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Abstract. In this paper an intrinsic definition of strong shape for
paracompact topological spaces is presented. At first a coherent proximate
net f : X → Y is defined, indexed by finite subsets of normal coverings
of Y , and then there is a homotopy between two coherent proximate nets
defined. A definition of composition of classes of homotopies between two
coherent proximate nets f : X → Y and g : Y → Z is given. Then it is
proved that for any other choice of corresponding coverings, a function is
obtained that is in the same class with the previously defined composition.
The strong shape category is obtained, with paracompacta as objects, and
the homotopy classes of coherent proximate nets as morphisms.

1. Introduction

The shape theory has shown to be more appropriate tool than homotopy
theory when study of spaces with bad local behavior is involved ([2, 6–8,
10]). The strong shape theory is a strengthening of shape theory ([3, 6]).
The first definition of strong shape for compact metric spaces is given in [9]
by embedding metric compacta in Hilbert cube. In [6, 8] strong shape is
described for topological spaces approximating the space by inverse system of
polyhedra (ANRs). Both approaches follow the corresponding approaches in
shape theory. For equivalence of different approaches for metric compacta we
refer to [6].
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The intrinsic approach to shape does not use any approximation of spaces.
The intrinsic definition of strong shape for compact metric spaces is presented
in [11].

The definition of strong shape in [11] is based on the notion of strong
proximate sequence.

The sequence of pairs (fn, fn,n+1) of functions fn : X → Y and fn,n+1 :
X × I → Y , is a strong proximate sequence from X to Y , if there exists a
cofinal sequence of finite coverings, V1 ≻ V2 ≻ · · · of Y , such that for each
natural number n, fn : X → Y , is a Vn-continuous function and fn,n+1 :
X × I → Y is a homotopy connecting Vn-continuous functions fn : X → Y

and fn,n+1 : X × I → Y .
We say that (fn, fn,n+1) is a strong proximate sequence over (Vn).
If (fn, fn,n+1) and (f ′

n, f
′
n,n+1) are strong proximate sequences from X

to Y , than there exists a cofinal sequence of finite coverings (Vn) such that
(fn, fn,n+1) and (f ′

n, f
′
n,n+1) are strong proximate sequences over (Vn).

In compact metric space, the existence of cofinal sequence of coverings
V1 ≻ V2 ≻ · · · , allows to define strong shape theory using only homotopies of
second order.

In more general case of paracompact spaces, homotopies of all orders must
be considered. In [13] the construction for (strongly) paracompact spaces is
described. We form all finite sets of coverings of Y , a = {V0,V1, . . . ,Vn},
having a maximal element (i.e. a covering that refines all other coverings of
that finite set, and is not refined by any other covering of that finite set). The
maximal element is denoted by max a.

Finite sets of coverings with a maximal element are ordered by inclusion,
and this ordering is cofinite, i.e. each a has only finite number of predeces-
sors. This fact allows composition of coherent proximate nets to be defined,
although such definition is technically rather complex. In this way category of
strong shape is obtained for paracompact spaces. In [1] it is shown that strong
shape category of metric compacta is a subcategory of the last category.

2. Coherent proximate nets

Let ∆n ⊆ Rn, ∆n = {(t1, t2, . . . , tn)|1 ≥ t1 ≥ t2 ≥ . . . ≥ tn ≥ 0} be the
non standard n-simplex.

It is important to note that by a function f : X → Y we do not necessarily
mean continuous function.

Let Y be a paracompact space. We form all finite sets of coverings of Y ,
a = {V0,V1, . . . ,Vn}, having a maximal element (a covering that refines all
other coverings of that finite set, and is not refined by any other covering of
that finite set). The maximal element is denoted by max a. If a ⊆ b, then
max a ≻ max b.

We define an ordering ”<” by a < b if a ⊂ b.
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Definition 2.1. A coherent proximate net f : X → Y consists of func-
tions

f = {fa|a = (a0, a1, . . . , an), a0 < · · · < an}

such that each fa : X×∆n → Y is stn max a0-continuous and is stn−1 max a0-
continuous on X × ∂∆n, and the following coherence condition is satisfied:

fa(x, t1, t2, . . . , tn) =







fa1...an
(x, t2, . . . , tn), t1 = 1

fa0...âi...an
(x, t1, . . . , t̂i, . . . , tn), ti = ti+1

fa0...an−1
(x, t1, . . . , tn−1), tn = 0

.

The coherent proximate net will be shortly denoted by f = (fa) . Next
we explain the definition in special cases n = 0 and n = 1. If n = 0, for each
a0, there exists fa0

: X → Y , so that fa0
is max a0- continuous. If n = 1, for

each a0, there exists fa0
: X → Y , so that fa0

is max a0- continuous and for
every a0, a1, there exists fa0a1

: ∆1 ×X → Y , such that fa0a1
is st(max a0)-

continuous and fa is max a0- continuous on ∂∆1 ×X , and also

fa0a1
(0, x) = fa0

(x), fa0a1
(1, x) = fa1

(x).

Definition 2.2. Coherent proximate nets f, g : X → Y are homotopic

(notation: f ≈ g), if there exists a coherent proximate net H = (Ha), such

that Ha : X × ∆n × I → Y is stn+1 max a0- continuous, Ha is stn max a0-
continuous on X × ∂(∆n × I), and the following conditions are satisfied:

Ha(x, t, 0) = fa(x, t),

Ha(x, t, 1) = ga(x, t).

The relation f ≈ g is an equivalence relation. This is shown in [13].

3. Composition of coherent proximate nets - existence and

uniqueness

The following two Theorems are needed for the definition of composition
of coherent proximate nets. Theorem 3.2 is proved in [9] for the case k = 1.

Theorem 3.1. If f : x → Y is W -continuous, then id×f : K×X → K×
Y is K×W-continuous, where K is compact and K×W = {K×W |W ∈ W}.

Proof. f : X → Y isW -continuous, and therefore it follows ∀x ∈ X, ∃U -
neighborhood of x and ∃W ∈ W , so that f(U) ⊆ W .

As usually id×f is defined by id×f(k, x) = (k, f(x)). Hence, for (k, x) ∈
K×X , there exists U , U being a neighborhood of x, and there exists K×W ∈
K ×W , so that id× f(K × U) ⊆ K ×W .

Theorem 3.2. Let W be a covering of Z and G : ∆k × Y → Z be a
stk(W)-continuous function and stk−1(W)- continuous on ∂∆k × Y . Then
there exists V, a covering of Y , such that for each function f : X → Y that is
V-continuous, G(id× f) : ∆k ×X → Z is stk(W)-continuous, and G(id× f)
is stk−1(W) - continuous on ∂∆k ×X.
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Proof. Let y ∈ Y be a fixed point. For each s ∈ ∆k\∂∆k, there exists
Js ⊆ ∆k\∂∆k, a neighborhood of s, and a neighborhood V

s
y of y, so that

G(Js × V
s
y ) ⊆ W

s
y , for some element W

s
y ∈ stk(W). For each s ∈ ∂∆k, there

exists Js ⊆ N , a neighborhood of s, and a neighborhood V
s
y of y, so that

G(Js × V
s
y ) ⊆ W

s
y , for some element W

s
y ∈ stk−1(W).

Then {Js|s ∈ ∆k} is an open covering of ∆k. There exists a finite sub-
covering Js1 , Js2 , . . . , Jsp .

Let Jsy = V
s1
y ∩ . . . V

sp
y . Then G(Js

i
× Vy) ⊆ W∗

si
y
, for si ∈ ∆k \ ∂∆k,

and G(Js
i
×Vy) ⊆ W si

y
, for si ∈ ∂∆k. V = {Vy|y ∈ Y } is a covering of Y . Let

V ∈ V . Then the following holds: G(Jsi ×Vy) ⊆ W∗
si
y
, for si ∈ ∆k \∂∆k, and

G(Js
i
× Vy) ⊆ W si

y
, for si ∈ ∂∆k. Js

i
×V |i=1,...,p,V ∈V is a covering of ∆k × Y .

If f : X → Y is a V- continuous function, then there exists a covering V of
X , so that f(V) ≺ V . Now, if we define H : ∆k ×X → Z by:

H(t, x) = G(t, f(x)),

then H is a stk(W)- continuous function and H is stk−1(W)- continuous on
∂∆k ×X .

We will now define a partitioning of the simplex

∆n = {(t1, t2, . . . , tn)|1 ≥ t1 ≥ . . . ≥ tn ≥ 0},

by defining the sets Km, 0 ≤ m ≤ n in the following way:

Km = {(t1, . . . , tn)|tm ≥
1

2
≥ tm+1}.

Let B be the denotation of the finite sets of coverings of Y with a maximal
element and C be the denotation of the finite sets of coverings of Z with
a maximal element. Let f = (fb) : X → Y and g = (gc) : Y → Z be
coherent proximate nets. In order to proceed and define the composition
h = (hc) : X → Z of f and g, an induction by the height of the element c ∈ C

is performed.

Definition 3.3. Let c ∈ C, h(c) = 0 be an ordered cofinite set. Then the
height of a is defined as follows:

h(a) = max{n|a0 < a1 < · · · < an−1 < a}.

A strictly increasing function g : C → B is constructed as follows:

Case 0. Let c ∈ C, h(c) = 1. We choose an element g(c), such that
g(stmax b) ≺ max c. Let g(c) = b. Now hc : X → Z may be de-
fined by hc = gcfg(c). Then hc is max c-continuous.

Case 1. Let c ∈ C, h(c) = 1. We define g(c), choosing b ∈ B, so that the
following conditions hold:

1. g(stmax b) ⊆ max c;
2. g(c0) < b, for all possible choices of c0, c0 < c;
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3. gc0c(id × fb) is stmax c-continuous and gc0c(id × fb) is max c-
continuous on ∂∆1 ×X .

Let g(c) = b. The functions hc and hc0c are defined as follows:

hc = gcfg(c).

Then hc is max c- continuous. The function hc0c : ∆
1 ×X → Z is defined by:

hc0c(t, x) =

{

gc0c(2t− 1, fb(x)), t ∈ K0

gc0fb0b(2t, x), t ∈ K1
.

Theorem 3.1 provides that gc0fb0b is stmax c0- continuous, and Theorem 2.2
and the condition 3 provide that gc0c(id × fb) is stmax c0- continuous and
gc0c(id× fb) is maxc0- continuous on ∂∆1 ×X . Then hc0c is stmax c0- con-
tinuous and hc0c is max c0- continuous on ∂∆1 ×X . On Figure 1 below there
is a given review of the mapping hc0c.

Figure 1

Case n − 1 (inductive assumption). We assume that for each c having a
height h(c) ≤ n− 1, g(c) = b is defined, so that the following conditions hold:

1) g(stmax b) ≺ max c;
2) g(c0) < g(c1) < · · · < g(cn−2) < g(c) = b, for all possible choices of

indices C0 < c1 < · · · < cn−2 < c;
3) The following mappings are defined: hc, hc0c, hc0c1c, . . . , hc0c1...cn−2c,

0 ≤ i ≤ n − 2, such that hc0c1...cic : ∆i+1 × X → Z is sti+1 max c0-
continuous and hc0c1...cic is stimax c0- continuous on ∂∆i+1 ×X .

On Figure 2 below there is a given review of the mapping hc0c1c, and the
conditions 1-3 below hold.

1. g(stmax b) ≺ max c;
2. g(c0) < b, for all possible choices of c0, c0 < c;
3. gc0c(id× fb) is stmax c- continuous and gc0c(id× fb) is max c- contin-

uous on ∂∆1 ×X .

Case n. Let c ∈ C, h(c) = n. Herein it is important to mention that there
exists a linear homeomorphism between the sets Ki and ∆i ×∆n−i mapping
vertices to vertices. We choose b, so that:

1. g(stmax b) ≺ max c;
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Figure 2

2. g(c′) < b, for all possible choices of c′, c′ < c;
3. gc0...ck(id× fbk+1...bn) : ∆

k ×∆n−k ×X → Z is stk max c- continuous,

for k = 1, 2, . . . n and for max b, gc0...ck(id × fbk+1...bn) is stk−1 max c-

continuous on ∂∆k ×∆n−k ×X .

Let g(c) = b. Because of the inductive assumption, the following holds:
g(c0) < g(c1) < · · · < g(cn−1) < g(c) = b for each c0 < c1 < · · · < cn−2 <

cn−1 < c, and the following mappings: hc, hc0c, hc0c1c, . . . , hc0c1...cn−2c are
defined. We define the function hc0c1...cn−1c : ∆

n ×X → Z by:

hc0c1...cn−1c(t, x) =







gc0fg(c0c1...cn−1c)(2t1, . . . , 2tn, x), t1 ≤ 1
2

gc0...ci(2t− 1, . . . , 2ti − 1, fg(cici+1...cn−1c)(2ti+1, . . . , 2tn, x)), ti ≥
1
2 ≥ ti+1.

gc0c1...cn−1c(2t1 − 1, . . . , 2ti − 1, fg(c)(x)), tn ≥ 1
2

Theorem 3.1, Theorem 3.2 and the condition 3 provide that hc0c1...cn−1c is
stn max c0- continuous and hc0c1...cn−1c is stn−1 max c0- continuous on ∂∆n ×
X . We check that hc0c1...cn−1c is well defined. As in previous cases, g(c0) =

b0, g(c1) = b1, . . . , g(cn−1) = bn−1, g(c) = b. Let t1 = 1
2 .

gc0fb0b1...bn−1b(2 ·
1

2
, 2t2, . . . , 2tn, x) = gc0fb0b1...bn−1b(1, 2t2, . . . , 2tn, x)

= gc0fb0b1...bn−1b(2t2, . . . , 2tn, x).

gc0c1(2 ·
1

2
, fb0b1...bn−1b(2t2, . . . , 2tn, x)) = gc0c1(0, fb1...bn−1b(2t2, . . . , 2tn, x))

= gc0(fb1...bn−1b(2t2, . . . , 2tn, x))

= gc0(fb1...bn−1b(2t2, . . . , 2tn, x)).
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Let ti = ti+1 = 1
2 . ti = ti+1 implicates the following:

gc0...ci(2t1 − 1, 2t2 − 1, . . . , 2ti − 1, fbibi+1...bn−1b(2ti+1, . . . , 2tn, x))

= gc0...ci−1
(2t1 − 1, 2t2 − 1, . . . , 2ti − 1, fbibi+1...bn−1b(2ti+1, . . . , 2tn, x)),

whereas ti =
1
2 implicates:

gc0...ci(2t1 − 1, 2t2 − 1, . . . , 2ti − 1, fbibi+1...bn−1b(2ti+1, . . . , 2tn, x))

= gc0...ci(2t1 − 1, 2t2 − 1, . . . , 2
1

2
− 1, fbibi+1...bn−1b(2ti, . . . , 2tn, x))

= gc0...ci(2t1 − 1, 2t2 − 1, . . . , 0, fbibi+1...bn−1b(2ti+1, . . . , 2tn, x))

= gc0...ci−1
(2t1 − 1, 2t2 − 1, . . . , 2ti−1 − 1, fbibi+1...bn−1b(2ti+1, . . . , 2tn, x)).

Let tn = 1
2 .

gc0...cn−1c(2t1 − 1, 2t2 − 1, . . . , 2tn − 1)

= gc0...cn−1c(2t1 − 1, 2t2 − 1, . . . , 2
1

2
− 1, fb(x)),

gc0...cn−1c(2t1 − 1, 2t2 − 1, . . . , 0, fb(x))

= gc0...cn−1
(2t1 − 1, 2t2 − 1, . . . , 2tn−1 − 1, fb(x)).

gc0...ci(2t1 − 1, 2t2 − 1, . . . , 2ti − 1, fbibi+1...bn−1b(2ti+1, . . . , 2tn, x))

= gc0...cn−1
(2t1 − 1, 2t2 − 1, . . . , 2tn − 1, fbn−1b(2 ·

1

2
, x))

= gc0...cn−1
(2t1 − 1, 2t2 − 1, . . . , 2tn − 1, fbn−1b(1, x))

= gc0...cn−1
(2t1 − 1, 2t2 − 1, . . . , 2tn − 1, fb(x)).

Therefore it is obtained that the function is well defined. Consequently it is
obtained that the composition of the coherent proximate nets f = (fb) : X →
Y and g = (gb) : Y → Z is a coherent proximate net h = (hc) : Y → Z . Let
this composition be denoted by f ◦ g : X → Y .

4. Composition of homotopy classes of coherent proximate nets

We define a composition of homotopy classes of coherent proximate nets
by [(gc)][(fb)] = [(gcfg(c))]. In order for this definition to be valid, it is neces-
sary to be proved that it does not depend on the choice of strictly increasing
function g : C → B. It is enough to show that for another choice of a strictly
increasing function g′ : C → B, such that it satisfies the same required con-
ditions 1 - 3 from the definition of composition in 2, the corresponding co-
herent proximate net h′ = (h′

c) : X → Z is in the same homotopy class with

h = (hc) : X → Z. In fact, as the way g : C → B, and (hc) : X → Z,
and g′ : C → B, (h′

c) : X → Z are obtained, similarly we may obtain

another strictly increasing function g′′ : C → B, with additional condition
g′′(c) > g(c), g′(c) for all c ∈ C, and a coherent proximate net (h′′

c ) : X → Z.
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Now, by induction, a homotopy H = (Hc) : X × I → Z, connecting (hc) and
(h′′

c ), is constructed.

Case 0. If c ∈ C, h(c) = 1, Hc : I × X → Z, is defined by Hc(t, x) =
gcfbg(c”)(t, x). This homotopy connects hc = gcfg(c) and h”c = gcfg(c”).

Case 1. Let c ∈ C, h(c) = 1. The homotopy Hc : I ×X → Z is defined by
Hc(t, x) = gcfbg(c”)(t, x). The following step is to show that hc0c is homotopic

to h”c0c. Therefore, Hc0c : ∆1 × I ×X → Z is defined in the following way
(Figure 3):

Figure 3

Hc0c(t, s, x) =







gc0fg(c0)g”(c0c)(s, 2t, x), 0 ≤ t ≤ s
2

gc0fg(c0c)g”(c)(s, 2t, x),
s
2 ≤ t ≤ 1

2
gc0c(2t− 1, fg(c)g”(c)(s, x)),

1
2 ≤ t ≤ 1

.

Hc0c is well defined on the edges, and it is shown as follows: - If t = s
2 , then

gc0fb0b0”b”(s, 2 ·
s

2
, x) = gc0fb0b0”b”(s, s, x) = gc0fb0b”(s, x).

On the other hand,

gc0fb0bb”(2 ·
s

2
, s, x) = gc0fb0bb”(s, s, x) = gc0fb0b”(s, x).
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If t = 1
2 , then

gc0fb0bb”(2 ·
1

2
, s, x) = gc0fb0bb”(1, s, x) = gc0fbb”(s, x).

On the other hand,

gc0c(2 ·
1

2
− 1, fbb”(s, x)) = gc0c(0, fbb”(s, x)) = gc0fbb”(s, x).

The following also holds: If s = 0, then

Hc0c(t, 0, x) =







gc0fb0b0”b”(0, 2t, x), t = 0
gc0fb0bb”(2t, 0, x), 0 ≤ t ≤ 1

2
gc0c(2t− 1, fbb”(0, x)),

1
2 ≤ t ≤ 1

=







gc0fb0b0”b”(0, 0, x), t = 0
gc0fb0bb”(2t, 0, x), 0 ≤ t ≤ 1

2
gc0c(2t− 1, fbb”(0, x)),

1
2 ≤ t ≤ 1

=







gc0fb0b0”(0, x), t = 0
gc0fb0b(2t, x), 0 ≤ t ≤ 1

2
gc0c(2t− 1, fb(x)),

1
2 ≤ t ≤ 1

=







gc0fb0(x), t = 0
gc0fb0b(2t, x), 0 ≤ t ≤ 1

2
gc0c(2t− 1, fb(x)),

1
2 ≤ t ≤ 1

=

{

gc0fb0b(2t, x), 0 ≤ t ≤ 1
2

gc0c(2t− 1, fb(x)),
1
2 ≤ t ≤ 1

= hc0c(t, x).

If s = 1, then

Hc0c(t, 1, x) =







gc0fb0b0”b”(1, 2t, x), 0 ≤ t ≤ 1
2

gc0fb0bb”(2t, 1, x), t = 1
2

gc0c(2t− 1, fbb”(1, x)),
1
2 ≤ t ≤ 1

=







gc0fb0b0”b”(1, 2t, x), 0 ≤ t ≤ 1
2

gc0fb0bb”(1, 1, x), t = 1
2

gc0c(2t− 1, fbb”(1, x)),
1
2 ≤ t ≤ 1

=







gc0fb0b0”b”(1, 2t, x), 0 ≤ t ≤ 1
2

gc0fbb”(1, x), t = 1
2

gc0c(2t− 1, fb”(x)),
1
2 ≤ t ≤ 1

=







gc0fb0”b”(2t, x), 0 ≤ t ≤ 1
2

gc0fb”(x), t = 1
2

gc0c(2t− 1, fb”(x)),
1
2 ≤ t ≤ 1

=

{

gc0fb0”b”(2t, x), 0 ≤ t ≤ 1
2

gc0c(2t− 1, fb”(x)),
1
2 ≤ t ≤ 1

= h”c0c(t, x).

Hence it is proved that Hc0c is a homotopy between hc0c and h”c0c.
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Case n. The homotopy Hc0c1...cn−1c : ∆n × I ×X → Z is defined in the
following way: We have defined the partitioning of the non-standard simplex
∆n = {(t1, t2, . . . , tn)|1 ≥ t1 ≥ t2 . . . ≥ tn ≥ 0} by the sets Ki, 0 ≤ i ≤ n

where Ki = {(t1, t2, . . . , tn)|ti ≥ 1
2 ≥ ti+1}. Now we need a partitioning of

the sets, and therefore we define the sets for each, in the following way:

K
j
i ={(t1, . . . , ti, . . . , tn, s)| (t1, . . . , ti, . . . , tn, s) ∈ Ki × I

so that ∀m, i ≤ m ≤ n− j,
s

2
≤ tm ≤

1

2
, ∀l, n− j < l ≤ n, 0 ≤ tl ≤

1

2
}.

Now Hc0c1...cn−1c : ∆
n × I ×X → Z is defined on Ki × I, ∀i = 0, 1, . . . , n, by:

Hc0c1...cn−1c(t1, . . . , tn, s, x)

= gc0c1...ci(2t1 − 1, . . . , 2ti − 1, fg(ci,...,cn−j)g”(cn−jcn−j+1...c)

(2ti+1, . . . , s, 2tn−j+1, . . . , 2tn, x))

for (t1, . . . , tn, s) ∈ K
j
i . Next we show thatHc0c1...cn−1c is well defined. In fact,

we need to observe several cases, and for each we will show that Hc0c1...cn−1c

is well defined:

1. For (t1, . . . , tn, s, x) ∈ K
j
i−1 ∩K

j
i , j = 1, . . . , n − i, we will show that

the definition of Hc0c1...cn−1c is unique.

2. For (t1, . . . , tn, s, x) ∈ K
j−1
i ∩ K

j
i , j = 1, . . . , n − i, we will show that

the definition of Hc0c1...cn−1c is unique.
3. We will show that the definition of Hc0c1...cn−1c on the edges of ∆n× I

coincides with the corresponding homotopies on ∆n−1 × I, i.e., with
Hc0c1...ĉi...cn−1c, i = 1, . . . , n.

1. Let (t1, . . . , tn, s, x) ∈ K
j
i−1∩K

j
i , i.e. ti =

1
2 . Because of (t1, . . . , tn, s, x)

∈ K
j
i−1 and ti =

1
2 , we obtain the following:

Hc0...c(t1, . . . , s, x)

= gc0...ci−1
(2t1 − 1, . . . , 2ti−1 − 1,

fbi−1...bn−j”bn−j+1”...b”(2ti, . . . , s, 2tn−j+1, . . . , 2tn, x))

= gc0...ci−1
(2t1 − 1, . . . , 2ti−1 − 1,

fbi−1...bn−j”bn−j+1”...b”(2 ·
1

2
, . . . , s, 2tn−j+1, . . . , 2tn, x))

= gc0...ci−1
(2t1 − 1, . . . , 2ti−1 − 1,

fbi−1...bn−j”bn−j+1”...b”(1, . . . , s, 2tn−j+1, . . . , 2tn, x))

= gc0...ci−1
(2t1 − 1, . . . , 2ti−1 − 1,

fbi−1...bn−j”bn−j+1”...b”(2ti+1, . . . , s, 2tn−j+1, . . . , 2tn, x)).
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On the other hand, because of (t1, . . . , tn, s, x) ∈ K
j
i and ti =

1
2 , we

obtain:

Hc0...c(t1, . . . , s, x)

= gc0...ci(2t1 − 1, . . . , 2 ·
1

2
− 1,

fbi...bn−j”bn−j+1”...b”(2ti+1, . . . , s, 2tn−j+1, . . . , 2tn, x))

= gc0...ci−1
(2t1 − 1, . . . , 0,

fbi...bn−j”bn−j+1”...b”(2ti+1, . . . , s, 2tn−j+1 . . . , 2tn, x))

= gc0...ci−1
(2t1 − 1, . . . , 2ti−1 − 1,

fbi...bn−j”bn−j+1”...b”(2ti+1, . . . , s, 2tn−j+1 . . . , 2tn, x))

by which we show case 1.
2. Let (t1, . . . , tn, s, x) ∈ K

j−1
i ∪ K

j
i , i.e. tn−j+1 = s

2 . Because of

(t1, . . . , tn, s, x) ∈ K
j−1
i and tn−j+1 = s

2 , we obtain:

Hc0...c(t1, . . . tn, s, x)

= gc0...ci(2t1 − 1, . . . , 2ti − 1,

fbi...bn−j+1bn−j+1”...b”(2ti+1, . . . , 2 ·
s

2
, s, 2tn−j+2, . . . , 2tn, x))

= c0 . . . ci(2t1 − 1, . . . , 2ti − 1,

fbi...bn−j+1bn−j+1”...b”(2ti+1, . . . , s, s, 2tn−j+2, . . . , 2tn, x))

= gc0...ci(2t1 − 1, . . . , 2ti − 1,

fbi...bn−jbn−j+1”...b”(2ti+1, . . . , 2tn−j , s, 2tn−j+2 . . . , 2tn, x)).

On the other hand, because of (t1, . . . , tn, s, x) ∈ K
j
i and tn−j+1 = s

2 ,
we obtain:

Hc0...c(t1, . . . tn, s, x)

= gc0...ci(2t1 − 1, . . . , 2ti − 1,

fbi...bn−j+1bn−j+1”...b”(2ti+1, . . . ,
2s

2
, s, 2tn−j+2, . . . , 2tn, x))

= gc0...ci(2t1 − 1, . . . , 2ti − 1,

fbi...bn−jbn−j”,bn−j+1,...b”(2ti+1, . . . , s,
2s

2
, 2tn−j+2, . . . , 2tn, x))

= gc0...ci(2t1 − 1, . . . , 2ti − 1,

fbi...bn−jbn−j+1”...b”(2ti+1, . . . , 2tn−j, s, 2tn−j+2 . . . , 2tn, x))

by which case 2 is completed.
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3. The edges of ∆n × I, because of the definition of ∆n, are of a type:

∂n
0 = {(1, t2, . . . , tn, s)|(1, t2, . . . , tn) ∈ ∆n},

∂n
l = {(1, t2, . . . , tn, s)|(t1, t2, . . . , tn) ∈ ∆n, tl = tl+1}, l = 1 . . . , n− 1,

∂n
n = {(t1, . . . , tn−1, 0, t,s)|(t1, t2, . . . , tn−1, 0) ∈ ∆n}.

On ∂n
0 there are the sets K1,K2, . . . ,Kn. On ∂n

l there are the
sets K0, . . . ,Ki−1, Ki+1, . . . ,Kn. On ∂n

n there are the sets K0,K1,

. . . ,Kn−1. For ∂
n
0 , we obtain:

Hc0...c(t1, . . . tn, s, x)

= gc0...ci(2 · 1− 1, . . . , 2ti − 1,

fbi...bn−jbn−j”bn−j+1”...b”(2ti+1, . . . , s, 2tn−j+1, . . . , 2tn, x))

= gc0...ci(1, . . . , 2ti − 1,

fbi...bn−jbn−j”,bn−j+1”,...b”(2ti+1, . . . , s, 2tn−j+1, . . . , 2tn, x))

= gc0...ci(2t2 − 1, . . . , 2ti − 1,

fbi...bn−jbn−j”bn−j+1”...b”(2ti+1, . . . , s, 2tn−j+1 . . . , 2tn, x))

= Hc1...c(t2, . . . , tn, s, x),

for (t2, . . . , tn, s) ∈ K
j
i , ∀i = 1, . . . , n.

For ∂n
i , there are two cases, either l < i or l > i in the general formula of

Hc0c1...cn−1c. It is impossible that l = i, because on the edge ∂n
i there is no

set Ki. For l < i, we obtain:

Hc0...c(t1, . . . tn, s, x)

= gc0...ci (2t1 − 1, . . . , 2tl − 1, 2tl+1 − 1, . . . 2ti − 1,

fbl...bn−jbn−j”...b”(2ti+1, . . . , s, 2tn−j+1, . . . , 2tn, x)
)

= gc0...ci (2t1 − 1, . . . , 2tl − 1, 2ti − 1,

fbi...bn−jbn−j”,bn−j+1”,...b”(2ti+1, . . . , s, 2tn−j+1, . . . , 2tn, x)
)

= gc0...ĉl...ci (2t2 − 1, . . . , 2ti − 1,

fbi...bn−jbn−j”bn−j+1”...b”(2ti+1, . . . , s, 2tn−j+1, . . . , 2tn, x)
)

= Hc0c1...ĉl...cn−1c(t1, . . . , t̂l+1, tl+2, . . . , ti, . . . , tn, s, x),

for (t1, . . . , t̂l+1, tl+2, . . . , ti, . . . , tn, s) ∈ K
j
i , i = 1, . . . , l̂, . . . , n. For l > i,

there are also two cases possible: either both tl and tl+1 are before s, or both
tl and tl+1 are after s. We will show the case when both tl and tl+1 are before
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s, and the other can be obtained similarly:

Hc0c1...cn−1c(t1, . . . tn, s, x)

= gc0...ci(2t1 − 1, . . . , 2ti − 1,

fbi...bn−jbn−j”...b”(2ti+1, . . . , 2tl, 2tl+1, . . . , s, 2tn−j+1, . . . , 2tn, x))

= gc0...ci(2t1 − 1, . . . , 2tl − 1, 2ti − 1,

fbi...bn−jbn−j”,bn−j+1”,...b”

(2ti+1, . . . , 2tl, 2tl, . . . , s, 2tn−j+1, . . . , 2tn, x))

= gc0...ci(2t1 − 1, . . . , 2ti − 1,

f
bi...b̂l...bn−jbn−j”bn−j+1”...b”

(2ti+1, . . . , 2tl, 2tl+2, . . . , s, 2tn−j+1, . . . , 2tn, x))

= Hc0c1...ĉl...cn−1c(t1, . . . , ti, . . . , t̂l+1, . . . , tn, s, x),

for (t1, . . . , ti, . . . t̂l+1, . . . , tn, s) ∈ K
j
i , i = 1, . . . , l̂, . . . , n. For ∂n

n , we obtain:

Hc0c1...cn−1c(t1, . . . tn, s, x)

= gc0...ci(2t1 − 1, . . . , 2ti − 1,

fbi...bn−jbn−j”...b”(2ti+1, . . . , s, 2tl, 2tn−j+1, . . . , 0, x))

= gc0...ci(2t1 − 1, . . . , 2ti − 1,

fbi...bn−jbn−j”,bn−j+1”,...b”(2ti+1, . . . , s, 2tn−j+1, . . . , 0, x))

= gc0...ci(2t1 − 1, . . . , 2ti − 1,

fbi...bn−jbn−j”bn−j+1”...b”(2ti+1, . . . , s, 2tn−j+1, . . . , 0, x))

= Hc0c1...cn−1
(t1, . . . , ti, . . . , tn−1, s, x),

(t1, . . . , ti, . . . , tn−1, s) ∈ K
j
i , i = 0, . . . , n− 1. Showing case 3 is in fact show-

ing the coherence condition for Hc0c1...cn−1c. We have also shown that the
homotopy Hc0c1...cn−1c is well defined. Next we show that Hc0c1...cn−1c con-
nects hc0c1...cn−1c and h”c0c1...cn−1c: For s = 0, by the definition of the sets

K
j
i , it follows that for each n− j < l ≤ n, tl = 0, and therefore we obtain:

Hc0c1...cn−1c(t1, . . . tn, 0, x)

= gc0...ci(2t1 − 1, . . . , 2ti − 1,

fbi...bn−jbn−j”bn−j+1...b”(2ti+1, . . . , s, 2tl, 2tn−j+1, 0, . . . , 0, x))

= gc0...ci(2t1 − 1, . . . , 2ti − 1,

fbi...bn−j
(2ti+1, . . . , s, 2tn−j+1, x)),

for (t1, . . . , tn, 0) ∈ K
j
i , which corresponds to the definition of hc0c1...cn−1c.
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Figure 4

For s = 1, by the definition of the sets K
j
i , it follows that ∀m, i < m ≤

n− j, tm = 1
2 , and therefore we obtain:

Hc0c1...cn−1c(t1, . . . tn, 1, x)

= gc0...ci(2t1 − 1, . . . , 2ti − 1,

fbi...bn−jbn−j”bn−j+1...b”(2 ·
1

2
, . . . , 2 ·

1

2
, 2tn−j+1, . . . , x))

= gc0...ci(2t1 − 1, . . . , 2ti − 1,

fbi...bn−jbn−j”bn−j+1b”(1, . . . , 1, s, 2tn−j+1, 2tn, x)),

= gc0...ci(2t1 − 1, . . . , 2ti − 1,

fbn−i”...bn−j+1”...b”(2tn−j+1, . . . , 2tn, x)),

for (t1, . . . , tn, 1) ∈ K
j
i , which corresponds to the definition of h”c0c1...cn−1c.

Next we observe the example when n = 2, in order to illustrate the above.
hc0c1c and hc0c1c” were previously defined in the following way (Figure 2):

hc0c1c(t1, t2, x) =







gc0fb0b1b(2t1, 2t2, x), t1 ≤ 1
2 ((t1, t2) ∈ K0)

gc0c1(2t1 − 1, fb1b(2t2, x)), t1 ≥ 1
2 ≥ t2((t1, t2) ∈ K1)

gc0c1c(2t1, 2t2, fb(x)), t2 ≤ 1
2 ((t1, t2) ∈ K2)

,
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h”c0c1c(t1, t2, x) =







gc0fb0”b1”b”(2t1, 2t2, x), t1 ≤ 1
2 ((t1, t2) ∈ K0)

gc0c1(2t1 − 1, fb1”b”(2t2, x)), t1 ≥ 1
2 ≥ t2((t1, t2) ∈ K1)

gc0c1c(2t1, 2t2, fb”(x)), t2 ≤ 1
2 ((t1, t2) ∈ K2)

The homotopy Hc0c1c : ∆2 × I × X → Z, which connects hc0c1c and
h”c0c1c, is defined on Ki × I, for each i = 0, 1, 2, by:

Hc0c1c(t1, t2, s, x)

= gc0...ci(2t1 − 1, . . . , 2ti − 1, fbi...b2−jb2−j”...b”(2ti+1, s, 2t2−j+1, 2t2, x)),

for (t1, t2, s) ∈ K
j
i , j = 0, . . . , 2 − i. More specifically, Hc0c1c is defined as

follows, for each Ki × I, i = 0, 1, 2: - For K0 × I:

Hc0c1c(t1, t2, s, x) =







gc0fb0b1bb”(2t1, 2t2, s, x), (t1, t2, s) ∈ K0
0

gc0fb0b1b1”b”(2t1, s, 2t2, x), (t1, t2, s) ∈ K1
0

gc0fb0b0”b1”b”(s, 2t1, 2t2, x), (t1, t2, s) ∈ K2
0

.

- For K1 × I:

Hc0c1c(t1, t2, s, x) =

{

gc0c1(2t1, fb1bb”(2t2, s, x)), (t1, t2, s) ∈ K0
1

gc0c1(2t1, fb1b1”b”(2t2, s, x)), (t1, t2, s) ∈ K1
1

.

- For K1 × I:

Hc0c1c(t1, t2, s, x) = gc0c1c(2t1, 2t2 − 1, fbb”(s, x)), (t1, t2, s) ∈ K0
2 .

On Figure 4 we see the way ∆2 × I divides itself into three prisms K0 × I,
K1×I, and K2×I. On Figures 5, 6 and 7 below we can see the corresponding
partitioning of Ki × I into K

j
i , i = 0, 1, 2. -K0 × I divides into three parts,

K0
0 , K

1
0 and K2

0 : - K1 × I divides into two parts, K0
1 and K1

1 : - K2 × I does
not divide and the one part is K0

2 :

Figure 5



346 B. ANDONOVIC AND N. SHEKUTKOVSKI

Figure 6

Figure 7

Hence it is shown that (hc) and (h”c) are homotopic. In an analogue
way we prove that (hc) and (h”c) are homotopic. The relation of homotopy
of coherent nets is an equivalence relation, therefore (hc) = (gcfg(c)) and
(h”c) = (gcfg′(c)) and are in the same homotopy class. Now we may define a
composition of homotopy classes of coherent proximate nets by

[(gc)][(fb)] = [(gcfg(c))],



INTRINSIC STRONG SHAPE FOR PARACOMPACTA 347

and this definition does not depend on the choice of strictly increasing function
g : C → B.

5. The category of strong shape

Theorem 5.1. If f : X → Y , g : Y → Z, h : Z → W = (Wd, wd, D) are
proximate coherent nets, then the proximate coherent nets h(gf) and (hg)f
are homotopic.

Proof. Suppose f = (fb), g = (gc), and h = (hd). In order to obtain an
explicit formula for the proximate coherent net h(gf), we define a decompo-
sition of ∆n into subpolyhedra Kl,m for any pair of integers l,m such that
0 ≤ l ≤ m ≤ n, Kl,m = {(t1, t2, . . . , tn)|tl ≥

1
2 ≥ tl+1, tm ≥ 1

4 ≥ tm+1}. By
applying the composition formula twice, for (t1, . . . , tn) ∈ Kl,m we have

(h(gf))d(t, x)

= hd0...dl
(2t1 − 1, . . . , 2tl − 1, gh(d1...dm)(4l+1 − 1, . . . , 4tm − 1,

fgh(dm...dk)(4tm+1, . . . , 4tk, x))).

Similarly, to obtain an explicit formula for the proximate coherent net (hg)f ,
we define a decomposition of ∆n into subpolyhedra Ql,m for any pair of inte-
gers l,m such that 0 ≤ l ≤ m ≤ n, Ql,m = {(t1, . . . , tn)|tl ≥

3
4 ≥ tl+1, tm ≥

1
2 ≥ tm+1}. Then, for (t1, . . . , tk) ∈ Ql,m we have

(h(gf))d(t, x)

= hd0...dl
(4t1 − 3, . . . , 4tl − 3, gh(d1...dm)(4l+1 −m, . . . , 4tm − 2,

fgh(dm...dk)(2tm+1, . . . , 2tk, x))).

We define a partition of ∆n×I into subpolyhedraMl,m for any pair of integers
l,m such that 0 ≤ l ≤ m ≤ n,

Ml,m = {(t1, . . . , tn, s)|tl ≥
2 + s

4
≥ tl+1, tm ≥

1 + s

2
≥ tm+1}.

We define a homotopy H : I × X → W which connects h(gf) and (hg)f .
This map will be given by the function fgh : D → A and by the maps
Hd : ∆n × I ×Xfgh(dn) → Wd0

defined in the following way:

Hd(t, s, x)

= hd0...dl

(4t1 − 2− s

2− s
, . . . ,

4tl − 2− s

2− s
,

gh(d1...dm)(4tl+1 − 2, . . . , 4tm − 2, fgh(dm...dn)(2tm+1,...2tn,x))
)

.

We mention that Kl,m × 0 = {(t1, . . . , tn, 0)|(t1, . . . , tn, 0) ∈ Ml,m} and then,

for (t1, . . . , tn) ∈ Kl,m, it is easily checked that Hd(t, 0, x) = (h(gf))
j

d(t, x).

Also, Ql,m × 1 = {(t1, . . . , tn, 1)|(t1, . . . , tn, 1) ∈ Ml,m} and for (t1, . . . , tn) ∈
Ql,m, Hd(t, 1, x) = (h(gf))d(t, x). To complete the proof we will check the
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well defining and the coherence conditions of the map H
j

d . To check that the

definition is well, suppose that (t1, . . . , tn, s) ∈ Ml,m ∩Ml−1,m, i.e., ti =
2+s
4 .

For these points H
j

d is defined in two ways. If we compute the formula for

t = (t1, . . . , tn, s) ∈ Ml,m and tl =
2+s
4 , then we have:

Hd(t, s, x)

= hd0...dl−1

(

4t1 − 2− s

2− s
, . . . ,

4tl−1 − 2− s

2− s
,

gh(dl...dm)(4tl+1 − 1− s, . . . , 4tm − 1− s, fgh(dm...dn)(
4tm+1

1 + s
, . . . ,

4tn
1 + s

, x))

)

.

The same expression is obtained if we compute the formula for (t1, . . . , tn, s) ∈
Ml−1,m and tl = 2+s

4 . Similarly, we can check that the definition is
well for (t1, . . . , tn, s) ∈ Ml,m ∩ Ml,m−1, and the other cases can be de-
duced to one of these two cases. To check the coherence conditions of
the homotopy Hd, suppose that (t1, . . . , tn, s) ∈ Ml−1,m and tn = 0.

Then fgh(dm...dn)(
4tm+1

1+s
, . . . , 4tn

1+s
, x), and it follows that for tn = 0, Hd =

Hd0...dn−1
(t1, . . . , tn−1, x). The case when t1 = 0 is treated similarly. If

ti = ti+1, and i < l, then

Hd(t, s, x)

= hd0...di

(

4t1 − 2− s

2− s
, . . . ,

4ti−1 − 2− s

2− s

4ti+1 − 2− s

2− s
, . . . ,

4tl−1 − 2− s

2− s
,

gh(di...dm)(4tl+1 − 1− s, . . . , 4tm − 1− s, fgh(dm...dn)(
4tm+1

1 + s
, . . . ,

4tn
1 + s

, x))

)

= H
d0...d̂i...dn

(t1, . . . , t̂i, . . . , tn, s, x).

The cases l < i < m and m < i < n are treated similarly.

Theorem 5.2. If proximate coherent nets f, f ′ : X → Y are homotopic,
and coherent maps g, g′ : Y → Z are level homotopic, then the coherent maps
gf, g′f ′ : X → Y are level homotopic.

Proof. Let f, f ′ : X → Y be homotopic by a homotopy F : I ×X → Y

given by a strictly increasing function g : B → A. Then the proximate
coherent nets gf, gf ′ : X → Z are homotopic by the homotopy gF : I×X → Z

given by a strictly increasing function fg : C → A. Let g, g′ : Y → Z be
homotopic by a homotopy G : I × Y → Z given by the strictly increasing
function g : C → B. Then the proximate coherent nets gf ′, g′f ′ : Z → Z

are homotopic by the homotopy G(1 × f ′) : I × X → Z given by strictly
increasing function fg : C → A. It follows that the proximate coherent nets
gf, g′f ′ : X → Z are homotopic.
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Theorem 5.3. The proximate coherent nets f and f1X are homotopic;
f and 1Y f are homotopic.

Proof. We will prove that f and 1Y are homotopic, and the other state-
ment is treated in the similar way. First we define a partition of ∆n × I into
subpolyhedra Ll, l = 0, 1, . . . , n, by Ll = {(t1, . . . , tn, s)|tl ≥

s
2 + 1

2 ≥ tl+1}.
We define a homotopy F : I ×X → Y . This map will be given by the func-
tion f : B → A and by the maps Fb : ∆n × I × Xf(bn) → Yb0 defined for

(t, s) ∈ Ll by Fb(t, s, x) = fb1...bn(
2tl
1+s

, . . . , 2tn
1+s

, x). We mention that Kl× 0 =

{(t1 . . . , tn, 0)|(t1 . . . , tn, 0) ∈ Ll} and then, for t = (t1 . . . , tn) ∈ Kl, we have
Fb(t, 0, x) = (1Y f)b(t, x). Also, {(t1, . . . , tn, 1)|(t1, . . . , tn) ∈ ∆n} = L0 and
Fb(t, 1, x) = fb(t, x). Category of strong shape is obtained. The objects are
paracompact topological spaces, and the morphisms are the classes of the co-
herent proximate nets. For the isomorphic objects in this category we say
they have the same strong shape.
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[8] S. Mardešić, Strong shape and homology, Springer-Verlag, Berlin, 2000.
[9] J.B. Quigley, An exact sequence from the n-th to the (n − 1)-st fundamental group,

Fund. Math. 77 (1973), 195–210.

[10] J.M.R. Sanjurjo, A noncontinuous description of the shape category of compacta,
Quart. J. Math. Oxford Ser. (2) 40 (1989), 351–359.

[11] N. Shekutkovski, Intrinsic definition of strong shape for compact metric spaces,

Topology Proc. 39 (2012), 27–39.
[12] N. Shekutkovski, Shift and coherent shift in inverse systems, Topology Appl. 140

(2004), 111–130.
[13] N. Shekutkovski and B. Andonovik, Intrinsic definition of strong shape of strong para-

compacta, Proceedings of IV Congress of the mathematicians of Republic of Macedo-
nia, Struga, October 18–22, 2008, 2010, 287–299.

B. Andonovic
Faculty of Technology and Metallurgy
Ss Cyril and Methodius University
1000 Skopje
Macedonia
E-mail : beti@tmf.ukim.edu.mk



350 B. ANDONOVIC AND N. SHEKUTKOVSKI

N. Shekutkovski
Faculty of Mathematics and Natural Sciences
Ss Cyril and Methodius University
1000 Skopje
Macedonia
E-mail : nikita@pmf.ukim.mk

Received : 25.1.2016.
Revised : 1.11.2016.


