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Optimal design for plates and relaxation∗†

Nenad Antonić
‡

and Neven Balenović
§

Abstract. The optimal design problem for a plate of variable thick-
ness assuming the Kirchhoff model for pure bending of symmetric plates
is studied. It is well known that this problem has no solution. The relax-
ation procedure is thus necessary, leading naturally to homogenisation.

Following the ideas of Tartar, a new procedure is proposed, giving the
known result of Muñoz and Pedregal. Some applications of the proposed
method for more general materials are presented.
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1. Introduction

We are interested in the behaviour of a thin solid elastic plate made of a linearly
elastic material. The plate is assumed to be symmetric with respect to the hori-
zontal midplane. If we denote the central section of the plate in its unperturbed
configuration by Ω, which is a bounded region in R

2, we can describe the plate as
the set

{(x1, x2, x3) ∈ R
3 : (x1, x2) ∈ Ω & |x3| ≤ h(x1, x2)} .

We limit our investigation to the Kirchhoff model for pure bending of symmetric
plates under transverse loads. According to that theory, the vertical displacement
u satisfies a fourth–order elliptic equation of the form

div div (M∇∇u) = f in Ω , (1)

where f ∈ L2(Ω) is the vertical load on the plate, while M is a tensor–valued
function given by

M(x) :=
2
3
h3(x)B , (2)
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where B is a constant tensor of the fourth rank which is material dependent. The
tensor B (and hence M) is assumed to have the following symmetry:

Bijkl = Bjikl = Bijlk . (3)

More precisely, tensor B can be understood as a linear operator on the space of all
symmetric 2 × 2 real matrices, hereafter denoted by Sym, and has nine entries.

For simplicity, we shall discuss only plates that are clamped at the edges

u = ∇nu = 0 on ∂Ω , (4)

meaning that u belongs to the Sobolev space H2
0(Ω).

In order to insure the well–posedness of the boundary value problem (1,4), we
assume that M belongs to the space M2(α, β; Ω) defined as

{
M ∈ L∞(Ω;L(Sym; Sym)) : (∀S ∈ Sym) M(x)S · S ≥ αS · S

& M−1(x)S · S ≥ 1
βS · S (a.e. x)

}
.

Indeed, for M ∈ M2(α, β; Ω), the bilinear form

a(u, v) :=
∫

Ω

M∇∇u · ∇∇v dx (5)

is elliptic and bounded on H2
0(Ω) × H2

0(Ω), therefore by using the Lax–Milgram
Lemma, we establish the existence and uniqueness for the above problem.

The boundary value problem (4) is variational, which means that its solution u
is the unique minimiser of the functional

E(v) :=
1
2

∫
Ω

M(x)∇∇v · ∇∇v dx −
∫

Ω

f(x)v(x) dx

over the Sobolev space H2
0(Ω). The compliance L is the work done by external

load f :

L =
∫

Ω

f(x)u(x) dx =
∫

Ω

M(x)∇∇u · ∇∇u dx .

For a given load f , we think of L as a function of the (half)thickness h. It repre-
sents an overall measure of the rigidity or flexibility of the plate under f , therefore
it seems natural to study the problem of optimisation for minimal compliance,
i.e. minimising L(h) among all admissible plates with the prescribed volume.

Throughout this paper we shall entirely restrict our attention to the case where
(half)thickness h depends on the variable x1 alone, and x1 belongs to an interval I,
the projection of Ω to x1–axis. For the given hmin, hmax and V , we define the set
of admissible functions by

H :=
{
h ∈ L∞(I; Q) :

∫
Ω

h = V
}

,
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where Q stands for the segment [hmin, hmax]. Naturally, the above values should be
prescribed in a consistent way: 0 < hminvolΩ < V < hmaxvolΩ < ∞.

It is well known that the problem of minimising L over H generally has no so-
lution, due to rapid oscillations of minimising sequences [4]. Therefore, we perform
a relaxation of the problem, introducing a set of generalised thicknesses. The ba-
sic tool to show the equality of infima for the original and relaxed problem is the
following lemma (cf. Lemma 1.1 in [5]):

Lemma 1. Let (Mn) be a sequence in M2(α, β; Ω). Furthermore, assume that

1
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(6)

If un, for each n ∈ N∪ {∞}, is the solution of problem (1, 4) corresponding to Mn,
then un −−⇀ u∞ in H2

0(Ω).
Following the same ideas as in [5], we define the set of generalised (half)thicknesses

to be the set of all Young measures associated to sequences in H:

H :=
{
ν := (νx)x∈I : suppνx ∈ Q (a.e. x),

∫
I

∫
Q

λdνx(λ)dx = V
}

.

The crucial part in defining a compliance on H is making the use of Lemma1. Let
(hn) be a minimising sequence for L in H. According to (2), nonconstant expressions
on the right-hand side of (6) can be written as follows:

1
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= 3

2B1111
h−3

n ,

Mn
1212 − Mn

1211Mn
1112

Mn
1111

= 2
3h3

n

(
B1212 − B1211B1112

B1111

)
,

Mn
1222 − Mn

1211Mn
1122

Mn
1111

= 2
3h3

n

(
B1222 − B1211B1122

B1111

)
,

Mn
2212 − Mn

2211Mn
1112

Mn
1111

= 2
3h3

n

(
B2212 − B2211B1112

B1111

)
,

Mn
2222 − Mn

2211Mn
1122

Mn
1111

= 2
3h3

n

(
B2222 − B2211B1122

B1111

)
.
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The above weak limits can clearly be expressed through the moments of order ±3
of the Young measure ν, corresponding to the sequence (hn). Therefore, if we set

m(x) :=
∫

Q λ3 dνx(λ) ,

c−1(x) :=
∫

Q
λ−3 dνx(λ) ,

and define the components of tensor M∞ by using m and c instead of h3 and h−3

respectively, then by Lemma1, the solutions un to the problem (1, 4), corresponding
to tensors Mn, will converge weakly to the solution u∞ corresponding to M∞.

After defining the compliance L for elements in H by

L(ν) :=
∫

Ω

fu dx ,

where u is the solution to the boundary value problem (1, 4), with tensor M de-
pending on ν through functions m and c as described above, we have the following
result:

Theorem 1. The pair (L,H) is a relaxation for (L,H).
Our research was inspired by [5], where the authors obtained the result for a

narrower class of orthotropic materials, i.e. those with non–vanishing coefficients
M1111, M2222 and

M1122 = M2211 , M1212 = M2112 = M2121 .

After taking into account our improvement, the remainder of proof of the above
theorem follows along the same lines as in [5].

2. Homogenisation and H–convergence

In the development of the theory of homogenisation for second order operators, the
rôle played by div− rot lemma [7] is crucial. For the equation of plate, the following
compensated compactness result plays the same rôle (for the proof see [1]):

Lemma 2. Let the following convergences be valid

wn H2
loc(Ω)−−−−−⇀ w∞ ,

Dn L2
loc(Ω;M2×2)−−−−−−−⇀ D∞ ,

with an additional assumption that the sequence (div divDn) is contained in a pre-
compact (for the strong topology) set of the space H−2

loc(Ω).
Then we have that

En · Dn −−⇀ E∞ · D∞

vaguely (i.e. weakly–∗ in the space of Radon measures), where we denote En :=
∇∇wn (and analogously for ∞ instead of n).

Next, we define a notion of H-convergence adapted to the problem under investi-
gation. We say that a sequence of tensor functions (Mn) in M2(α, β; Ω) H-converges
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to M∞ ∈ M2(α, β; Ω), if for any f ∈ H−2(Ω) the sequence of solutions (un) of the
problems

Find un ∈ H2
0(Ω) such that

(∀v ∈ H2
0(Ω)

) ∫
Ω

Mn∇∇un · ∇∇v dx = 〈f, v〉 (7)

converges to a limit u∞ weakly in H2
0(Ω), while the sequence (Mn∇∇un) converges

to M∞∇∇u∞ weakly in the space L2(Ω; Sym).
Note that u∞ is then necessarily a solution of (7), where we write ∞ instead of n.

Besides, if the sequence (Mn) is contained in the set M2(α, β; Ω), the statement of
the definition does not imply that the limit is in the same set, but we have to know
that in advance. The first step in the direction of weakening the conditions of the
above definition, or, which amounts to the same, to prove an analogous theorem as
for the compactness of H-convergence in the case of second order elliptic problems
(as in [6]), is the theorem on G-convergence.

For the bilinear form a defined by (5), there is an operator A ∈ L(H2
0(Ω); H−2(Ω))

defined by the formula
Au := div div (M∇∇u) (8)

which represents the bilinear form in the sense that the following holds true:(∀u, v ∈ H2
0(Ω)

)
a(u, v) =H−2(Ω) 〈Au, v 〉H2

0(Ω) .

As the form a is bounded and coercive, it follows that the operator A is bounded
and invertible, and that its inverse A−1 is continuous as well. Thus we are able to
apply the standard results valid for the G-convergence of operators (see e.g. [8]),
which gives us appropriate compactness (moreover, for symmetric tensors Mn we
have the compactness with the same constants α and β). Of course, it remains to
be proven that the operator being the G-limit of the operators of the form (8) is of
the same form itself.

Lemma 3. Let V be a real, reflexive and separable Banach space. If the operator
A ∈ L(V ; V ′) is coercive (i.e. (∃α > 0) (∀u ∈ V ) 〈Au, u〉 ≥ α‖u‖2

V ), then the
equation Au = f has the unique solution u ∈ V for any f ∈ V ′, and the inequality

‖u‖V = ‖A−1f‖V ≤ 1
α
‖f‖V ′

holds.
Let a sequence (Mn) of tensor functions in M2(α, β; Ω) be given; we define the

operators An : H2
0(Ω) → H2(Ω) by formula (8). The following uniform estimates

are true:

‖An‖ ≤ β and
(∀u ∈ H2

0(Ω)
) 〈Anu, u〉 ≥ α‖u‖H2

0(Ω) .

Our goal is to prove the compactness of the set M2(α, β; Ω); as the first step we
achieve, besides the G-convergence of the operators, the abstract convergence of the
sequence (Mn∇∇un) as well. The limit will be identified in the next step.

Lemma 4. There is a subsequence (Mnk) of the above sequence, and the oper-
ators A∞ ∈ L(H2

0(Ω); H−2(Ω)) and R ∈ L(H−2(Ω); L2(Ω; Sym)) such that

Ank

G−−−⇀A∞
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(i.e. A−1
nk

−⇀ A−1∞ weakly in the sense of operators), and that for arbitrary f ∈
H−2(Ω) we have

Mnk∇∇unk

L2(Ω;Sym)−−−−−⇀ Rf ,

where (unk
) is a sequence of solutions of problems (7), with the given f .

The compactness is given precisely by the following theorem (for the details of
the proof see [1]):

Theorem 2. Let (Mn) be a sequence in M2(α, β; Ω). Then there is a subse-
quence (Mnk) and a tensor function M∞ ∈ M2(α, β; Ω) such that

Mnk
H−−−⇀M∞ .

In the proof of the theorem there are two more statements to be shown:

1. The operator A∞ is of the same form as operators An (cf. Lemma4), in the
sense that there is a tensor M∞ such that A∞u = div div (M∞∇∇u),

2. The tensor M∞ is an element of the set M2(α, β; Ω).

In order to prove (a), we can use the method of oscillating test functions [7],
while for (b) we use the following lemma:

Lemma 5. Assume that M∞ ∈ L2(Ω;L(Sym, Sym)). Furthermore, let the
operator C in L(H2

0(Ω), L2(Ω; Sym)), defined by the formula Cv := M∞∇∇v, be
such that the following estimate holds

‖C‖L(H2
0(Ω),L2(Ω;Sym)) ≤ γ .

Then M∞ ∈ L∞(Ω;L(Sym, Sym)) and we have

|M∞(x)|L(Sym;Sym) ≤ γ (a.e. x ∈ Ω) .

3. Effective properties of a layered plate

The goal of this section is to prove Lemma1, which enables us to generalise the
result of Muñoz and Pedregal [5] to a more general setting. In fact, Lemma 1 is a
simple consequence of the following

Theorem 3. Let Ω ⊆ R
2 be an open and bounded set, and (Mn) a sequence

of tensor valued functions in M2(α, β; Ω), such that for each n, Mn depends on x1

only. Then Mn H–converges to M∞ if and only if (6) holds.
In order to prove the necessity part of the above theorem, we shall require the

following definition:
The sequence (un) in L2(Ω) does not oscillate in variable x1 if the following is

satisfied:

1. un −⇀ u∞ in L2(Ω),
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2. For each sequence of L∞ functions (fn), depending on x1 only, such that fn

weakly–∗ converges to a function f∞, the product fnun converges to f∞u∞
weakly in L2(Ω).

The following Lemma is a consequence of Lemma2 and this definition.
Lemma 6. Let (Dn) be a sequence in L2(Ω; Rd) which weakly converges to D∞.

If the sequence (div divDn) is contained in a precompact set in H−2
loc(Ω), then Dn

11

does not oscillate in x1.
Proof. One should notice that En := fne1 ⊗ e1 is a gradient of a gradient of

some scalar function (which depends on x1 only); therefore the statement follows
directly from Lemma 2. �

Let us assume that Mn H–converges to M∞. According to the definition given
in the previous section, for any f ∈ H−2(Ω), the solutions un of boundary value
problem (1, 4) satisfy

un
H2

0(Ω)−−−−−⇀ u∞ ,

Mn∇∇un
L2(Ω;Sym)−−−−−⇀ M∞∇∇u∞ .

In order to employ Lemma 2, for n ∈ N ∪ {∞} let us denote

En := ∇∇un and Dn := MnEn . (9)

As div divDn = f , according to Lemma6, Dn
11 does not oscillate in x1. On the other

hand, let us define D̃n by

D̃n
ij :=

{
0 , for i = j = 1

gn
ij , otherwise ,

where gn
ij are L∞ functions which depend on x1 only. Let us further assume that for

each pair of indices (i, j) the function gn
ij converges to g∞ij weakly–∗ in L∞. Since

D̃n clearly satisfies div div D̃n = 0, according to Lemma 2 we have that D̃n ·En −⇀
D̃∞ · E∞ in D′. As the sequence (D̃n · En) is also bounded in L2(Ω), a simple
uniqueness argument shows us that the above convergence is valid in this space as
well. Convenient choices of functions gn

ij lead to a conclusion that for each pair of
indices (i, j) �= (1, 1) the component En

ij does not oscillate in x1.
This procedure enables us to extract good (nonoscillating) and bad (oscillating)

components from matrices En i Dn

Gn
ij :=

{
Dn

11 , for i = j = 1
En

ij , otherwise and On
ij :=

{
En

11 , for i = j = 1
Dn

ij , otherwise .

Combining this with (9) we obtain

On = KnGn ,

where Kn := Ψ(Mn). Reasonably brief calculation shows that the components of
tensor Kn are (up to a constant) exactly the terms on the left-hand side in (6).
On the other hand, since Mn belongs to the space M2(α, β; Ω), we conclude that
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α ≤ Mn
1111(x) ≤ β (a.e. x ∈ Ω), which clearly implies that the sequence (Kn) is

bounded in L∞(Ω;L(Sym; Sym)), and hence has a cluster point in weak–∗ topology.
Using the fact that (Gn) does not oscillate in x1, and (Kn) depends on x1 only,

after taking a subsequence, we obtain

O∞ = K∞G∞ .

By using this equality it is easy to read off that K∞ := Ψ(M∞), or in other words

Ψ(Mnk)
L∞(Ω)∗−−−−−⇀ Ψ(M∞) ,

which is exactly what we wanted to prove. Of course, each cluster point of the
sequence Kn must satisfy the above convergence result, thus it holds for the entire
sequence (Ψ(Mn)), rather than for a subsequence. This furnishes the proof of the
only if part of the theorem.

As for the if part, we are in fact able to prove a slightly stronger result.
Theorem 4. With notation as in the proof of Theorem3, assume that the

sequence (un) converges weakly in H2(Ω) to u∞, and that the sequence (div divDn)
is contained in a precompact set in H−2

loc(Ω). In addition to this, assume that

Ψ(Mn) �−−−−−⇀ Ψ(M∞) in L∞(Ω;L(Sym; Sym)) ,

where, for each n, Mn is a tensor valued function which satisfies α ≤ Mn
1111(x) ≤ β

(a.e. x ∈ Ω). Then
Dn L2(Ω;R2)−−−−−⇀ D∞ .

Proof of this theorem uses similar arguments as the one demonstrated above.
However it heavily relies on the use of oscillating test functions [7] and some explicit
constructions, which makes it technical; therefore, we chose to omit it.
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