THE DAVIS-GUT LAW FOR INDEPENDENT AND IDENTICALLY DISTRIBUTED BANACH SPACE VALUED RANDOM ELEMENTS

Pingyan Chen, Mingyang Zhang and Andrew Rosalsky
Jinan Unversity, P. R. China and University of Florida, USA

Abstract

An analog of the Davis-Gut law for a sequence of independent and identically distributed Banach space valued random elements is obtained, which extends the result of Li and Rosalsky (A supplement to the Davis-Gut law. J. Math. Anal. Appl. 330 (2007), 1488-1493).

1. Introduction

Let $\left\{X, X_{n}, n \geq 1\right\}$ be a sequence of independent and identically distributed random variables. The following theorem, which is related to the classical Hartman-Wintner law of the iterated logarithm (see, Hartman and Wintner, [6]), is well known. As usual we let $\log t=\log _{e} \max \{e, t\}$ for $t \geq 0$.

Theorem 1.1. The following three statements are equivalent:
(1.1) $E X=0$ and $E X^{2}=1$,

$$
\sum_{n=1}^{\infty} \frac{1}{n} P\left\{\left|\sum_{k=1}^{n} X_{k}\right|>(1+\varepsilon) \sqrt{2 n \log \log n}\right\} \begin{cases}<\infty, & \text { if } \varepsilon>0 \tag{1.2}\\ =\infty, & \text { if } \varepsilon<0\end{cases}
$$

(1.3) $\sum_{n=1}^{\infty} \frac{\log \log n}{n} P\left\{\left|\sum_{k=1}^{n} X_{k}\right|>(1+\varepsilon) \sqrt{2 n \log \log n}\right\} \begin{cases}<\infty, & \text { if } \varepsilon>0 \\ =\infty, & \text { if } \varepsilon<0 .\end{cases}$

This result is referred to as the Davis-Gut law. The implication " $(1.1) \Rightarrow(1.2)$ " was formulated by Davis ([3]) with an invalid proof which was corrected by Li et al. ([11]). The implication " $(1.2) \Rightarrow(1.1)$ " was obtained

[^0]by Gut ([5]). The equivalence between (1.1) and (1.3) was established by Li ([9]). Necessary and sufficient conditions for (1.3) in a Banach space setting were obtained by $\mathrm{Li}([9])$. For moving average processes, the implications " $(1.1) \Rightarrow(1.2)$ " and " $(1.1) \Rightarrow(1.3)$ " were obtained by Chen and Wang ([1]).

Li and Rosalsky ([10]) provided the following supplement to the DavisGut law. When $h(t) \equiv 1$, it yields the equivalence between (1.1) and (1.2).

ThEOREM 1.2. Let $h(\cdot)$ be a positive nondecreasing function on $(0, \infty)$ such that $\int_{1}^{\infty}(t h(t))^{-1} d t=\infty$. Write $\Psi(t)=\int_{1}^{t}(\operatorname{sh}(s))^{-1} d s, t \geq 1$. Then (1.1) and

$$
\sum_{n=1}^{\infty} \frac{1}{n h(n)} P\left\{\left|\sum_{k=1}^{n} X_{k}\right|>(1+\varepsilon) \sqrt{2 n \log \Psi(n)}\right\} \begin{cases}<\infty, & \text { if } \varepsilon>0 \tag{1.4}\\ =\infty, & \text { if } \varepsilon<0\end{cases}
$$

are equivalent.
Recently, Liu et al. ([12]) extended Theorem 1.2 to moving average processes which then extends the work of Chen and Wang ([1]) by establishing the implication " $(1.2) \Rightarrow(1.1)$ " for moving average processes.

In this paper, we will extend Theorem 1.2 for a sequence of independent and identically distributed Banach space valued random elements.

2. Preliminaries and Lemmas

Let B be a real separable Banach space with norm $\|\cdot\|$ and let B^{*} denote the topological dual space of B. We let B_{1}^{*} denote the unit ball of B^{*}. Let (Ω, \mathcal{F}, P) be a probability space. A random element X taking values in B is defined as an \mathcal{F}-measurable function from (Ω, \mathcal{F}) into B equipped with the Borel sigma-algebra; we call it a B-valued random element for short. The expected value or mean of a B-valued random element X is defined to be the Bochner integral and is denoted by $E X$.

Lemma 2.1. Let $\left\{k_{n}, n \geq 1\right\}$ be a sequence of positive integers and $\left\{X_{n k}, 1 \leq k \leq k_{n}, n \geq 1\right\}$ an array of rowwise independent B-valued random elements. Suppose that there exists $\delta>0$ such that $\left\|X_{n k}\right\| \leq \delta$ a.s. for all $1 \leq k \leq k_{n}, n \geq 1$. If $\sum_{k=1}^{k_{n}} X_{n k} \rightarrow 0$ in probability, then $E\left\|\sum_{k=1}^{k_{n}} X_{n k}\right\| \rightarrow 0$ as $n \rightarrow \infty$.

Proof. Let $\left\{X_{n k}^{\prime}, 1 \leq k \leq k_{n}, n \geq 1\right\}$ be an independent copy of $\left\{X_{n k}, 1 \leq k \leq k_{n}, n \geq 1\right\}$. Then by Lemma 2.2 in Chen and Wang ([2]), it suffices to show that

$$
\begin{equation*}
E\left\|\sum_{k=1}^{k_{n}}\left(X_{n k}-X_{n k}^{\prime}\right)\right\| \rightarrow 0 \text { as } n \rightarrow \infty \tag{2.1}
\end{equation*}
$$

It is easy to show that

$$
\sum_{k=1}^{k_{n}}\left(X_{n k}-X_{n k}^{\prime}\right) \rightarrow 0 \text { in probability }
$$

and $\left\|X_{n k}-X_{n k}^{\prime}\right\| \leq 2 \delta$. Therefore by Lemma 2.1 in Hu et al. ([7]), (2.1) holds and the proof is completed.

Lemma 2.2. Let $0<b_{n} \uparrow \infty$, and $\left\{X, X_{n}, n \geq 1\right\}$ a sequence of independent and identically distributed B-valued random elements. If $b_{n}^{-1} \sum_{k=1}^{n} X_{k} \rightarrow$ 0 in probability, then $E\left\|b_{n}^{-1} \sum_{k=1}^{n} X_{k} I\left(\left\|X_{k}\right\| \leq b_{n}\right)\right\| \rightarrow 0$ as $n \rightarrow \infty$.

Proof. Let $\left\{X, X_{n}^{\prime}, n \geq 1\right\}$ be an independent copy of $\left\{X, X_{n}, n \geq 1\right\}$. Then

$$
\begin{equation*}
b_{n}^{-1} \sum_{k=1}^{n}\left(X_{k}-X_{k}^{\prime}\right) \rightarrow 0 \text { in probability. } \tag{2.2}
\end{equation*}
$$

By Lévy's inequality (see display (2.7) in Ledoux and Talagrand [8, p. 47]), for every $t>0$,

$$
P\left\{\max _{1 \leq k \leq n}\left\|X_{k}-X_{k}^{\prime}\right\|>t\right\} \leq 2 P\left\{\left\|\sum_{k=1}^{n}\left(X_{k}-X_{k}^{\prime}\right)\right\|>t\right\}
$$

which by (2.2) ensures that

$$
\begin{equation*}
P\left\{\max _{1 \leq k \leq n}\left\|X_{k}-X_{k}^{\prime}\right\|>b_{n} / 2\right\} \rightarrow 0 \text { as } n \rightarrow \infty \tag{2.3}
\end{equation*}
$$

By Lemma 2.6 of Ledoux and Talagrand [8, p. 51],

$$
\begin{align*}
n P\left\{\left\|X-X^{\prime}\right\|>b_{n} / 2\right\} & =\sum_{k=1}^{n} P\left\{\left\|X_{k}-X_{k}^{\prime}\right\|>b_{n} / 2\right\} \tag{2.4}\\
& \leq 2 P\left\{\max _{1 \leq k \leq n}\left\|X_{k}-X_{k}^{\prime}\right\|>b_{n} / 2\right\}
\end{align*}
$$

when n is sufficiently large. By display (6.1) in Ledoux and Talagrand [8, p. 150],

$$
\begin{equation*}
P\left\{\|X\|>b_{n}\right\} \leq 2 P\left\{\left\|X-X^{\prime}\right\|>b_{n} / 2\right\} \tag{2.5}
\end{equation*}
$$

when n is sufficiently large. Therefore by (2.3), (2.4), and (2.5),

$$
\begin{equation*}
n P\left\{\|X\|>b_{n}\right\} \rightarrow 0 \text { as } n \rightarrow \infty \tag{2.6}
\end{equation*}
$$

Note that for any $\varepsilon>0$
$P\left\{\left\|\sum_{k=1}^{n} X_{k} I\left(\left\|X_{k}\right\| \leq b_{n}\right)\right\|>\varepsilon b_{n}\right\} \leq n P\left\{\|X\|>b_{n}\right\}+P\left\{\left\|\sum_{k=1}^{n} X_{k}\right\|>\varepsilon b_{n}\right\}$.

Then by (2.6) and $b_{n}^{-1} \sum_{k=1}^{n} X_{k} \rightarrow 0$ in probability, it follows that

$$
b_{n}^{-1} \sum_{k=1}^{n} X_{k} I\left(\left\|X_{k}\right\| \leq b_{n}\right) \rightarrow 0
$$

in probability. The conclusion then follows from Lemma 2.1.
The following lemma is due to Einmahl and $\mathrm{Li}([4])$.
Lemma 2.3. Let Z_{1}, \ldots, Z_{n} be independent B-valued random elements with mean zero such that for some $s>2, E\left\|Z_{k}\right\|^{s}<\infty, 1 \leq k \leq n$. Then we have for $0<\eta \leq 1, \delta>0$, and $t>0$,

$$
\begin{aligned}
& P\left\{\max _{1 \leq m \leq n}\left\|\sum_{k=1}^{m} Z_{k}\right\| \geq(1+\eta) E\left\|\sum_{k=1}^{n} Z_{k}\right\|+t\right\} \\
& \quad \leq \exp \left\{-\frac{t^{2}}{(2+\delta) \Lambda_{n}^{2}}\right\}+C \sum_{k=1}^{n} E\left\|Z_{k}\right\|^{s} / t^{s}
\end{aligned}
$$

where $\Lambda_{n}^{2}=\sup \left\{\sum_{k=1}^{n} E f^{2}\left(Z_{k}\right): f \in B_{1}^{*}\right\}$ and C is a positive constant depending on η, δ and s.

Lemma 2.4. Let $h(t)$ and $\Psi(t)$ be as in Theorem 1.2. Suppose that X is a B-valued random element with

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{h(n)} P\{\|X\|>\sqrt{n \log \Psi(n)}\}<\infty . \tag{2.7}
\end{equation*}
$$

Then for any $s>2$,

$$
\sum_{n=1}^{\infty} \frac{1}{h(n)} \cdot \frac{1}{(n \log \Psi(n))^{s / 2}} \cdot E\|X\|^{s} I(\|X\| \leq \sqrt{n \log \Psi(n)})<\infty
$$

Proof. Set $b_{0}=0$ and $b_{n}=\sqrt{n \log \Psi(n)}, n \geq 1$. Note that $\Psi(n) \uparrow$ and therefore $b_{n} / \sqrt{n} \uparrow$. Then $b_{k} / b_{n} \leq \sqrt{k / n}$ whenever $1 \leq k \leq n$. Hence,

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{h(n)} \cdot \frac{1}{(n \log \Psi(n))^{s / 2}} \cdot E\|X\|^{s} I(\|X\| \leq \sqrt{n \log \Psi(n)}) \\
& \quad=\sum_{n=1}^{\infty} \frac{1}{h(n) b_{n}^{s}} \sum_{k=1}^{n} E\|X\|^{s} I\left(b_{k-1}<\|X\| \leq b_{k}\right) \\
& \quad \leq \sum_{n=1}^{\infty} \frac{1}{h(n) b_{n}^{s}} \sum_{k=1}^{n} b_{k}^{s} P\left\{b_{k-1}<\|X\| \leq b_{k}\right\} \\
& \quad=\sum_{k=1}^{\infty} b_{k}^{s} P\left\{b_{k-1}<\|X\| \leq b_{k}\right\} \sum_{n=k}^{\infty} \frac{1}{h(n) b_{n}^{s}}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{k=1}^{\infty} k^{s / 2} P\left\{b_{k-1}<\|X\| \leq b_{k}\right\} \sum_{n=k}^{\infty} \frac{1}{n^{s / 2} h(n)} \\
& \leq C \sum_{k=1}^{\infty} \frac{k}{h(k)} P\left\{b_{k-1}<\|X\| \leq b_{k}\right\} \\
& \leq \frac{C}{h(1)}+C \sum_{k=1}^{\infty}\left[\frac{k+1}{h(k+1)}-\frac{k}{h(k)}\right] P\left\{\|X\|>b_{k}\right\} \\
& \leq \frac{C}{h(1)}+C \sum_{k=1}^{\infty} \frac{1}{h(k)} P\left\{\|X\|>b_{k}\right\}<\infty,
\end{aligned}
$$

where $C=(s / 2-1)^{-1}$. The proof is completed.
Lemma 2.5. Let $h(n), \Psi(n)$ be as in Theorem 1.2. Then for any B-valued random element X, (2.7) is equivalent to

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{h(n)} P\{\|X\|>M \sqrt{n \log \Psi(n)}\}<\infty \tag{2.8}
\end{equation*}
$$

for some $M>0$.
Proof. It suffices to prove that (2.7) implies (2.8) for all $0<M<1$. Set $b_{n}=\sqrt{n \log \Psi(n)}, n \geq 1$. Note that $\Psi(n) \uparrow$ and therefore $b_{n} / \sqrt{n} \uparrow$. Then $b_{n} \leq 2^{-1 / 2} b_{2 n}$ for $n \geq 1$. Hence,

$$
\frac{1}{h(2 n)} P\left\{\|X\|>2^{-1 / 2} b_{2 n}\right\} \leq \frac{1}{h(n)} P\left\{\|X\|>b_{n}\right\}
$$

and

$$
\begin{aligned}
\frac{1}{h(2 n+1)} P\left\{\|X\|>2^{-1 / 2} b_{2 n+1}\right\} & \leq \frac{1}{h(2 n)} P\left\{\|X\|>2^{-1 / 2} b_{2 n}\right\} \\
& \leq \frac{1}{h(n)} P\left\{\|X\|>b_{n}\right\},
\end{aligned}
$$

which ensures that

$$
\begin{aligned}
\sum_{n=1}^{\infty} & \frac{1}{h(n)} P\left\{\|X\|>2^{-1 / 2} b_{n}\right\}=\frac{1}{h(1)} P\left\{\|X\|>2^{-1 / 2} b_{1}\right\} \\
& +\sum_{n=1}^{\infty} \frac{1}{h(2 n)} P\left\{\|X\|>2^{-1 / 2} b_{2 n}\right\}+\sum_{n=1}^{\infty} \frac{1}{h(2 n+1)} P\left\{\|X\|>2^{-1 / 2} b_{2 n+1}\right\} \\
& \leq \frac{1}{h(1)} P\left\{\|X\|>2^{-1 / 2} b_{1}\right\}+2 \sum_{n=1}^{\infty} \frac{1}{h(n)} P\{\|X\|>\sqrt{n \log \Psi(n)}\}<\infty .
\end{aligned}
$$

Then by mathematical induction, for any integer $k \geq 1$,

$$
\sum_{n=1}^{\infty} \frac{1}{h(n)} P\left\{\|X\|>2^{-k / 2} b_{n}\right\}<\infty
$$

The proof is completed.

3. The Main Result and its Proof

We now state and prove the main result.
Theorem 3.1. Let $h(t)$ and $\Psi(t)$ be as in Theorem 1.2. Let $\left\{X, X_{n}, n \geq\right.$ 1\} be a sequence of independent and identically distributed B-valued random elements. Suppose that

$$
(\sqrt{n \log \Psi(n)})^{-1} \sum_{k=1}^{n} X_{k} \rightarrow 0 \text { in probability }
$$

(i) Suppose that (2.7) holds and

$$
\begin{equation*}
E X=0, E f^{2}(X)<\infty \quad \forall f \in B^{*} \tag{3.1}
\end{equation*}
$$

Then

$$
\sum_{n=1}^{\infty} \frac{1}{n h(n)} P\left\{\left\|\sum_{k=1}^{n} X_{k}\right\|>(1+\varepsilon) \sqrt{2 \sigma^{2} n \log \Psi(n)}\right\} \begin{cases}<\infty, & \text { if } \varepsilon>0 \tag{3.2}\\ =\infty, & \text { if } \varepsilon<0\end{cases}
$$

$$
\text { where } \sigma^{2}=\sup \left\{E f^{2}(X): f \in B_{1}^{*}\right\}
$$

(ii) Conversely, suppose that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n h(n)} P\left\{\left\|\sum_{k=1}^{n} X_{k}\right\|>M \sqrt{n \log \Psi(n)}\right\}<\infty \tag{3.3}
\end{equation*}
$$

holds for some $M>0$. Then (2.7) and (3.1) hold.
Proof. Set $a_{n}=\sqrt{2 \sigma^{2} n \log \Psi(n)}, b_{n}=\sqrt{n \log \Psi(n)}, n \geq 1$ and

$$
X_{n k}=X_{k} I\left(\left\|X_{k}\right\| \leq b_{n}\right), Z_{n k}=X_{n k}-E X_{n k}, 1 \leq k \leq n, n \geq 1
$$

(i) Suppose that (2.7) and (3.1) hold. We first prove that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n h(n)} P\left\{\left\|\sum_{k=1}^{n} X_{k}\right\|>(1+\varepsilon) a_{n}\right\}<\infty \quad \forall \varepsilon>0 \tag{3.4}
\end{equation*}
$$

Note that for any $\varepsilon>0$,
$P\left\{\left\|\sum_{k=1}^{n} X_{k}\right\|>(1+\varepsilon) a_{n}\right\} \leq n P\left\{\|X\|>b_{n}\right\}+P\left\{\left\|\sum_{k=1}^{n} X_{n k}\right\|>(1+\varepsilon) a_{n}\right\}$.

Hence, by (2.7), to prove (3.4), it suffices to prove that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n h(n)} P\left\{\left\|\sum_{k=1}^{n} X_{n k}\right\|>(1+\varepsilon) a_{n}\right\}<\infty \quad \forall \varepsilon>0 \tag{3.5}
\end{equation*}
$$

By Lemma 2.2,

$$
\frac{1}{b_{n}}\left\|\sum_{k=1}^{n} E X_{n k}\right\| \leq \frac{1}{b_{n}} E\left\|\sum_{k=1}^{n} X_{n k}\right\| \rightarrow 0 \text { as } n \rightarrow \infty
$$

and

$$
\frac{1}{b_{n}} E\left\|\sum_{k=1}^{n} Z_{n k}\right\| \leq \frac{2}{b_{n}} E\left\|\sum_{k=1}^{n} X_{n k}\right\| \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Then to prove (3.5), it suffices to prove that
(3.6) $\sum_{n=1}^{\infty} \frac{1}{n h(n)} P\left\{\left\|\sum_{k=1}^{n} Z_{n k}\right\|>2 E\left\|\sum_{k=1}^{n} Z_{n k}\right\|+(1+\varepsilon) a_{n}\right\}<\infty \quad \forall \varepsilon>0$.

By Lemma 2.3, for some $s>2$ and any $\delta>0$

$$
\begin{align*}
& P\left\{\left\|\sum_{k=1}^{n} Z_{n k}\right\|>2 E\left\|\sum_{k=1}^{n} Z_{n k}\right\|+(1+\varepsilon) a_{n}\right\} \tag{3.7}\\
& \quad \leq \exp \left\{-\frac{(1+\varepsilon)^{2} a_{n}^{2}}{(2+\delta) \Lambda_{n}^{2}}\right\}+\frac{C}{b_{n}^{s}} \sum_{k=1}^{n} E\left\|Z_{n k}\right\|^{s},
\end{align*}
$$

where $\Lambda_{n}^{2}=\sup \left\{\sum_{k=1}^{n} E f^{2}\left(Z_{n k}\right): f \in B_{1}^{*}\right\}$. Note that for all $f \in B_{1}^{*}$,

$$
\begin{aligned}
E f^{2}\left(Z_{n k}\right) & =E f^{2}\left(X_{n k}\right)-\left(E f\left(X_{n k}\right)\right)^{2} \leq E f^{2}\left(X_{n k}\right) \\
& \leq E f^{2}(X), 1 \leq k \leq n, n \geq 1
\end{aligned}
$$

Therefore $\Lambda_{n}^{2} \leq n \sigma^{2}, n \geq 1$. Choose $\delta>0$ small enough so that $t=2(1+$ $\varepsilon)^{2} /(2+\delta)>1$. Then

$$
\begin{align*}
\sum_{n=1}^{\infty} \frac{1}{n h(n)} \exp \left\{-\frac{(1+\varepsilon)^{2} a_{n}^{2}}{(2+\delta) \Lambda_{n}}\right\} & \leq \sum_{n=1}^{\infty} \frac{1}{n h(n)} \exp \left\{-\frac{(1+\varepsilon)^{2} a_{n}^{2}}{(2+\delta) \Lambda_{n}}\right\} \\
& \leq \sum_{n=1}^{\infty} \frac{1}{n h(n)} \exp \{-t \log \Psi(n)\} \tag{3.8}\\
& \leq \sum_{n=1}^{\infty} \frac{1}{n h(n)} \cdot \frac{1}{(\Psi(n))^{t}}<\infty
\end{align*}
$$

since $\int_{1}^{\infty} d x /\left[x h(x) \Psi^{t}(x)\right]<\infty$. By the C_{r}-inequality, Hölder's inequality, and Lemma 2.4,

$$
\begin{align*}
& \sum_{n=1}^{\infty} \frac{1}{n h(n)} \cdot \frac{1}{b_{n}^{s}} \sum_{k=1}^{n} E\left\|Z_{n k}\right\|^{s} \tag{3.9}\\
& \quad \leq \sum_{n=1}^{\infty} \frac{1}{h(n)} \cdot \frac{1}{(n \log \Psi(n))^{s / 2}} \cdot E\|X\|^{s} I(\|X\| \leq \sqrt{n \log \Psi(n)})<\infty
\end{align*}
$$

By (3.7), (3.8), and (3.9), (3.6) holds and hence (3.4) holds as was argued above.

Now we prove that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n h(n)} P\left\{\left\|\sum_{k=1}^{n} X_{k}\right\|>(1+\varepsilon) a_{n}\right\}=\infty \quad \forall \varepsilon<0 \tag{3.10}
\end{equation*}
$$

For any $f \in B^{*}$, by (3.1), $E f(X)=0$ and $E f^{2}(X)<\infty$. Then by the implication " $(1.1) \Rightarrow(1.4)$ " in Theorem 1.2, for all $\varepsilon<0$

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n h(n)} P\left\{\left|\sum_{k=1}^{n} f\left(X_{k}\right)\right|>(1+\varepsilon) \sqrt{2 E f^{2}(X) n \log \Psi(n)}\right\}=\infty \tag{3.11}
\end{equation*}
$$

Note that for any $f \in B_{1}^{*},\left|\sum_{k=1}^{n} f\left(X_{k}\right)\right| \leq\left\|\sum_{k=1}^{n} X_{k}\right\|$ and so it follows from (3.11) that for all $f \in B_{1}^{*}$, for all $\varepsilon<0$

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n h(n)} P\left\{\left\|\sum_{k=1}^{n} X_{k}\right\|>(1+\varepsilon) \sqrt{2 E f^{2}(X) n \log \Psi(n)}\right\}=\infty \tag{3.12}
\end{equation*}
$$

Hence (3.10) holds by (3.12) and $\sigma^{2}=\sup \left\{E f^{2}(X): f \in B_{1}^{*}\right\}$. Combining (3.4) and (3.10) yields (3.2).
(ii) Assume that (3.3) holds for some $M>0$. Then for any $f \in B_{1}^{*}$,

$$
\sum_{n=1}^{\infty} \frac{1}{n h(n)} P\left\{\left|\sum_{k=1}^{n} f\left(X_{k}\right)\right|>M b_{n}\right\}<\infty
$$

Then by the implication " $(2.3) \Rightarrow(2.4)$ " of Li and Rosalsky ([10]), it follows that $E f(X)=0$ and $E f^{2}(X)<\infty$. Hence (3.1) holds.

Let $\left\{X^{\prime}, X_{n}^{\prime}, n \geq 1\right\}$ be an independent copy of $\left\{X, X_{n}, n \geq 1\right\}$. Then by the same argument as in the proof of Lemma 2.2,

$$
\begin{aligned}
n P\left\{\|X\|>4 M b_{n}\right\} & \leq 8 P\left\{\left\|\sum_{k=1}^{n}\left(X_{k}-X_{k}^{\prime}\right)\right\|>2 M b_{n}\right\} \\
& \leq 16 P\left\{\left\|\sum_{k=1}^{n} X_{k}\right\|>M b_{n}\right\}
\end{aligned}
$$

which by (3.3) ensures that

$$
\sum_{n=1}^{\infty} \frac{1}{h(n)} P\left\{\|X\|>4 M b_{n}\right\}<\infty
$$

and so (2.7) holds by Lemma 2.5. The proof is completed.
Remark 3.2. A sufficient condition for (2.7) is $E\|X\|^{2}<\infty$. Indeed,

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{h(n)} P\{\|X\|>\sqrt{n \log \Psi(n)}\} & \leq \frac{1}{h(1)} \sum_{n=1}^{\infty} P\{\|X\|>\sqrt{n}\} \\
& \leq \frac{1}{h(1)} E\|X\|^{2}<\infty
\end{aligned}
$$

Remark 3.3. Some examples of moment conditions which are equivalent to (2.7) for various choices of $h(\cdot)$ will now be given.

Case (i). Set $h(t)=(\log \log t)^{b}$ where $b \geq 0$. Then $\log \Psi(t) \sim \log \log t$ as $t \rightarrow \infty$ and (2.7) is equivalent to $E\|X\|^{2} /(\log \log \|X\|)^{b+1}<\infty$.

CASE (ii). Set $h(t)=(\log t)^{r}$ where $0 \leq r<1$. Then $\log \Psi(t) \sim(r-$ 1) $\log \log t$ as $t \rightarrow \infty$ and (2.7) is equivalent to $E\|X\|^{2} /\left[(\log \|X\|)^{r} \log \log \|X\|\right]$ $<\infty$.

Case (iii). Set $h(t)=\log t$. Then $\log \Psi(t) \sim \log \log \log t$ as $t \rightarrow \infty$ and (2.7) is equivalent to $E\|X\|^{2} /[(\log \|X\|) \log \log \log \|X\|]<\infty$.

Case (iv). In Case (i), take $b=0$, or in Case (ii), take $r=0$. Then (2.7) is equivalent to $E\|X\|^{2} / \log \log \|X\|<\infty$.

Acknowledgements.

The research of Chen is supported by the National Natural Science Foundation of China (No. 71471075).

References

[1] P.Y. Chen and D.C. Wang, Convergence rates for probabilities of moderate deviations for moving average processes, Acta Math. Sin. (Engl. Ser.) 24 (2008), 611-622.
[2] P.Y. Chen and D.C. Wang, L^{r} convergence for B-valued random elements, Acta Math. Sin. (Engl. Ser.) 28 (2012), 857-868.
[3] J.A. Davis, Convergence rates for the law of the iterated logarithm, Ann. Math. Statist. 39 (1968), 1479-1485.
[4] U. Einmahl and D. Li, Characterization of LIL behavior in Banach space, Trans. Amer. Math. Soc. 360 (2008), 6677-6693.
[5] A. Gut, Convergence rates for probabilities of moderate deviations for sums of random variables with multidimensional indices, Ann. Probab. 8 (1980), 298-313.
[6] P. Hartman and A. Wintner, On the law of the iterated logarithm, Amer. J. Math. 63 (1941), 169-176.
[7] T.-C. Hu, A. Rosalsky, D. Szynal and A.I. Volodin, On complete convergence for arrays of rowwise independent random elements in Banach spaces, Stochastic Anal. Appl. 17 (1999), 963-992.
[8] M. Ledoux and M. Talagrand, Probability in Banach spaces. Isoperimetry and processes, Springer-Verlag, Berlin, 1991.
[9] D.L. Li, Convergence rates of law of iterated logarithm for B-valued random variables, Sci. China Ser. A 34 (1991), 395-404.
[10] D. Li and A. Rosalsky, A supplement to the Davis-Gut law, J. Math. Anal. Appl. 330 (2007), 1488-1493.
[11] D.L. Li, X. C. Wang and M.B. Rao, Some results on convergence rates for probabilities of moderate deviations for sums of random variables, Internat. J. Math. Math. Sci. 15 (1992), 481-497.
[12] X. Liu, H. Qian and L. Cao, The Davis-Gut law for moving average processes, Statist. Probab. Lett. 104 (2015), 1-6.
P. Chen

Department of Mathematics
Jinan Unversity
Guangzhou, 510630
P. R. China

E-mail: tchenpy@jnu.edu.cn
M. Zhang

Department of Mathematics
Jinan University
Guangzhou, 510630
P. R. China

E-mail: zmy1021@qq.com
A. Rosalsky

Department of Statistics
University of Florida
Gainesville, FL 32611
USA
E-mail: rosalsky@stat.ufl.edu
Received: 20.6.2016.

[^0]: 2010 Mathematics Subject Classification. 60F15.
 Key words and phrases. Davis-Gut law, law of the iterated logarithm, sequence of independent and identically distributed Banach space valued random elements.

