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ABSTRACT 

We outline an automated computational and machine learning framework that predicts disease 

severity and stratifies patients. We apply our framework to available clinical data. Our algorithm 

automatically generates insights and predicts disease severity with minimal operator intervention. The 

computational framework presented here can be used to stratify patients, predict disease severity and 

propose novel biomarkers for disease. Insights from machine learning algorithms coupled with 

clinical data may help guide therapy, personalize treatment and help clinicians understand the change 

in disease over time. Computational techniques like these can be used in translational medicine in 

close collaboration with clinicians and healthcare providers. Our models are also interpretable, 

allowing clinicians with minimal machine learning experience to engage in model building. This work 

is a step towards automated machine learning in the clinic. 
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INTRODUCTION 

The advent of big data and clinical records databases opens possibilities for clinical data 
science. Machine learning techniques coupled with clinical data is thought to be critical in 
delivering the next generation of healthcare [1]. 

Here we present an automated computational framework to derive insights from clinical data. 
The computational framework presented here can be used to stratify patients, predict disease 
severity and propose novel biomarkers for disease. Our approach automatically performs 
model inference, cross-validation, model selection and generates insights with minimal 
operator intervention. Our models are also interpretable, allowing domain experts like 
clinicians (with minimal machine learning experience) to engage in model building. Insights 
from machine learning algorithms coupled with clinical data may help guide therapy, personalize 
treatment and help clinicians understand the change in disease over time. Our approach is a 
step towards automated machine learning and computational biology in the clinic. 

METHODS 

We have developed an automated machine learning framework that performs predictions 
with minimal operator intervention. First, we perform feature scaling to ensure that all input 
features are on the same scale. We then look at a suite of different machine learning techniques 
like neural networks, random forests, regularized generalized linear model (logistic regression) 
with LASSO (least absolute shrinkage and selection operator), support vector machines, 
linear regression and principal components analysis. Crucially, we perform inference,  
cross-validation, model selection and insight generation with minimal operator intervention. 

DATA 

We used data from the UCI machine learning repository (Wisconsin breast cancer dataset, 
which are available for download from [2]), [3, 4]. The dataset consists of 699 patients 
divided into healthy and patients with breast cancer. The disease status is reported as benign 
or malignant. The different attributes measured were clump thickness, uniformity of cell size, 
uniformity of cell shape, marginal adhesion, single epithelial cell size, bare nuclei, bland 
chromatin, normal nucleoli and mitoses. All predictors are numeric (there are no categorical 
predictors) and were scaled to be within a range of 0 to 10. We replaced missing values with 
a 0. Future work will look at schemes to impute these values. Finally, we split the data into 
training, cross-validation and test sets. 

RESULTS 

STRATIFYING PATIENTS  

We used principal component analysis (PCA) to gain insights into the clinical data. The PCA 
analysis suggests that there are a few clusters that the data can be separated into (Figure 1 and 
Figure 2). Single epithelial cell size and uniformity of cell shape seem to separate the data into 
distinct clusters (Figure 2). The attribute mitoses seem to account for many outliers (Figure 2). 

We note that the first principal component explains about 65 % variance in the data (Figure 3). 

Finally, the PCA analysis suggests the most extreme points in the data (outliers). Five 
patients with codes 1123061, 1198128, 1147748, 1165926 and 760001 are predicted to be 
outliers. For example, patients coded as 1123061 and 76001 have a very low value (< 3) for 
the uniformity of cell shape. Patient coded as 760001 has a very low value of mitoses (value 
of 1 on a scale of 1 to 10). All patients predicted to be outliers also have low values of the 
attribute bare nuclei. This kind of analysis can be used to stratify patients. 
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Figure 1. Principal components analysis of data. Analysis shows a few clusters for the first 

two principal components. 

 

Figure 2. Principal components analysis of the data showing clusters for the first two 

principal components. 
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Figure 3. Percentage of variation explained by each principal component in a PCA. 

PREDICTING DISEASE SEVERITY 

We predict disease severity or probability of getting the disease using a suite of different 

machine learning algorithms. We looked at artificial neural networks (Figure 4) which are 

composed of an input layer of features, hidden layers and an output layer that predicts disease 

severity (on a scale of 0 to 1). We varied the number of hidden layers from 1 to 100. A neural 

network with 10 hidden layers was found to give the best performance (mean squared error  

eqal to 0,01) as shown in Figure 5 and Figure 6. 

We also used random forests which are collections of trees. Each tree can be interpreted as a 

set of rules that suggest how to combine the attributes to predict a disease severity. A forest is 

a collection or ensemble of such trees. We varied the leaf size from 5 to 100 and the number 

of trees that are grown from 1 to 50 (Figure 7). The best random forest model achieved a 

cross-validation mean squared error of 0,04. 

 

 

Figure 4. Architecture of neural network used to predict disease severity. The network shown 

has an input layer, 30 hidden layers and an output layer. 
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Figure 5. Neural network performance on training, validation and test dataset with 30 hidden layers. 

 

Figure 6. Neural network performance on training, validation and test dataset with 10 hidden layers. 
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Figure 7. Performance of a random forest algorithm (out of bag prediction error). The leaf 

sizes are varied from 5 to 100 and up to 50 trees are grown. 

Representative trees used for predicting disease severity are shown in Figure 8 (regression) 

and Figure 9 (classification). Random forests are very interpretable. For example, the tree 

shown in Figure 9 is very interpretable since it represents a rule of the form: 

 IF [(single epithelial cell size  2,5) AND (uniformity of cell shape < 1,5)] THEN healthy (1) 

 
Figure 8. A representative tree from the random forest used in predicting disease severity 

(regression). 
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Figure 9. A representative tree from the random forest used in predicting disease severity 

(classification). 

Insights from interpretable machine learning algorithms like random forests can inform 

decisions in the clinic. The top predictors in random forests are shown in Figure 10. 

Uniformity of cell size (2
nd

 feature) and bare nuclei (6
th

 feature) are important predictors. 

Mitoses (9
th

 feature) is the least important predictor. We note however that mitoses separates 

two different clusters in the PCA plot (Figure 2) and may be useful as a biomarker. 

We note that even though artificial neural networks have the best performance  

(cross-validation mean squared error = 0,01 for neural networks; cross-validation mean 

squared error = 0,04 for random forests), the most interpretable models are random forests. 

We also used a logistic regression model with LASSO (L1 regularization). We performed  

10-fold cross validation to determine the regularization parameter (Figure 11). We found that 

 
Figure 10. Top predictors in a random forest algorithm. 
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Figure 11. A plot of the effect of changing the regularization parameter (lambda) in a logistic 

regression model with LASSO (L1 regularization). The cross-validation error is used to find 

the optimal value of lambda. 

all predictors are non-zero after cross-validation. Hence the logistic regression model 

suggests that all the predictors are important. 

Finally, we also looked at linear regression models for correlations of attributes with each 

other (within patients). We did not observe any meaningful relationships. 

BIOMARKERS 

The predictors uniformity of cell shape and single epithelial cell size separate the data into a 

few different clusters in the PCA plot (Figure 2). Mitoses separates the data into a third 

cluster in the PCA plot (Figure 2). Bare nuclei is an attribute that accounts for some outliers 

in the PCA analysis (see Section 4.1 Stratifying Patients). 

Our random forest algorithm suggests that the top predictors are uniformity of cell size and 

bare nuclei (Figure 10). Taken together, we suggest that uniformity of cell size and bare 

nuclei maybe important biomarkers for disease. 

DISCUSSION AND CONCLUSION 

Big data technologies coupled with massive clinical records databases opens possibilities for 

data science in the clinic. Machine learning techniques coupled with clinical big data are 

thought to be critical in delivering the next generation of healthcare [2]. 

Here we present an automated machine learning framework that generates insights from 

clinical data with minimal operator intervention. The computational framework presented 

here can be used to stratify patients, predict disease severity and propose novel biomajkers 

for disease. This can be used to guide therapy and intervention in the clinic. 
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We use a suite of machine learning algorithms to predict disease severity and stratify patients. 

We found that a PCA analysis combined with random forests can suggest biomarkers and 

ways to stratify patients. Our analysis suggests that uniformity of cell size and bare nuclei 

maybe important biomarkers for disease. 

Even though artificial neural networks have better performance predicting disease severity 

than random forests, the most interpretable models are random forests. This is critical in 

communicating these insights to clinicians and healthcare professionals who may not be 

machine learning experts. We show a representative rule from a tree in a random forest 

(Figure 9) which takes the form (1). 

Insights from interpretable machine learning algorithms like random forests can be very 

informative to clinicians. Our framework automatically performs model inference, cross-

validation, model selection and generates insights into data with minimal operator 

intervention. Our models are also interpretable, allowing domain experts like clinicians (with 

minimal machine learning experience) to engage in model building. Coupling automated and 

interpretable machine learning techniques with clinical data may help guide therapy, 

personalize treatment and help clinicians understand the change in disease over time. 

Our approach can be combined with multi-scale models [5-9]. Hybrid modelling approaches 

can be combined with machine learning techniques presented in the current work to gain 

mechanistic insights into disease, as has done previously for infectious diseases [10-12]. 

In summary, we present an automated and interpretable machine learning framework for 

generating insights. We demonstrate how this computational framework can be applied to 

clinical data. Computational techniques like these can be used in translational medicine in 

close collaboration with clinicians and healthcare providers. Our approach is a step towards 

automated machine learning and computational biology in the clinic. 
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