫ 1

0
K1(tn,j , ti + vh)Ri(v)dv

and
q
(2)
n,j := q

(1)
n,j + h

∫ cj

0 K2(tn,j , tn−r + vh)Rn−r(v)dv

+h
∑n−r−1

i=0

∫ 1

0 K2(tn,j , ti + vh)Ri(v)dv.

By using the expression (25) for e, we obtain the following recurrence relation from
(28) and (30) for the vectors βn of the form

(V − hQ(1)
n,n)βn =

⎧⎪⎪⎨
⎪⎪⎩

h
∑n−1

i=0 Q
(1)
n,iβi + r

(1)
n + q

(1)
n , n = 0, ..., r − 1

h
n−1∑
i=0

Q
(1)
n,iβi + h

n−r∑
i=0

Q
(2)
n,iβi + r

(2)
n +q

(2)
n , n = r, ..., N − 1

(30)
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where the square matrices V, W, Q
(1)
n,i, F

(1)
n,i , Q

(2)
n,i, F

(2)
n,i and the vectors r

(1)
n , r

(2)
n are

given by

V := (cd+l
j ), W := (cl

j) (j, l = 1, ..., m),

Q
(1)
n,i :=

{
(
∫ 1

0
K1(tn,j , ti + vh)vd+ldv) if 0 ≤ i ≤ n − 1,

(
∫ cj

0 K1(tn,j , ti + vh)vd+ldv) if i = n (j, l = 1, ..., m),

F
(1)
n,i :=

{
(
∫ 1

0 K1(tn,j , ti + vh)vldv) if 1 ≤ i ≤ n − 1,
(
∫ cj

0 K1(tn,j , ti + vh)vldv) if i = n (j, l = 1, ..., m),

Q
(2)
n,i :=

{
(
∫ 1

0 K2(tn,j , ti + vh)vd+ldv) if 0 ≤ i ≤ n − r − 1,
(
∫ cj

0
K2(tn,j , ti + vh)vd+ldv) if i = n − r (j, l = 1, ..., m),

F
(2)
n,i :=

{
(
∫ 1

0 K2(tn,j , ti + vh)vldv) if 1 ≤ i ≤ n − r − 1,
(
∫ cj

0
K2(tn,j , ti + vh)vldv) if i = n − r (j, l = 1, ..., m),

hpr(1)
n := h

n−1∑
i=1

F
(1)
n,i γi + (hF (1)

n,n − W )γn,

hpr(2)
n := hm+d+1r(1)

n + h
n−r∑
i=1

F
(2)
n,i γi,

with p = m + d + 1 and γi := (γi,1, ..., γi,m)τ , i = 1, ..., n where γi,l := hl e
(l)
i−1(ti)

l! .
For all collocation parameters {cj} with 0 ≤ c1 < ... < cm ≤ 1, V and W are the

Vandermonde matrices and thus nonsingular. Let K̄1 := max{|K1(t, s)| : (t, s) ∈ S}
and K̄2 := max{|K2(t, s)| : (t, s) ∈ Sτ}, since by the assumptions, K1 ∈ C(S) and
K2 ∈ C(Sτ ), thus K̄1 and K̄2 are finite.

For n = 0, by (5) and (27), we obtain:

(V − hQ
(1)
0,0)β0 = q

(1)
0 . (31)

Since V is nonsingular, and by the assumptions of Theorem 1, it follows that there
exists h̄ > 0, such that the matrix V − hQ

(1)
0,0 possesses uniformly bounded inverse

for all h ∈ (0, h̄). Since |R0(v)| ≤ M0 for all v ∈ [0, 1] (M0 > 0 is a finite constant),
we obtain ‖q(1)

0 ‖1 ≤ m(M0 + hM0K̄1) =: q. By using these estimations in (31), we
find:

‖β0‖1 ≤ ‖(V − hQ
(1)
0,0)

−1‖1‖q(1)‖1 ≤ D0q =: B. (32)

Thus, (32) together with (24) proves that

|e(t0 + vh)| ≤ C0h
m+d+1, for all v ∈ [0, 1]. (33)

We take the derivative in relation (25) k times (k = 1, ..., m + d), and use (32) to
obtain

|e(k)(t0 + vh)| ≤ C0,khm+d+1−k, for all v ∈ [0, 1]. (34)

Suppose now that for j = 0, ..., n − 1

|e(k)(tj + vh)| ≤ Cj,khm+d+1−k, for all v ∈ (0, 1], k = 0, . . . , m + d. (35)
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We shall prove that (35) holds for j = n (< r).
Since by the assumption, K1 ∈ C(S), it follows that there exists h̄ > 0, such

that ‖h̄Q
(1)
n,n‖1 < 1, by a standard Neumann series argument, it follows that the

matrix V − hQ
(1)
n,n possesses a uniformly bounded inverse for all h ∈ (0, h̄). We

also note that the matrices F
(1)
n,i , i = 1, ..., n are bounded, so there exists a positive

constant CF such that ‖hF
(1)
n,n −W‖ ≤ CF . By using (35), we get ‖ 1

hm+d+1 γi‖ ≤ gi,
i = 1, . . . , n. Since |Rn(v)| ≤ Mn, for all v ∈ (0, 1] (Mn > 0 is a finite constant), we
obtain

‖q‖1 ≤ m(Mn + nhK̄1Mn) =: q. (36)

By using these estimates, it follows from (33) that

‖βn‖1 ≤ hC0

n−1∑
i=0

‖βi‖1 + C1. (37)

A well known result on discrete Gronwall inequalities (see [3, p.41]) leads to

‖βn‖1 ≤ C1 exp(C0τ) =: B, (38)

(0 ≤ n ≤ r − 1) uniformly as h → 0 (where rh = τ). This by (24) implies that

|e(tn + vh)| ≤ Chm+d+1 for all v ∈ (0, 1]. (39)

We take the derivative in relation (24) k times (k = 1, ..., m+ d) and by using (38),
we obtain

|e(k)(tn + vh)| ≤ Cn,khm+d+1−k for all v ∈ (0, 1]. (40)

Now let tn ≥ tr(= τ), then for n = r, by (32) we obtain

(V − hQ(1)
r,r)βr = h

r−1∑
i=0

Q
(1)
r,i βi + r(1)

r + q(2)
r . (41)

Similarly as in the case tn < tr, by the assumptions of Theorem 1, for all sufficiently
small h > 0, the matrix V − hQ

(1)
r,r is nonsingular and has a uniformly bounded

inverse. Other matrices involved in (41) have bounded norms, so by using these
estimates and (39), the equation (41) yields a discrete Gronwall inequality like (37)
with n = r. Thus, the results on discrete Gronwall inequalities ([3, p.41]) lead to

‖βr‖1 ≤ B. (42)

Thus, (42) with (24) proves that (39) holds for n = r. If we take the derivative in
relation (24) k times (k = 1, .., m+ d), and by using (42), we obtain that (40) holds
for n = r. Suppose now that (40) holds for j = 0, ..., n − 1 (n > r). In complete
analogy with the above results, by the assumptions of Theorem 1 and the induction
argument for all sufficiently small h > 0, the equation (30) yields a discrete Gronwall
inequality

‖βn‖1 ≤ hC0

n−1∑
i=0

‖βi‖1 + hD0

n−r∑
i=0

‖βi‖1 + C1, (43)
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where now r ≤ n ≤ N − 1. The estimates (38) and the results [3, p.41], lead to

‖βn‖1 ≤ B (r ≤ n ≤ N − 1) (44)

uniformly as h → 0 (with Nh = T ). So, by (24) the estimate (39) holds for all
n = r, ..., N − 1. By using the same argument as in (44), the estimate (40) holds for
all n = r, ..., N − 1. Hence, Theorem 1 holds. �

If Φ(t) in (10) cannot be found analytically, it has to be approximated by a
suitable numerical quadrature.

Theorem 2. Let the assumptions of Theorem1 hold, except that the integrals

Φ(t) =
∫ 0

t−τ

K2(t, s)φ(s)ds, t = tn,j (n = 0, ..., r − 1),

are now approximated by quadrature formulas Φ̂(t), with corresponding quadrature
errors E0(t) := Φ(t) − Φ̂(t), such that

|E0(t)| ≤ hq, t = tn,j (0 ≤ n < r), (45)

for some q > 0. Then the collocation solution u ∈ S
(d)
m+d(ZN ) satisfies, for all

sufficiently small h > 0,

‖e(k)‖∞ ≤ Ckhp−k, for all k = 0, . . . , p − 1, (46)

with p := min{m + d + 1, q}, where Ck are finite constants not depending on h.

Proof. Because of (13), we have to calculate the integrals Φ(t) only if tn < tr
(= τ). Thus, if tn ≥ tr, the estimate (22) holds (with k = 0). So, we assume that
0 ≤ n < r. By subtracting (13) from (20) (with t = tn,j), we obtain

e(tn,j) =
∫ tn,j

0

K1(tn,j , s)e(s)ds − (Φ(tn,j) − Φ̂(tn,j)). (47)

Instead of (24), let

e(tn + vh) =
d∑

l=0

e
(l)
n−1(tn)

l!
hlvl + hd+p

m∑
l=1

βn,lv
d+l + hm+d+1Rn(v), with (48)

hpβn,l =
(

y(d+l)(tn) − an,l

(d + l)!

)
hl (l = 1, ..., m), (49)

and with suitable p > 0 to be determined. Substitution of this expression for
the collocation error in the above error equation yields, after division by hp, the
recurrence relation for the vectors βn of the form

(V − hQ(1)
n,n)βn = h

n−1∑
i=0

Q
(1)
n,iβi + r(1)

n + hm+d+1−pq(1)
n − h−pEn

0 , n = 0, ..., r − 1,
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where En
0 := (E0(tn,1), ..., E0(tn,m))τ . Proceding as in the proof of Theorem 1, we

are in a situation in which we may apply the discrete Gronwall inequality, in analogy
to (43),

‖βn‖1 ≤ hC0

n−1∑
i=0

‖βi‖1 + Ĉ1, 0 ≤ n < r,

where Ĉ1 := hm+d+1−pC1 + hq−pQ1. This implies that ‖βn‖1 ≤ Ĉ1 exp(C0τ), 0 ≤
n < r. Hence, ‖βn‖1 will remain uniformly bounded as h → 0 (rh = τ) iff p ≤
min{m + d + 1, q}. Now, we take the derivative in relation (48) k times (k =
1, ..., min{m+d, q−1}), and by using the fact that ‖βn‖1 ≤ B for all n = 0, ..., N−1,
we obtain for p = min{m + d + 1, q}

|e(k)
n (t)| ≤ Cn,khp−k, for all t ∈ σn. (50)

�

The global convergence of the fully discretized collocation method is described
in the following theorem.

Theorem 3. Let the assumptions of Theorem2 hold, and assume that the ap-
proximations Φ̂(t) at t = tn,j (0 ≤ n < r) are given by the interpolatory quadrature
formulas (18). Suppose that the quadrature formulas used in (14)-(16) satisfy:

∫ 1

0

ρ(ti + vh)dv −
µ1∑
l=1

wlρ(ti + dlh) = O(hr1), and, for j = 1, ..., m : (51)

∫ cj

0

ρ(tn + vh)dv −
µ0∑
l=1

wj,lρ(tn + dj,lh) = O(hr0 ). (52)

Then the error ê := y − û associated with the collocation solution û ∈ S
(d)
m+d(ZN )

(defined by (14)-(16), (18) and (19)) satisfies, for all sufficiently small h = τ/r,

‖ê(k)‖∞ ≤ Ckhp−k, for all k = 0, ..., p− 1, (53)

with p := min{m + d + 1, r0 + 1, r1}, where Ck are finite constants not depending
on h.

Proof. Since ‖ê(k)‖∞ ≤ ‖y(k) − u(k)‖∞ + ‖u(k) − û(k)‖∞, and by the statement
(22) of Theorem 1 ‖y(k) − u(k)‖∞ = O(hm+d+1), we have to estimate only ‖u(k) −
û(k)‖∞. Now, by subtracting (19) from (5), it follows that the error function ε :=
u − û can be written for all n = 0, ..., N − 1 in the form

ε(tn + vh) =
d∑

s=0

ε
(s)
n−1(tn)

s!
vshs + hp

m∑
s=1

ηn,sv
d+s, where (54)

hpηn,s := (an,s − ân,s)hd+s, (55)

with p being a suitable positive integer to be determined. Consider the integrals
in the (exact) collocation equation (13) (for the linear case (20)). By using the
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interpolatory quadrature formulas, we have the following error terms:

En,j
i =

∫ 1

0

K1(tn,j , ti+vh)u(ti+vh)dv−
µ1∑

s=1

wsK1(tn,j , ti+dsh)u(ti+dsh), 0 ≤ i < n,

En,j
n =

∫ cj

0

K1(tn,j , tn + vh)u(tn + vh)dv−
µ0∑

s=1

wj,sK1(tn,j , tn + dj,sh)u(tn + dj,sh),

Ēn,j
i =

∫ 1

0

K2(tn,j , ti+vh)u(ti+vh)dv−
µ1∑

s=1

wsK2(tn,j , ti+dsh)u(ti+dsh), 0 ≤ i < n−r,

Ēn,j
n−r =

∫ cj

0

K2(tn,j , tn−r+vh)u(tn−r+vh)dv−
µ0∑

s=1

wj,sK2(tn,j , tn−r+dj,sh)u(tn−r+dj,sh).

If n < r, we approximate the integrals Φ(tn,j) (recall (10)) by quadrature formulas
(18), and have the error term E0 =

∑0
i=n−r+1 Ẽn,j

i . By subtracting (19) from (13),
and by using the above quadrature error terms, we find that

ε(tn,j) = h

µ0∑
s=1

wj,sK1(tn,j , tn + dj,sh)ε(tn + dj,sh) (56)

+h

n−1∑
i=0

µ1∑
s=1

wsK1(tn,j , ti + dsh)ε(ti + dsh)

+h

n∑
i=0

En,j
i + ∆(tn,j), j = 1, ..., m,

where, if n < r, then ∆(tn,j) = E0. If n ≥ r, then

∆(tn,j) = h

µ0∑
s=1

wj,sK2(tn,j , tn−r + dj,sh)ε(tn−r + dj,sh) (57)

+h

n−r−1∑
i=0

µ1∑
s=1

wsK2(tn,j , ti + dsh)ε(ti + dsh) + h

n−r∑
i=0

Ēn,j
i .

Let ηn := (ηn,1, ..., ηn,m)τ , where ηn,l is given by (55). Now, by replacing ε with
(54) in (56) and (57), we obtain analogue recurrence relations for the vectors ηn, as
for βn in the proof of Theorem 1. We obtain

(V − hQ̂(1)
n,n)ηn =

⎧⎨
⎩

h
∑n−1

i=0 Q̂
(1)
n,iηi + r̂

(1)
n + q̂

(1)
n , n = 0, ..., r − 1

h
∑n−1

i=0 Q̂
(1)
n,iηi + h

∑n−r
i=0 Q̂

(2)
n,iηi + r̂

(2)
n + q̂

(2)
n , n = r, ..., N − 1

where the square matrices Q̂
(s)
n,i, F̂

(s)
n,i , (s = 1, 2), are discrete version of matrices

Q
(s)
n,i, F

(s)
n,i , (s = 1, 2) obtained by replacing integrals by quadrature formulas (see
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the proof of Theorem 1). The associated vectors are given by

hpr̂(1)
n := h

n−1∑
i=1

F̂
(1)
n,i γ̂i + (hF̂ (1)

n,n − W )γ̂n, hpr̂(2)
n := hm+d+1r̂(1)

n + h

n−r∑
i=1

F̂
(2)
n,i γ̂i,

hpq̂(1)
n := h

n∑
i=0

En,j
i + hE0, hpq̂(2)

n := h
n∑

i=0

En,j
i + h

n−r∑
i=0

Ēn,j
i ,

and γ̂i := (γ̂i,1, ...., γ̂i,m)τ , i = 1, .., n, where γ̂i,l := hl ε
(l)
i−1
l! .

Now, by using the same technique (an induction for n) as in the proof of The-
orem1 and taking into account the assumptions (51) and (52), it is easy to show
that the norms ‖ηn‖1 satisfy a discrete Gronwall inequality,

‖ηn‖1 ≤ hC0

n−1∑
i=0

‖ηi‖1 + hpC1 for 0 ≤ n < r,

‖ηn‖1 ≤ hD0

n−1∑
i=0

‖ηi‖1 + hD1

n−r∑
i=0

‖ηi‖1 + hpD2 for n ≥ r.

where p = min{r0 + 1, r1}. Hence,

|ηn‖1 ≤ Chp, for all n = 0, ..., N − 1. (58)

Together with (54), the above estimate implies that

|ε(tn + vh)| ≤ Ĉhp, p = min{µ0 + 1, µ1} for all v ∈ (0, 1].

Now, we take the derivative in relation (54) k times (k = 1, ..., p − 1) and by using
(58), we obtain

|ε(k)(tn + vh)| ≤ Ĉkhp−k, for all v ∈ (0, 1] and k = 0, ..., p − 1.

Finally, by using the results of Theorem 1, we obtain

‖ê(k)‖∞ ≤ Ckhp′−k, for all k = 0, ..., p′ − 1 with p′ = min{m + d + 1, p}.
�

We conclude this section with a comment regarding the extension of the results
of Theorems 1 - 3 to the nonlinear delay equation (1). Under the assumption of
the existence of a (unique) solution y(t) on I, the nonlinear analogue of the error
equation (26) is

e(tn,j) =
∫ tn,j

0

{k1(tn,j , s, y(s)) − k1(tn,j , s, u(s))}ds (59)

+
∫ tn−r,j

0

{k2(tn,j , s, y(s)) − k2(tn,j , s, u(s))}ds (j = 1, ..., m).

If the partial derivatives ∂ki(t, s, y)/∂y (i = 1, 2) are continuous and bounded on
S × D and Sτ × Dτ , respectively with D := {y ∈ R : |y − y(s)| < Y, s ∈ I} and
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Dτ := {y ∈ R : |y − y(s)| < Y, s ∈ [−τ, T − τ ]}, for some Y < ∞, and if h > 0 is
sufficiently small (assuring the existence of a unique collocation solution u), then
(59) may again be written in the form (26). The roles of the Ki are now assumed
by

k
(1)
i (t, s) :=

∂ki

∂y
(t, s, zi(s)) (i = 1, 2),

where zi(s) := θiy(s)+ (1− θi)u(s), 0 ≤ θi = θi(s) ≤ 1. Hence, the above proofs are
easily adapted to deal with the nonlinear case (1), and so the convergence results
of Theorems 1 - 3 remain valid for nonlinear delay integral equations.

4. Local superconvergence on Z̄N

The notion of local superconvergence is used when on a set of interior points ZN

(or Z̄N ) the approximate solution has a convergence order greater than the global
one. From Theorem 1 we notice that the only conditions imposed on the collocation
parameters {cj} are that they must be distinct and must belong to (0, 1]. The local
superconvergence on Z̄N is closely connected with the choice of the collocation
parameters and with the relation between their number and the number of the
coefficients of the approximate solution determined from the smooth conditions
(see [5] for delay and [3] for ”classical” Volterra integral equations). Without loss
of generality, we assume that T = tN = Mτ for some M ∈ N.

Theorem 4. Assume that the functions given in (20) and (2) satisfy g ∈
Cm+p(I), K1 ∈ Cm+p(S), K2 ∈ Cm+p(Sτ ), φ ∈ Cm+p([−τ, 0]) for some (given)
integer p with d + 1 < p ≤ m. Suppose that the delay integral Φ(t) (10) can be
evaluated analytically.

If m ≥ d+2, and if the collocation parameters {cj}, with 0 < c1 < ... < cm = 1,
have the ortogonality property

Jk :=
∫ 1

0

sk
m∏

j=1

(s − cj)ds = 0, for k = 0, ..., p − 1; (60)

Jp �= 0.

If h = τ/r is sufficiently small, then the collocation solution u ∈ S
(d)
m+d(ZN ) defined

by (13),(17) is locally superconvergent at the mesh points

max
1≤n≤N

|y(tn) − u(tn)| ≤ Chm+p. (61)

Proof. The collocation equation (7) (applied to the linear delay equation (20))
may be written in the form

u(t) = −δ(t) + g(t) +
∫ t

0

K1(t, s)u(s)ds +
∫ t−τ

0

K2(t, s)u(s)ds, t ∈ I,

where the defect δ vanishes on XN :

δ(tn,j) = 0, j = 1, ..., m; n = 0, ..., N − 1; (62)
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we also have δ(t) = 0 for t < 0. The collocation error e := y − u solves the integral
equation

e(t) = δ(t) +
∫ t

0

K1(t, s)e(s)ds + F (t), t ∈ I, where (63)

F (t) :=
∫ t−τ

0

K2(t, s)e(s)ds if t ∈ [τ, T ]. (64)

For t ∈ [0, τ ], we have F (t) = 0 (by our assumption on Φ(t)), and so the error
equation (63) reduces to a ”classical” Volterra equation (unique) solution given by

e(t) = δ(t) +
∫ 1

0

R1(t, s)δ(s)ds (65)

where R1 denotes the resolvent kernel associated with the given kernel K1 (see,
[3, pp. 11-13]). As T = Mτ for some positive integer M, we may set ξµ := µτ
(µ = 0, ..., M), and then for t ∈ [ξµ, ξµ+1] (1 ≤ µ ≤ M − 1) the collocation error
e(t) governed by (63) can be expressed in the form

e(t) = δ(t) +
µ∑

i=0

∫ t−iτ

0

Qµ,i(t, s)δ(s)ds, (66)

where the functions Qµ,i(t, s) depend on the given kernel functions Ki(t, s) (i =
1, 2). This result is the crucial part of the proof of Theorem 4 (proved by H. Brunner,
see [5]), and may be viewed as a generalisation of the resolvent representation of
the collocation error for the nonlinear case (see, e.g. [3, 4]).

Let t = tn ∈ [ξµ + h, ξµ+1]. Because tn − iτ = tn − irh = (n − ir)h, we obtain

e(tn) = δ(tn) +
µ∑

i=0

∫ tn−iτ

0

Qn,i(tn, s)δ(s)ds = δ(tn) +
µ∑

i=0

n−ir−1∑
k=0

Ψ[n]
n,i(tk + vh)dv, (67)

with Ψ[n]
n,i(tk + vh) := Qn,i(tn, tk + vh)δ(tk + vh).

We now replace each of the integrals in the above expression by the sum of its
interpolatory m-point quadrature formula (with the abscissas coinciding with the
collocation points tk + cjh, j = 1, ..., m), and the corresponding quadrature error
E

[n]
µ,i. Since δ(t) = 0 for t ∈ XN (cf. (62)), we obtain Ψ[n]

µ,i(tk + cjh) = 0,

e(tn) = δ(tn) + h

µ∑
i=0

n−ir−1∑
k=0

E
[n]
µ,i(0 ≤ µ < n ≤ µ + 1 ≤ M), where Mτ = T. (68)

Since the integrands Ψ[n]
n,i(tk + vh) are smooth for all v ∈ [0, 1], and by the

orthogonality conditions (60), the quadrature errors in (68) can be bounded by
|E[n]

µ,i| ≤ Chm+p with some finite constant C not depending on h. Finally, because
Mτ = Mrh = T = Nh, we obtain |e(tn)| ≤ |δ(tn)| + Chm+p. Since cm = 1,
tn ∈ XN , we obtain |e(tn)| ≤ Chm+p (n = 1, ..., N). �
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The maximum value of p in the orthogonality condition (60) occurs iff the col-
location parameters are the Gauss-Legendre points in (0, 1). We have fixed cm = 1,
thus the degree of precision in (61) cannot exceed 2m− 1.

The proofs of Theorems 2, 3 and 4 suggest that the local superconvergence results
are also true for discretized collocation solution û ∈ S

(d)
m+d(ZN ) defined by (14)-(16),

(18) and (19) and characterized by µ0 = µ1 = m. The quadrature approximation
to the delay integral

Φ(tn) = −
∫ 0

tn−r

k2(tn, s, φ(s))ds is given by

Φ̂(tn) = −h

−1∑
i=n−r

m∑
l=0

wlk2(tn, ti + dl, φ(ti + dl)) (0 ≤ n < r). (69)

Theorem 5. If the assumptions of Theorem4 hold, assume that the approxi-
mations to the delay integrals Φ(tn,j) and Φ(tn) (where 0 ≤ n < r) are given by the
quadrature formulas (18) and (69), respectively, if h = τ/r is sufficiently small and
if the orthogonality conditions (60) hold, then the solution û given by ((14)-(16),
(18), and (19)) has the property

max
1≤n≤N

|y(tn) − û(tn)| ≤ Chm+p. (70)

With the same techniques as in the proof of Theorem 4 we can obtain the statement
of the above theorem. We leave these details to the reader.

Finally, we comment on the extension of the results in Theorems 4 and 5 to the
nonlinear case. Instead of (63), the equation for the collocation error e now has the
form

e(t) = δ(t) +
∫ t

0

{k1(t, s, y(s)) − k1(t, s, u(s))}ds + F (t), where

F (t) :=
∫ t−τ

0

{k2(t, s, y(s)) − k2(t, s, u(s))}ds.

Under appropriate differentiability and boundedness conditions for k1 and k2, we
obtain

ki(t, s, y(s)) − ki(t, s, u(s)) =
∂ki

∂y
(t, s, y(s)) · e(s) +

1
2

∂2ki

∂y2
(t, s, zi(s)) · e2(s),

where zi is between y and u. The global convergence of u and û has already been
established (see Section 3). So, we know that

‖e2‖∞ = O(h2(m+d+1)) for any {cj}.

The remaining part of the proofs (both u and û) once more makes use of the
techniques described before.
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5. Numerical examples

We applied the collocation method to some model Volterra integral equations with
constant delay.

Example 1. y(t) = λeτ−t − (λ − 1)e−t − λ
∫ t

t−τ y(s)ds with{
y(t) = φ(t) = e−t, t ∈ [−τ, 0)
y(t) = e−t, t ≥ 0.

Gauss Radau II Gauss cm = 1
d N h ‖eN‖∞ ‖e‖∞ ‖eN‖∞ ‖e‖∞ ‖eN‖∞ ‖e‖∞
0 10 0.1 2.23E-7 8.50E-8 2.15E-9 2.77E-8 1.45E-8 1.66E-8

20 0.05 1.48E-8 5.91E-9 6.51E-11 1.78E-9 9.10E-10 1.03E-9
40 0.025 9.24E-9 3.70E-10 2.00E-12 1.13E-10 5.70E-11 6.40E-11

1 10 0.1 4.59E+4 5.19E+3 5.88E-7 1.71E-5 1.79E-10 6.56E-10
20 0.05 2.07E+17 2.44E+16 2.87E-3 3.36E-1 1.26E-12 1.03E-11
40 0.025 1.28E+44 1.53E+43 8.05E+4 3.77E+7 2.08E-14 3.05E-13

Table 1. Errors for Example 1

Example 2. y(t) = 1
4

(
sin(2(t− τ)) − sin 2τ

)
+ cos t− 1

2τ +
∫ t

t−τ y2(s)ds with

{
y(t) = φ(t) = cos t, t ∈ [−τ, 0)
y(t) = cos t, t ≥ 0.

Gauss Radau II Gauss cm = 1
d N h ‖eN‖∞ ‖e‖∞ ‖eN‖∞ ‖e‖∞ ‖eN‖∞ ‖e‖∞
0 10 0.1 2.03E-7 6.42E-8 2.81E-9 2.96E-8 4.65E-8 5.83E-8

20 0.05 1.28E-8 4.14E-9 8.97E-11 1.84E-9 2.92E-9 3.63E-9
40 0.025 8.09E-10 2.63E-10 2.82E-12 1.15E-10 1.83E-10 2.27E-10

1 10 0.1 - - 8.70E-10 1.33E-7 2.42E-11 3.65E-11
20 0.05 - - - - 3.80E-13 1.66E-12
40 0.025 - - - - 6.22E-15 5.95E-14

Table 2. Errors for Example 2

The Examples 1 and 2 were taken from [1]. The exact solutions of these equations
we approximated by the exact collocation method, the integrals occurring in the
collocation equation (13) being evaluated analytically. In case of Example 2 the
obtained nonlinear equations were solved by the Newton’s method.

We choose m = 3 and d ∈ {0, 1}, and for the collocation parameters Gauss
points, Radau II points and Gauss points with cm = 1, respectively.

We found that the collocation method for m = 3 and d = 1 exhibits an unstable
behaviour for Gauss and Radau II points. In the table 2 the symbol ’-’ indicates
that Newton method could not solve the system of nonlinear algebraic equations
on the whole interval [0,T] for Gauss and Radau II points.

The stability properties of the collocation methods with d ≥ 1 will be studied
elsewhere.
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