
GLASNIK MATEMATIČKI
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IDEALITY IN HILBERT C∗
-MODULES: IDEAL

SUBMODULES VS. TERNARY IDEALS

Biserka Kolarec

University of Zagreb, Croatia

Abstract. The definition of ideal submodules of Hilbert C∗-modules

is known and classical. We introduce a definition of ternary ideals of Hilbert
C∗-modules and show that in general the set of norm-closed ternary ideals
is richer than the set of ideal submodules.

1. Introduction

Notion of ideal submodules of Hilbert C∗-modules first appeared in 1979
(Hm’s in [7]). In [1] D. Bakić and B. Guljaš gave a formal definition of ideal
submodules needed in a theory of extensions of Hilbert C∗-modules developed
later in the series of papers ([2, 3]). Ideal submodules of Hilbert C∗-modules
are generalisations of norm-closed, two-sided ideals of C∗-algebras. Here we
give a definition of norm-closed ternary ideals of Hilbert C∗-modules and
show that the set of norm-closed ternary ideals is richer than the set of ideal
submodules.

The structure of this paper is the following. In Section 2 we give pre-
liminary definitions of Hilbert C∗-modules and their ideal submodules. We
also comment on a bimodule structure of a Hilbert C∗-module as a part of the
linking C∗-algebra. Section 3 introduces two module maps that are equivalent
to each other: morphisms of modules and ternary homomorphisms. Finally,
there is a definition of ternary ideals in Section 4. The main theorem there
(Theorem 4.3) claims that ideal submodules and closed ternary ideals are not
the same.
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2. Hilbert C∗-modules and ideal submodules

Let B be a C∗-algebra. A Hilbert C∗-module E over a C∗-algebra B is
a complex vector space and a right B-module which is complete in the norm
‖x‖ = ‖〈x, x〉‖1/2 given for an inner product 〈·, ·〉 : E × E → B that satisfies:

1. 〈x, λy + z〉 = λ〈x, y〉+ 〈x, z〉,
2. 〈x, ya〉 = 〈x, y〉a,
3. 〈x, y〉∗ = 〈y, x〉,
4. 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 implies x = 0.

We will call E simply a Hilbert B-module.
We denote by BE = span 〈E,E〉 the range ideal in B. If BE = B, we

say that a Hilbert B-module E is full. Denote by K(E) the C∗-algebra of all
”compact” operators on a Hilbert B-module E, that is K(E) = {xy∗ : x, y ∈
E} for a ”rank one operator” xy∗ given by its action xy∗(z) = x〈y, z〉. A
full right Hilbert B-module E additionaly has a structure of a full left K(E)-
module. Namely, besides the right inner product 〈·, ·〉 taking values in B, one
can naturally define the inner product K(E)〈x, y〉 = xy∗, with values in K(E).
We have

K(E)〈x, y〉z = xy∗(z) = x〈y, z〉.

This property gives E the structure of a K(E) − B−bimodule (cf. [5]). The
same follows from the theory of linking C∗-algebras. The linking C∗-algebra

L(E) of E was introduced in [4]. It is defined as the matrix algebra of the
form

L(E) =

[

K(B) K(E,B)
K(B, E) K(E)

]

i.e. it is isomorphic to K(B ⊕ E), the C∗-algebra of all ”compact” operators
on a Hilbert C∗-module B⊕E. After identifications of corresponding corners,
the linking algebra of E can be written in its common form

L(E) =

[

B E∗

E K(E)

]

.

If A is a norm-closed two-sided ideal in a C∗-algebra B, the ideal sub-

module I of E associated with A is I = EA, see [1]. More generally, we say
I ⊂ E is an ideal submodule of E if I = EA for some ideal A in B. Further,
BI = 〈I, I〉 is the unique smallest ideal in B for which I is an associated ideal
submodule. Indeed, if I = EA for an ideal A of B, then also I = EABI . So,
A ∩ BI is a smaller ideal with which I is associated. Now, if A ∩ BI would
be smaller than BI , then EABI would be necessarily smaller than I. Let us
emphasise the following three facts concerning ideal submodules:

(i) Any ideal submodule I of a given Hilbert C∗-module E is generated
by a certain norm-closed two-sided ideal A of 〈E,E〉 as I = EA and
therefore 〈I, I〉 = A = BI . In other words, there is a one-to-one
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correspondence between norm-closed two-sided ideals A of 〈E,E〉 and
ideal submodules I = EA of E.

(ii) If I is a norm-closed ideal submodule of E, then I〈E,E〉 ⊂ I. Namely,
if I is an ideal submodule associated to an ideal A in 〈E,E〉, then

I〈E,E〉 = EA〈E,E〉 ⊂ EA = I.

(iii) If there are two Hilbert C∗-modules E and F with 〈E,E〉 = 〈F, F 〉,
then there is a one-to-one correspondence between ideal submodules
of E and F .

3. Morphisms of modules and ternary homomorphisms

Let E be a Hilbert B-module and F be a Hilbert C-module. Morphisms
of modules are special maps between Hilbert C∗-modules.

A map Φ : E → F is called a morphism of modules if there is a ∗-
homomorphism ϕ : B → C of underlying C∗-algebras such that 〈Φ(x),Φ(y)〉 =
ϕ(〈x, y〉) is satisfied for all x, y ∈ E. Sometimes module maps are also called
generalized isometries for an obvious reason. Each morphism of modules is
necessarily both linear and contractive. It is also a module map in the sense
that Φ(va) = Φ(v)ϕ(a) is valid for all v ∈ E, a ∈ B. Indeed,

〈Φ(x),Φ(ya)〉 = ϕ(〈x, ya〉) = ϕ(〈x, y〉a) = ϕ(〈x, y〉)ϕ(a)

= 〈Φ(x),Φ(y)ϕ(a)〉.

A linear map Φ : E → F such that Φ(x)〈Φ(y),Φ(z)〉 = Φ(x〈y, z〉) is sat-
isfied for all x, y, z ∈ E is called a ternary homomorphism. This definition
originates from [6] but there the authors did not require Φ to be linear assum-
ing it is a consequence of the defining property of a ternary homomorphism.
There are, however, maps that satisfy a ternary property but are not linear.
The simplest example of such ternary homomorphism is the homomorphism
Φ : B → C (on C∗-algebras considered as Hilbert C∗-modules over themselves)
defined by Φ(x) := 1C , x ∈ B, where C is supposed to have the identity 1C.

The property of a morphism of modules to be a module map ensures that
it is also a ternary homomorphism:

Φ(x)〈Φ(y),Φ(z)〉 = Φ(x)ϕ(〈y, z〉) = Φ(x〈y, z〉).

The converse is also true for Φ defined on a full Hilbert B-module E; this
is proved in Theorem 2.1 of [6]. We repeat the proof here for the sake of
completeness.

Theorem 3.1 (cf. Theorem 2.1, [6]). A ternary homomorphism Φ from a

full Hilbert B-module E to a Hilbert C-module F is also a generalized isometry.

Proof. The authors define a homomorphism ϕ : B → C by a left action of
ϕ(b), b ∈ B on the elements of the pre-C∗-algebra CΦ(E) := span 〈Φ(E),Φ(E)〉
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as follows

ϕ(b)〈Φ(x),Φ(y)〉 := 〈Φ(xb∗),Φ(y)〉.

They did not notice that ϕ is not a homomorphism because it fails to be
linear due to the fact that ternary homomorphisms in [6] are not defined as
linear maps satisfying the ternary property. Since we include the property of
beeing linear into the definition of a ternary homomorphism, the proof from
[6] is correct. Clearly, if well-defined, ϕ is multiplicative. So, firstly, one has
to see that ϕ is well-defined and that it maps into B

a(CΦ(E)). The decisive
property which guarantees that ϕ(b) is well-defined operator on the pre-C∗-
algebra generated by 〈Φ(E),Φ(E)〉 is the property of possessing an adjoint.
The authors show that ϕ(b∗) is an adjoint of ϕ(b) by observing first that for
all c ∈ CΦ(E) the following is valid:

〈c, 〈Φ(x),Φ(y)〉〉 = c∗〈Φ(x),Φ(y)〉 = 〈Φ(x)c,Φ(y)〉.

Then, using this and the ternary property, they find

〈〈Φ(x),Φ(y)〉, ϕ(b)〈Φ(x′),Φ(y′)〉〉 = 〈〈Φ(x),Φ(y)〉, 〈Φ(x′b∗),Φ(y′)〉〉

= 〈Φ((x′b∗)〈x, y〉),Φ(y′)〉

= 〈Φ((x′)〈xb, y〉),Φ(y′)〉

= 〈(Φ(x′)〈Φ(xb),Φ(y)〉,Φ(y′)〉

= 〈〈Φ(xb),Φ(y)〉, 〈Φ(x′),Φ(y′)〉〉

= 〈ϕ(b∗)〈Φ(x),Φ(y)〉, 〈Φ(x′),Φ(y′)〉〉.

Next, like every homomorphism from a C∗-algebra into the adjointable op-
erators on a pre-Hilbert C∗-module, ϕ maps into bounded operators and is
also a contraction (like every homomorphism from a C∗-algebra into a pre-
C∗-algebra). Further, calculating how ϕ(〈x, y〉) acts on CΦ(E)

ϕ(〈x, y〉)〈Φ(x′),Φ(y′)〉 = 〈Φ(x′(〈x, y〉∗),Φ(y′)〉

= 〈Φ(x′)〈Φ(y),Φ(x)〉,Φ(y′)〉 = 〈Φ(x),Φ(y)〉〈Φ(x′),Φ(y′)〉

we see that it is simply by multiplication with the element 〈Φ(x),Φ(y)〉 from
the left. So, the subalgebra of ϕ(BE) of Ba(CΦ(E)) is CΦ(E) itself and it is

faithfully contained in B
a(CΦ(E)). Therefore, one can conclude that ϕ has the

unique continuous extension from BE to its completion B and so maps into
CΦ(E) ⊂ C (and obviously turns Φ into a ϕ-isometry).

4. Ternary ideals

Definition 4.1. A linear subspace I of a Hilbert B-module E is a ternary

ideal in E if E〈I, E〉 ⊂ I.
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Example 4.2. For a ternary homomorphism Φ : E → F , KerΦ is a
ternary ideal in E. Namely, by the ternary property for x, z ∈ E, y ∈ KerΦ
we have

Φ(x〈y, z〉) = Φ(x)〈Φ(y),Φ(z)〉 = 0

and so we see that E〈KerΦ, E〉 ⊂ KerΦ as required.
On the other hand, let B = B(l2) and let p ∈ B be a non trivial projection

onto a finite-dimensional subspace of l2. Setting E = B and I = pB one
obtains E〈I, E〉 = B(l2)pB(l2) = K(l2) 6⊂ I. So I is really not a ternary ideal
of E. The same is valid for B1 = K(l2).

Theorem 4.3 claims that the set of norm-closed ternary ideals is richer
than the set of ideal submodules.

Theorem 4.3. An ideal submodule I of a Hilbert B-module E is also a

norm-closed ternary ideal of E. The converse is not true.

Proof. If I is an ideal submodule, i.e. I = EBI , it is sure a norm-
closed B-submodule of E. (To show it is a linear space, we make use of an
approximate unit for B.) Since for each submodule I, 〈I, E〉 ⊂ BI , we get
E〈I, E〉 ⊂ EBI = I.

As a counterexample to the converse take B to be the bounded linear

diagonal operators on the Hilbert space (direct sum) l
(1)
2 ⊕ l

(2)
2 , i.e. B =

{(h, g) : h ∈ B(l
(1)
2 ), g ∈ B(l

(2)
2 )}. Then the inclusion hierarchy of norm-

complete two-sided ideals in B is not a linear graph: e.g. we have A1 =

{(h, g) : h ∈ B(l
(1)
2 ), g ∈ K(l

(2)
2 )} and A2 = {(h, g) : h ∈ K(l

(1)
2 ), g ∈ K(l

(2)
2 )}.

Set E = B ⊕ B. Consequently, the Hilbert B-module I := A1 ⊕ A2 (direct
orthogonal sum) is a closed ternary ideal of E, but it is not an ideal submodule
of E.

Remark 4.4. In fact, already B = B(l2) ⊕B(l2) and I = K(l2) ⊕B(l2)
give a counterexample. So the hierarchy of closed two-sided ideals of B may
even be a linear graph. The necessary additional condition on closed ternary
ideals might be that every Hilbert B-submodule of I which is an orthogonal
summand of I has the same maximal range equal to 〈I, I〉. (This is not true
for submodules which are not direct orthogonal summands, like proper ideals.)

Proposition 4.5. Let I be a closed ternary ideal in a Hilbert B-module

E. Then E〈E, I〉 ⊂ I. If Φ : E → F is a surjective ternary homomorphism

that maps E onto a Hilbert C-module F , then Φ(I) is a ternary ideal in F .

Proof. The first claim follows from the fact that 〈E, I〉 = 〈I, E〉 is valid.
If I is a closed ternary ideal, then

〈E,E〉〈I, E〉 ⊂ 〈E, I〉.
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Making use of an approximate unit for BE , we get 〈I, E〉 ⊂ 〈E, I〉, and by
taking adjoints 〈E, I〉 ⊂ 〈I, E〉. So E〈E, I〉 ⊂ I as claimed. The second claim
is a simple consequence of the ternary property of Φ.

Remark 4.6. Inclusion E〈E, I〉 ⊂ I implies alsoK(E)I ⊆ I. This reveals
that ternary ideals are left ideals in K(E).
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