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Optimal design and hyperbolic problems∗†

Nenad Antonić
‡
and Marko Vrdoljak

§

Abstract. Quite often practical problems of optimal design have no
solution. This situation can be alleviated by relaxation, where one needs
generalised materials which can mathematically be defined by using the
theory of homogenisation. First mathematical results in this direction
for general (nonperiodic) materials were obtained by Murat and Tartar.

We present some results in optimal design where the equation of
state is hyperbolic. The control function is related to the response of
vibrating material under the given external force. As the problem under
consideration has no solution, we consider its relaxation to H-closure of
the original set of controls.
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1. Introduction

We consider the wave equation

ρu′′ − div (A∇u) = f

on ΩT = 〈0, T 〉×Ω, Ω ⊆ R
d open and bounded, as the state equation for a problem

of optimal shape design. The forcing term f , as well as the initial and boundary
values, is assumed to be given in advance, which, together with the control (ρ,A),
uniquely determines the state function u.

We take the cost functional of the form

I(ρ,A) =
∫

ΩT

F (t,x, ρ(x),A(x), u(t,x)) dx dt, (1)

which is the form usually connected with the name of Lagrange.
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Now the problem can be stated as:

Minimise I(ρ,A) over the set A of admissible controls.

Let us see more closely how the control influences the cost functional.
Assume that we want to fill the set Ω with m given materials. Each material

is characterised by two constant quantities ρi and Ai (i = 1, . . . ,m) (mechanical
properties of a particular material). Furthermore, for simplicity, suppose that all
the materials are isotropic, i.e. Ai = γiI, where γi ∈ [α, β] and ρi ∈ [ρ−, ρ+] for
some positive ρ− and α. If we denote by χi the characteristic function of the i-th
material, the corresponding control function is uniquely given by

ρ =
∑m

i=1 χiρi ,

A =
∑m

i=1 χiγiI ,
(2)

while the set of admissible controls A is the set of all pairs (ρ,A) obtained in this
way.

Due to the special type of admissible controls we use, the above cost functional
can be written in a slightly different form. For (t,x) ∈ ΩT and λ ∈ R we define

gi(t,x, λ) = F (t,x, ρi, γiI, λ) ,

so that the cost functional reads

I(ρ,A) =
∫

ΩT

m∑
i=1

χi(x)gi(t,x, u(t,x)) dx dt.

Both functions ρ and A are known if the characteristic functions are given. I is, in
fact, a function of χ alone, where we write χ for the m-tuple (χ1, . . . , χm).

Unfortunately, by writing the problem with χ as the only argument for I, we
would not be able to define a topology on A such that u depends continuously on
χ (except for the case of layered materials, see below), which means that I could
not be continuous. This continuity is crucial in order to discuss the existence of
solutions for the problem above, which is our goal.

It is well known that the problems of the above type in general (without very
restrictive additional assumptions) have no solution. Nevertheless, as it will be
shown below, it is possible to extend the functional I to a larger set T , and to
define a topology on T such that the extension is continuous. Due to the fact that
T is a compact topological space, the relaxation amounts to closing the set A in T ,
which is not a trivial task, as the topology on T is quite complicated.

2. Homogenisation of the diffusion equation

In this section we shall present some facts in the theory of homogenisation of the
stationary diffusion equation. They were systematically presented for the first time
in Tartar’s Cours Peccot in 1977.
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The homogeneous boundary value problem for diffusion equation

{
−div (A∇u) = f
u ∈ H1

0(Ω) (3)

has a unique solution (by Lax–Milgram lemma) if Ω is an open and bounded subset
of R

d, f ∈ H−1(Ω) and A ∈ L∞(Ω;L(Rd,Rd)) satisfying

A(x)ξ · ξ ≥ α|ξ|2 ,

A(x)ξ · ξ ≥ 1
β |A(x)ξ|2

(4)

for every ξ ∈ R
d and almost every x ∈ Ω. We shall denote the set of all these matrix

functions by M(α, β; Ω). Moreover, if A(x) is a symmetric matrix for a.e. x ∈ Ω,
the conditions (4) can be written in a simpler form as

αI ≤ A(x) ≤ βI .

The main problem studied in the theory of homogenisation is the following:
Given a sequence of coefficients (An) in M(α, β; Ω) and the corresponding sequence
of solutions (un) of (3) (for some fixed f), converging to some function u weakly in
H1(Ω), what can we say about the equation this u satisfies? Is the equation of the
same type? If yes, what is the corresponding A?

Definition 1. We say that a sequence (An) in M(α, β; Ω) H-converges to
A∞ ∈ M(α′, β′; Ω) if for every f ∈ H−1(Ω) the corresponding sequence of solutions
(un) of (3) satisfies the following weak convergences

un −−⇀ u∞ in H1
0(Ω) ,

An∇un −−⇀ A∞u∞ in L2(Ω; Rd).

The last convergence in particular implies that u∞ is a solution of (3) with A∞
instead of A. It can be shown that this convergence comes from a weak topology
(we shall call it the H-topology) on M(α, β; Ω), which is metrisable. We shall just
state some main results regarding H-convergence (for the proofs see [4], and [7] for
further improvements).

Theorem 1. The set M(α, β; Ω) is compact in H-topology.
One-dimensional case. For Ω ⊆ R, the sequence (An) ∈ M(α, β; Ω) (in this case
that will be a sequence of functions in L∞(Ω; [α, β])) H-converges to A∞ if and only
if

1
An

∗−−⇀ 1
A∞

in L∞(Ω).

This can be generalised to the case of layered materials in higher dimensions. Let
(An) be a given sequence in M(α, β; Ω) depending only on x1 (we talk about layers



124 N.Antonić and M.Vrdoljak

perpendicular to the vector �e1). Then we have: An
H−⇀A∞ if and only if (i, j ≥ 2)

1
(An)11

∗−−⇀ 1
(A∞)11

in L∞(Ω)

(An)1j

(An)11

∗−−⇀ (A∞)1j

(A∞)11
in L∞(Ω)

(An)i1
(An)11

∗−−⇀ (A∞)i1
(A∞)11

in L∞(Ω)

(An)ij − (An)i1(An)1j

(An)11

∗−−⇀ (A∞)ij − (A∞)i1(A∞)1j

(A∞)11
in L∞(Ω) .

These formulas allow us to compute the H-limit which is in general a difficult
task. (In fact, there is one more situation where we know how to compute the
H-limit explicitly: the periodic case.) The following theorem gives some pointwise
estimates of the H-limit.

Theorem 2. Let (An) be a sequence of symmetric matrices in M(α, β; Ω)
H-converging to A∞. Then A∞ is symmetric as well. Moreover, if

An
∗−−⇀ A+ in L∞(Ω; Rd×d) ,

(An)−1 ∗−−⇀ (A−)−1 in L∞(Ω; Rd×d) ,

then
A− ≤ A∞ ≤ A+ (a.e. on Ω). (5)

Mixtures of two isotropic materials. Let us consider the case where An = anI,
an = χnα + (1 − χn)β for n ∈ N, while (χn) is a weakly ∗ convergent sequence of
functions in L∞(Ω; {0, 1}). According to the following Theorem (for proof see [5]),
its limit is a function θ ∈ L∞(Ω; [0, 1]).

Theorem 3. LetK be a bounded subset of R
d, and (vn) a sequence in L∞(Ω; Rd)

such that, for every n ∈ N, vn(x) ∈ K(a.e. x ∈ Ω). If v∞ is a weak ∗ limit of the
sequence (vn), then v∞(x) ∈ cl convK(a.e. x ∈ Ω). Conversely, for every function
v ∈ L∞(Ω,Rd), such that v(x) ∈ cl convK(a.e. x ∈ Ω), there exists a sequence (vn)
converging to v weakly ∗ in L∞(Ω; Rd), satisfying vn(x) ∈ K(a.e. x ∈ Ω), for every
n ∈ N.

We define two functions (for ϑ ∈ [0, 1]):

a+(ϑ) = ϑα+ (1 − ϑ)β,

1
a−(ϑ) = ϑ

α + 1−ϑ
β .

Now we have the convergence

an
∗−−⇀ a+ ◦ θ in L∞(Ω) , (6)

as well as (this can be deduced from the main theorem for Young measures, see [5])

1
an

∗−−⇀ 1
a− ◦ θ in L∞(Ω).

If we assume the convergence An
H−⇀A∞, by Theorem 2 we have that

(a− ◦ θ) I ≤ A∞ ≤ (a+ ◦ θ) I a.e. on Ω,
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or, in other words, that every eigenvalue of A∞(x) lies between a−(θ(x)) and
a+(θ(x)) for a.e. x ∈ Ω. The following Theorem (see [3]) gives more precise es-
timates in this special case. According to the second part of the Theorem, these
bounds are the best possible.

Theorem 4. Let (An) be a sequence as above, H-converging to A∞ with the
corresponding sequence (an) satisfying (6). If we denote the eigenvalues of A∞(x)
by µ1(x), . . . , µd(x), then we have⎧⎪⎪⎪⎨

⎪⎪⎪⎩

a− ◦ θ ≤ µj ≤ a+ ◦ θ , j = 1, . . . , d,∑d
j=1

1
µj−α ≤ 1

(a−◦θ)−α + d−1
(a+◦θ)−α ,∑d

j=1
1

β−µj
≤ 1

β−(a−◦θ) + d−1
β−(a+◦θ) .

(7)

Conversely, if A∗ is any matrix whose eigenvalues satisfy (7) for some function
θ ∈ L∞(Ω; [0, 1]), then there exists a sequence of functions (an) which take only the
values α and β, satisfying (6), as well as the convergence anI H−⇀A∗.

Remark 1. Characterisation of the H-limit in the case of mixtures of two ani-
sotropic materials is known too (see [2]), but there are no results about the case of
a mixture of more than two materials (either isotropic or anisotropic).

3. Homogenisation of the wave equation

Let Ω ⊆ R
d be a bounded Lipschitz domain, and T > 0. By V we shall denote

the space H1
0(Ω), while H = L2(Ω). For given symmetric A ∈ M(α, β; Ω) and

ρ ∈ L∞(Ω; [ρ−, ρ+]), as well as v ∈ V , w ∈ H and f ∈ L2(ΩT ), we consider the
initial-boundary problem ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ρu′′ − div (A∇u) = f

u(0, ·) = v

ρu′(0, ·) = w ,

(8)

with boundary conditions prescribed by the requirements u ∈ L2([0, T ];V ) and
u′ ∈ L2([0, T ];V ). This problem has a unique solution satisfying u′′ ∈ L2([0, T ];V ′)
as well. From the imbedding theorem we easily get the following regularity:

u ∈ C([0, T ];V ) and u′ ∈ C([0, T ];H) ,

together with the estimate

(∀ t ∈ [0, T ]) ‖u(t)‖V + ‖u′(t)‖H ≤ C
(
‖v‖V + ‖w‖H + ‖f‖L2(ΩT )

)
,

where the constant C depends only on the numbers α, β, ρ− and ρ+ (for details
v. [1, XVIII §5]).

Let us now consider a sequence of such problems (8), and show that the limit
of their solutions satisfies an analogous equation, following the ideas of Tartar [6].
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Theorem 5. Assume that (ρn) and (An) are sequences in L∞(Ω; [ρ−, ρ+]) and
M(α, β; Ω), respectively, such that

ρn
L∞(Ω)∗−−−−−⇀ ρ∞ and An

H−−−⇀A∞ .

Suppose that each An is a symmetric matrix a.e. on Ω (which then implies the
symmetry of the H-limit A∞ as well). Let un be a solution of the initial boundary
value problem

ρnu
′′
n − div (An∇un) = f

un(0, ·) = vn

ρnu
′
n(0, ·) = wn ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(9)

with the boundary conditions given by un ∈ L2([0, T ];V ), u′n ∈ L2([0, T ];V ), where
we assume that vn −⇀ v∞ in V , and wn −⇀ w∞ in H; the forcing term f we take
from the space L2(ΩT ). Then we have

un −⇀ u∞ in H1(ΩT ),

where u∞ is the solution of problem (9) for n = ∞.
Proof. Let us take an arbitrary test function φ ∈ C∞

c (〈0, T 〉) and for n ∈
N ∪ {∞} define

Un(x) :=
∫ T

0

un(t,x)φ(t) dt .

By testing the convergence of (un) on the functions of the form φ � ψ (tensor
product), it can easily be seen that

Un
V−−−⇀U∞ .

Thus, the question is reduced to the one regarding the equation for U∞.
Multiplying the equation (91) by φ and integrating in t we get

ρn

∫ T

0

u′′nφdt− div

(
An∇

∫ T

0

unφdt

)
=

∫ T

0

fφ dt ,

or
−div (An∇Un) = gn ,

where the function gn is given by (φ has a compact support)∫ T

0

fφ dt+ ρn

∫ T

0

u′nφ
′ dt .

Note that gn → g∞ strongly in the space V ′.
From the standard properties of H-convergence it follows that

An∇Un
L2(Ω)−−−⇀A∞∇U∞ .

As the functions of the form φ� ψ are dense in L2(〈0, T 〉 × Ω), we get that

An∇un
L2(〈0,T 〉×Ω)−−−−−⇀ A∞∇u∞ ,

thus u∞ satisfies the equation (91), with ∞ instead of n. The corresponding bound-
ary conditions follow from the regularity of the solution. �
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4. Optimal shape design for the wave equation

We shall now apply some of the results described in last two sections to the optimal
shape design problem stated in the Introduction. For simplicity, from now on we
write it in the following form{

J(χ,A) =
∫
ΩT

∑m
i=1 χi(x)gi(t,x, u(t,x)) dx dt → inf

(χ,A) ∈ A ,
(10)

where the function u is determined by (8) with ρ given by (21), while

A =

{
(χ,A) : χ ∈ L∞(Ω; {0, 1}m),

m∑
i=1

χi = 1, A =
m∑

i=1

χiγiI a.e. on Ω

}
.

As stated in the Introduction, although J , in fact, depends just on χ, we are forced
to consider A as an additional argument in order to get the continuity of J .

The functional J can well be extended to the set

T =

{
(χ,A) ∈ L∞(Ω; [0, 1]m) × M(α, β; Ω) :

m∑
i=1

χi = 1 a.e. on Ω

}
.

We shall consider the following product topology on T : L∞ weak ∗ for χ and
H-topology for A. As a simple consequence of Theorem 5 we have

Corollary 1. The mapping (χ,A) �→ u is continuous from T to H1(ΩT ) weak.
Compliance. The cost functional of great interest is the compliance (the work
done by external force)

JC(ρ,A) =
∫

ΩT

f(t,x)u(t,x) dx dt.

The compliance depends only on the state function. The mapping (ρ,A) �→ u is
continuous from the considered topology to H1(ΩT ) weak, so as f ∈ L2(ΩT ) we can
conclude that JC is continuous.

Theorem 6. Let gi, i = 1, . . . ,m, be Carathéodory’s functions (i.e. measurable
in t,x and continuous in λ) satisfying

|gi(t,x, λ)| ≤ ki(t,x) + ci|λ|q for λ ∈ R, a.e. (t,x) ∈ ΩT , (11)

with ki ∈ L(ΩT ), ci ≥ 0 and some q ∈ [2, q∗〉, where

q∗ =

⎧⎨
⎩

∞, d = 1

2d+2
d−1 , d > 1.

Then the cost functional J is continuous on T .
Proof. Because of metrisability of the topology on T , it is enough to consider

sequential continuity only. Let (χn,An) be a sequence in T such that χn
∗−−⇀ χ

and An
H−−⇀ A. Then ρn

∗−−⇀ ρ as well and, according to Theorem 5, the sequence



128 N.Antonić and M.Vrdoljak

of corresponding solutions (un) of (9) converges to the solution u of (8) weakly in
H1(ΩT ). The Sobolev imbedding theorem gives

H1(ΩT ) ↪→ Lq(ΩT ) for q ∈ [2, q∗〉.

These inclusions are compact, so we know that un → u in Lq(ΩT ) for indices q
listed above. Using the estimates (11) on gi the following convergences hold

gi(·, ·, un) −→ gi(·, ·, u) in L1(ΩT ), i = 1, . . . ,m ;

and finally (because of the weak ∗ convergence of (χn))

J(χn,An) −→ J(χ,A).

�

If the set A is closed in T , it is also a compact set and J will have a minimum.
Unfortunately, in the light of the characterisation of weak ∗ limits described in
Theorem 3, we see that it can not be closed in such topology on T , so we cannot
establish the existence of a solution to our problem.

Relaxation is theoretically simple: it consists of closing the set A in T , but there
is a problem with the lack of precise characterisation of H-closure, except for the
case m = 2. Let us concentrate on that case.
Mixtures of two isotropic materials. For simplicity, take γ1 = α and γ2 = β,
χ1 = χ so that χ2 becomes 1 − χ. With these definitions, we can simply use the
results of Theorem 4 and write a relaxation as{
J(χ,A) → inf

(χ,A) ∈ {(θ,A) ∈ L∞(Ω; [0, 1]) × M(α, β; Ω) : σ(A(x)) satisfies (7) for a.e. x ∈ Ω} .

Layered materials. The case of layered materials is quite different. Suppose
that a sequence of characteristic functions (χn), depending only on x1, weakly ∗
converges to θ in L∞(Ω; [0, 1]m). Define

a+ =
∑m

i=1 θiγi ,

1
a−

=
∑m

i=1
θi

γi

almost everywhere on Ω. Using the results for layered materials given above, we
see that the H-limit of the sequence (An) defined by (2) is a matrix function

A∞ = diag(a−, a+, a+, . . . , a+), a.e. on Ω. (12)

It is important to notice that A∞ is computed from θ, so we have the following
relaxation {

J(χ) =
∫
ΩT

∑m
i=1 χi(x)gi(t,x, u(t,x)) dx dt → inf

χ ∈ L∞(Ω; [0, 1]m) ,
∑m

i=1 χi = 1 ;

where u is calculated from (8) with A defined by (12) and ρ by (21).
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