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Abstract. Using an extension of some previously proposed modified
secant equations in the Dai–Liao approach, a modified nonlinear conjugate
gradient method is proposed. As interesting features, the method employs
the objective function values in addition to the gradient information and
satisfies the sufficient descent property with proper choices for its param-
eter. Global convergence of the method is established without convexity
assumption on the objective function. Results of numerical comparisons
are reported. They demonstrate efficiency of the proposed method in the
sense of the Dolan–Moré performance profile.

1. Introduction

We consider the minimization of a smooth nonlinear function f : Rn → R,
that is,

min
x∈Rn

f(x),

in the case where the number of variables n is large and where analytic expres-
sions for the function f and its gradient ∇f are available. Among the most
useful tools for solving the problem are the limited memory quasi–Newton
methods ([24]) and the conjugate gradient (CG) methods ([20]), because the
amount of memory storage required by the methods is low. This study is
devoted to a class of CG methods constructed based on the secant (quasi–
Newton) equations ([3, 31]).
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In addition to the low memory requirement, CG methods possess the
attractive feature of simple iterative formula, that is,

(1.1) x0 ∈ R
n, xk+1 = xk + sk, sk = αkdk, k = 0, 1, ...,

where αk is a steplength to be computed by a line search procedure along the
search direction dk defined by

(1.2) d0 = −g0, dk+1 = −gk+1 + βkdk, k = 0, 1, ...,

in which gk = ∇f(xk) and βk is a scalar called the CG (update) parameter.
Different CG methods mainly correspond to different choices for the CG

parameter for which a nice review has been presented in [20]. Although CG
methods are equivalent in the linear case, that is, when f is a strictly convex
quadratic function and αk is computed by an exact line search, their numerical
behavior for general functions may be quite different ([1, 20, 25, 26]).

The interesting feature of linear CG methods leading to the important at
most n–step termination property is the generation of search directions dk,
k ≥ 0, satisfying the conjugacy condition, i.e.,

(1.3) dTi Gdj = 0, ∀i 6= j,

where G is the Hessian of the objective function ([28]). For a general nonlinear
function f , from the mean–value theorem we know that there exists some
τ ∈ (0, 1) such that

dTk+1(gk+1 − gk) = αkd
T
k+1∇

2f(xk + τsk)dk.

Hence, in order to compute the CG parameter βk in a nonlinear CG method
in the form of (1.1)–(1.2), it is reasonable to replace (1.3) with the following
conjugacy condition:

(1.4) dTk+1yk = 0,

where yk = gk+1− gk. The conjugacy condition (1.4) is effective since it leads
to the efficient CG method proposed by Hestenes and Stiefel ([21]) (HS) in
which, considering (1.2) and (1.4), the CG parameter is given by

βHS
k =

gTk+1yk

dTk yk
.

In order to employ quasi–Newton aspects in the conjugacy condition (1.4),
Dai and Liao ([12]) (DL) noted that if we consider Bk+1 ∈ R

n×n as an approx-
imation of ∇2f(xk+1) given by a quasi–Newton method, since Bk+1 satisfies
the standard secant equation, i.e.,

(1.5) Bk+1sk = yk,

and the search direction is computed by solving the following system of linear
equations:

Bk+1dk+1 = −gk+1,
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then we can write

(1.6) dTk+1yk = dTk+1(Bk+1sk) = −gTk+1sk.

Now, if the line search is exact, then gTk+1sk = 0, and consequently, (1.6)
reduces to (1.4). However, practical numerical algorithms normally adopt in-
exact line searches. Hence, the following extension of the conjugacy condition
(1.4) has been proposed in [12]:

(1.7) dTk+1yk = −tgTk+1sk,

where t is a nonnegative parameter. If t = 0 or the line search is exact, then
(1.7) reduces to (1.4), and if t = 1, then (1.7) reduces to (1.6) which implicitly
contains the effective standard secant equation (1.5). Also, for small values
of t, the conjugacy condition (1.7) tends to the conjugacy condition (1.4).
Thus, the conjugacy condition (1.7) can be regarded as a hybridization of the
conjugacy conditions (1.4) and (1.6).

Taking inner product of (1.2) with yk and using (1.7), Dai and Liao ([12])
obtained the following formula for the CG parameter:

βDL
k =

gTk+1yk

dTk yk
− t

gTk+1sk

dTk yk
.

The DL method is very dependent on the parameter t for which there is no
any optimal choice ([2]). It is worth noting that if

(1.8) t = 2
||yk||2

sTk yk
,

where ||.|| denotes the Euclidean norm, then the CG parameter proposed by
Hager and Zhang ([18]) is achieved. Also, the choice

(1.9) t =
||yk||2

sTk yk
,

yields another CG parameter suggested by Dai and Kou ([11]). The choices
(1.8) and (1.9) are effective since they guarantee the sufficient descent condi-
tion, i.e.,

(1.10) gTk dk ≤ −̺||gk||
2, k = 0, 1, ...,

where ̺ is a positive constant, independent of the line search and the objective
function convexity, and lead to numerically efficient CG methods ([4,11,19]).
Recently, Babaie–Kafaki and Ghanbari ([5,6,9]) proposed several other choices
for the parameter t in the DL method.

The Dai–Liao approach has been attracted special attention. Note that
in the DL method only the gradient information is used. Motivated by this,
in several efforts employing the objective function values has been focused
on, using modified secant equations. For example, Yabe and Takano ([32])
used the modified secant equation proposed by Zhang et al. ([36]). Li et
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al. ([23]) applied the modified secant equation proposed by Wei et al. ([29]).
Ford et al. ([15]) used the multi–step quasi–Newton equations proposed by
Ford et al. ([14]). Babaie–Kafaki et al. ([10]) employed a revised form of the
modified secant equation proposed by Zhang et al. ([36]) and the modified
secant equation proposed by Yuan ([33]). Since the DL method is globally
convergent for uniformly convex objective functions ([12]), in another effort
Zhou and Zhang ([37]) applied the modified secant equation proposed by Li
and Fukushima ([22]) and suggested a modified DL method which is globally
convergent without convexity assumption on the objective function.

Here, based on an extension of the above–mentionedmodified secant equa-
tions, we deal with another modification of the DL method which simultane-
ously employs the objective function values and is globally convergent with-
out convexity assumption. This work is organised as follows. In Section 2,
the method and its descent property are discussed in details. In Section 3,
global convergence analysis of the method is studied. Comparative numerical
comparisons to demonstrate efficiency of the method are made in Section 4.
Finally, conclusions are drawn in Section 5.

2. A modified Dai–Liao conjugate gradient method

To the best of our knowledge, convexity assumption on the objective
function plays an essential role in convergence analysis of the quasi–Newton
methods (see [3] and the references therein). Nevertheless, Li and Fukushima
([22]) proposed a modified quasi–Newton method which is globally and locally
superlinearly convergent without convexity assumption (see also [17, 37]). In
the method, the following modified version of the standard secant equation
(1.5) is applied:

(2.1) Bk+1sk = ȳk, ȳk = yk + hk||gk||
rsk,

in which r is a positive constant and hk is defined by

hk = C +max{−
sTk yk
||sk||2

, 0}||gk||
−r,

with some positive constant C. It is worth noting that independent of the
line search and the objective function convexity, we have sTk ȳk > 0, being
necessary to guarantee positive definiteness of successive approximations of
the Hessian generated by the quasi–Newton methods. Also, if the popular
Wolfe conditions ([30]) are employed in the line search procedure, that is,

f(xk + αkdk)− f(xk) ≤ δαk∇f(xk)
Tdk,(2.2)

∇f(xk + αkdk)
T dk ≥ σ∇f(xk)

T dk,(2.3)
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with 0 < δ < σ < 1, since sTk yk > 0, then we have hk = C. Hence, the
modified secant equation (2.1) reduces to

(2.4) Bk+1sk = yk + C||gk||
rsk.

In another point of view, researchers paid attention to employ objective
function values in the standard secant equation (1.5) which only applies the
gradient information. For example, Zhang et al. ([36]) proposed the following
modified secant equation:

(2.5) Bk+1sk = ỹk, ỹk = yk +
ϑk

sTk uk

uk,

in which

ϑk = 6(fk − fk+1) + 3sTk (gk + gk+1),

and uk ∈ R
n is a vector parameter satisfying sTk uk 6= 0 (see also [34, 35]).

Also, Wei et al. ([29]) proposed the following modified secant equation:

(2.6) Bk+1sk = ŷk, ŷk = yk +
θk

sTk uk

uk,

where

(2.7) θk = 2(fk − fk+1) + sTk (gk + gk+1),

and uk ∈ R
n is a vector parameter satisfying sTk uk 6= 0 (see also [33]). Note

that in the modified secant equations (2.5) and (2.6) we can let uk = sk, or in
the case of using the Wolfe line search conditions, since sTk yk > 0, we can let
uk = yk. It is important that in the modified secant equations (2.5) and (2.6)
the curvature sTk yk is locally approximated more accurate than the standard
secant equation (1.5).

Here, we suggest an extension of the secant equations (1.5), (2.4), (2.5)
and (2.6) as follows:

(2.8) Bk+1sk = wk, wk = yk + ξ
θk

sTk uk

uk + C||gk||
rsk,

in which ξ, C and r are nonnegative constants, θk is defined by (2.7), and
uk ∈ R

n is a vector parameter satisfying sTk uk 6= 0. As seen, if ξ = C = 0,
then (2.8) reduces to (1.5), and if ξ = 0 and C > 0, then (2.8) reduces to
(2.4). Also, setting C = 0, the choices ξ = 3 and ξ = 1 respectively yield the
modified secant equations (2.5) and (2.6).

Now, following Dai–Liao approach ([12]), based on the extended secant
equation (2.8) we suggest the following CG parameter:

(2.9) β̄EDL
k =

gTk+1wk

dTk wk

− t
gTk+1sk

dTk wk

,

where t is a nonnegative parameter. Note that proper choices for the nonneg-
ative parameters ξ and C in (2.9) yield the CG parameters proposed in [37],
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[32] and [23], respectively obtained from the modified secant equations (2.4),
(2.5) and (2.6).

Although the Wolfe conditions ensure that dTk yk > 0, generally the de-
nominator of β̄EDL

k , i.e.,

dTkwk = dTk yk + ξ
θk
αk

+ Cαk||gk||
r||dk||

2,

may not be nonzero (positive). That is, the CG parameter β̄EDL
k is not well–

defined. Motivated by this, we suggest the following revised form of (2.8):

(2.10) Bk+1sk = zk, zk = yk + ξ
max{θk, 0}

sTk uk

uk + C||gk||
rsk,

with the vector parameter uk satisfying sTk uk 6= 0, and consequently, based
on the Dai–Liao approach we propose the following CG parameter:

(2.11) βEDL
k =

gTk+1zk

dTk zk
− t

gTk+1sk

dTk zk
, t ≥ 0,

being a revised version of (2.9). Note that for C = 0, the choices ξ = 3 and
ξ = 1 in (2.11) respectively yield two CG parameters proposed in [10] and
[23].

Next, we establish a descent property for the EDL method using the
eigenvalue analysis conducted in [7]. Hereafter, we assume that the line search
fulfills the Wolfe conditions (2.2) and (2.3). Also, in (2.10) we set uk = sk,
for all k ≥ 0.

Theorem 2.1. For a CG method in the form of (1.1)–(1.2) with the CG
parameter βEDL

k defined by (2.11) in which

(2.12) t = ρk
||zk||2

sTk zk
,

with the real parameter ρk >
1

4
, we have

dTk+1gk+1 ≤ −

(

1−
1

4ρk

)

||gk+1||
2, ∀k ≥ 0.

Proof. Firstly, note that search directions of the method can be written
as:

dk+1 = −Qk+1gk+1, k = 0, 1, ...,

where

Qk+1 = I −
skz

T
k

sTk zk
+ ρk

||zk||2

sTk zk

sks
T
k

sTk zk
,

and consequently,

(2.13) dTk+1gk+1 = −gTk+1Q
T
k+1gk+1 = −gTk+1

QT
k+1 +Qk+1

2
gk+1.
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Hence, we focus on finding eigenvalues of the following symmetric matrix:

Ak+1 =
QT

k+1 +Qk+1

2
= I + ρk

||zk||2

sTk zk

sks
T
k

sTk zk
−

1

2

skz
T
k + zks

T
k

sTk zk
.

Since αk > 0 and dTk zk > 0, we have sTk zk 6= 0 and consequently, sk 6= 0

and zk 6= 0. So, there exists a set of mutually orthogonal vectors {ui
k}

n−2
i=1

such that

sTk u
i
k = zTk u

i
k = 0, ||ui

k|| = 1, i = 1, ..., n− 2,

which leads to

Ak+1u
i
k = ui

k, i = 1, ..., n− 2.

That is, the vectors ui
k, i = 1, ..., n − 2, are the eigenvectors of Ak+1 corre-

sponding to the eigenvalue 1. Now, we find the two remaining eigenvalues of
Ak+1, namely λ−

k and λ+
k .

Since the trace of a square matrix is equal to the sum of its eigenvalues,
by defining ςk as:

ςk =
||sk||2||zk||2

(sTk zk)
2

,

we have
tr(Ak+1) = n− 1 + ρkςk

= 1 + ...+ 1
︸ ︷︷ ︸

(n−2) times

+λ−
k + λ+

k ,

which leads to

(2.14) λ−
k + λ+

k = 1 + ρkςk.

On the other hand, from properties of the Frobenius norm we have

||Ak+1||
2
F = tr(AT

k+1Ak+1) = tr(A2
k+1)

= n−
3

2
+

1

2
ςk + ρ2kς

2
k

= 1 + ...+ 1
︸ ︷︷ ︸

(n−2) times

+λ−2

k + λ+2

k ,

and so,

(2.15) λ−2

k + λ+2

k =
1

2
+

1

2
ςk + ρ2kς

2
k .

Now, from (2.14) and (2.15) we get

(2.16) λ−
k λ

+
k =

1

4
+

(

ρk −
1

4

)

ςk,
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and consequently, from (2.14) and (2.16), λ−
k and λ+

k can be computed as the
solutions of the following quadratic equation:

λ2 − (1 + ρkςk)λ+
1

4
+

(

ρk −
1

4

)

ςk = 0.

More precisely,

λ±
k =

1 + ρkςk ±
√

ρ2kς
2
k + (1− 2ρk)ςk

2
.

Since Cauchy–Schwarz inequality ensures that ςk ≥ 1, we have

λ+
k =

1 + ρkςk +
√

(ρkςk − 1)2 + ςk − 1

2
≥ 1.

Now, in order to show that λ−
k > 0, we define the following function:

q(ϕ) =
1 + ρkϕ−

√

ρ2kϕ
2 + (1− 2ρk)ϕ

2
,

for which q(ςk) = λ−
k . It can be seen that if ρk 6= 1/2, then q(ϕ) is a strictly

decreasing function on [1,+∞), and consequently, since ρk > 1/4, we have

λ−
k > lim

ϕ→+∞
q(ϕ) = 1−

1

4ρk
> 0.

Furthermore, if ρk =
1

2
, then

λ−
k =

1

2
= 1−

1

4ρk
> 0.

Let λ̄k be the smallest eigenvalue of Ak+1. From the above discussion, we

have λ̄k ≥ 1 −
1

4ρk
> 0. Thus, the matrix Ak+1 is positive definite and from

(2.13) we have

dTk+1gk+1 = −gTk+1Ak+1gk+1 ≤ −λ̄k||gk+1||
2 ≤ −

(

1−
1

4ρk

)

||gk+1||
2,

which completes the proof.

Remark 2.2. From Theorem 2.1, if ρk ≥ ρ > 1/4, then the sufficient

descent condition (1.10) holds for the EDL method with ̺ = 1−
1

4ρ
.
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3. Global Convergence

Here, we show that in addition to using the objective function values and
satisfying the sufficient descent condition, the EDL method is globally conver-
gent without convexity assumption on the objective function. In this context,
we need to consider the following standard assumptions.

Assumption A1: The level set L = {x| f(x) ≤ f(x0)}, with x0 to be the
starting point of the iterative method (1.1), is bounded.

Assumption A2: In some open convex neighborhood N of L, f is contin-
uously differentiable and its gradient is Lipschitz continuous; that is, there
exists a positive constant L such that

(3.1) ||∇f(x)−∇f(y)|| ≤ L||x− y||, ∀x, y ∈ N .

Note that these assumptions imply that there exists a positive constant
γ such that

(3.2) ||∇f(x)|| ≤ γ, ∀x ∈ L.

The following important lemma plays an essential role in our global conver-
gence analysis.

Lemma 3.1 ([27]). Suppose that Assumptions A1 and A2 hold. Con-
sider any iterative method in the form of (1.1), where dk and αk satisfy the
sufficient descent condition (1.10) and the Wolfe conditions (2.2) and (2.3),
respectively. If

(3.3)
∑

k≥0

1

||dk||2
= ∞,

then the method converges in the sense that

(3.4) lim inf
k→∞

||gk|| = 0.

Now, we can establish the following global convergence theorem for our
method.

Theorem 3.2. Suppose that Assumptions A1 and A2 hold. Consider
a CG method in the form of (1.1)–(1.2) with the parameter βEDL

k given by
(2.11) in which C > 0, there exists a positive constant M such that t ≤ M ,
and the steplength αk is determined to fulfill the Wolfe conditions (2.2) and
(2.3). If the sufficient descent condition (1.10) is satisfied, then the method
converges in the sense that (3.4) holds.

Proof. At first, note that sufficient descent condition (1.10) and the
Wolfe condition (2.2) ensure that {xk}k≥0 ⊆ L. Now, to prove the theorem
by contradiction, we suppose that there exists a positive constant ε such that

(3.5) ||gk|| ≥ ε, ∀k ≥ 0.
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Hence, since from the Wolfe condition (2.3) we have sTk yk > 0, considering
(3.5) we get

(3.6) sTk zk = sTk yk + ξmax{θk, 0}+ C||gk||
r||sk||

2 > Cεr||sk||
2.

On the other hand, from the mean–value theorem we can write

|θk| = |2(fk − fk+1) + sTk (gk + gk+1)|

= | (−2∇f(xµ) +∇f(xk) +∇f(xk+1))
T
sk|,

where xµ = µxk + (1− µ)xk+1, for some µ ∈ (0, 1). Therefore, from (3.1) we
have

(3.7)
|θk| ≤ (||∇f(xk)−∇f(xµ)||+ ||∇f(xk+1)−∇f(xµ)||) ||sk||

≤ (L(1− µ)||sk||+ Lµ||sk||) ||sk|| = L||sk||
2.

Thus, from (3.1), (3.2) and (3.7), and since uk = sk, we can write

(3.8)
||zk|| ≤ ||yk||+ ξ

|θk|

||sk||2
||sk||+ C||gk||

r||sk||

≤ L||sk||+ Lξ||sk||+ Cγr||sk|| = (L+ Lξ + Cγr)||sk||.

Now, from (1.2) and (2.11) we have

dk+1 = −gk+1 +
gTk+1zk

sTk zk
sk − t

gTk+1sk

sTk zk
sk,

which together with Cauchy–Schwarz inequality, (3.2), (3.6) and (3.8) yields

||dk+1|| ≤ || − gk+1||+
||gk+1||||zk||

sTk zk
||sk||+ t

||gk+1||||sk||

sTk zk
||sk||

≤ γ +
(L+ Lξ + Cγr)γ

Cεr
+M

γ

Cεr
,

leading to (3.3). So, from Lemma 3.1, (3.4) holds, contradicting (3.5).

Remark 3.3. From Theorem 2.1, the EDL method with the parameter t
given by (2.12) possesses the sufficient descent property for general functions.
Also, if the objective function is uniformly convex, then sTk yk ≥ ̟||sk||2. So,
form (3.8) we have

t ≤ ρk
(L+ Lξ + Cγr)2||sk||2

̟||sk||2
= ρk

(L+ Lξ + Cγr)2

̟
,

and in this situation, if ρk is bounded above, then there exists a positive
constant M such that t ≤ M . Hence, assumptions of Theorem 3.2 seem to be
reasonable.
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4. Numerical Experiments

Here, we present some numerical results obtained by applying C++ im-
plementations of four versions of a CG method with the parameter (2.11) in
which t is computed by (2.12) with ρk = 1, guaranteing the sufficient descent
property (1.10) and being an extended form of (1.9) which is an effective
choice as stated in [11]. The methods are abbreviated by

• EDL: in which ξ = 1.1 and C = 10−4 because of the promising
numerical results obtained respectively among the different values
ξ ∈ {0.1k}30k=1 and C ∈ {10−k}6k=0;

• DK: in which ξ = C = 0, being equivalent to the CG method proposed
by Dai and Kou ([11]);

• YT: in which ξ = 3 and C = 0, being equivalent to the CG method
proposed by Yabe and Takano ([32]);

• ZZ: in which ξ = 0 and C = 10−4, being equivalent to the CG method
proposed by Zhou and Zhang ([37]).

For the parameter r of the EDL and ZZ methods, we adopted the sugges-
tion of [37] and set r = 1, when ||gk|| ≥ 1, and r = 3, otherwise. For all the
four methods, we used the effective approximate Wolfe conditions proposed
by Hager and Zhang ([19]) in the line search procedure, with the same pa-
rameter values as suggested in [19]. Moreover, all attempts to solve the test
problems were terminated when ||gk||∞ < 10−5max(1, ||g0||∞).

The codes were run on a PC with 3.2 GHz Intel I3 of CPU, 4 GB of
RAM and Centos 6.2 server Linux operation system. Since CG methods have
been mainly designed to solve large–scale problems, the experiments were
performed on a set of 64 unconstrained optimization test problems of the
CUTEr collection ([16]) with default dimensions being at least equal to 1000,
as given in Hager’s home page: http://www.math.ufl.edu/~hager/. The
test problems data has been also clarified in [8].

Efficiency comparisons were made using the Dolan–Moré performance
profile ([13]) on the running time and the total number of function and gra-
dient evaluations being equal to Nf + 3Ng, where Nf and Ng respectively
denote the number of function and gradient evaluations. Performance profile
gives, for every ω ≥ 1, the proportion p(ω) of the test problems that each
considered algorithmic variant has a performance within a factor of ω of the
best. Figures 1 and 2 show the results of comparisons.

As seen in the figures, EDL is preferable to the other methods both in
the perspectives of the total number of function and gradient evaluations and
the running time. Hence, using the extended secant equation (2.10) in the
Dai–Liao approach turns out to be practically effective. Moreover, exactness
of the modified secant equation (2.5) leads to reasonable numerical behavior
of the YT method. Since EDL, YT and ZZ are preferable to DK (especially
with respect to the running time), it can be stated that the choice (2.12) for
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Figure 1. Total number of function and gradient evalua-
tions performance profiles

the parameter t with nonzero values of ξ or C (which is given based on the the
extended secant equation (2.10)) seem to be more effective than the choice
(1.9).

5. Conclusions

Following Dai–Liao approach, a nonlinear conjugate gradient method has
been proposed based on the extended secant equation (2.10). In addition to
the gradient information, the method employs the objective function values.
With the choice (2.12) for the parameter t in (2.11), a sufficient descent prop-
erty has been established for the method. It has been shown that the method
is globally convergent for general functions. Numerical comparisons have been
made between the implementations of the proposed method and three other
nonlinear conjugate gradient methods proposed in [11, 32, 37], being especial
cases of our method, using the Dolan–Moré performance profile. In the nu-
merical experiments, a set of 64 unconstrained optimization test problems
of the CUTEr collection has been chosen with default dimensions being at
least equal to 1000. Results of comparisons showed efficiency of the proposed
method, implying effectiveness of the extended secant equation (2.10).
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