
GLASNIK MATEMATIČKI
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Abstract. For any odd prime power q = pe we study a certain

solvable group G of order q2 · ( q−1
2

)2 · 2 and construct from its internal

structure a symmetric design D with parameters (2q2 + 1, q2,
q
2
−1
2

) on
which G acts as an automorphism group. As a consequence we find that
the full automorphism group of D contains a subgroup of order |G| · e2.

1. A Series of Groups

Let q = pe be an odd prime power. Starting from an infinite series of
finite solvable groups of order q2 · ( q−1

2 )2 · 2, we are going to construct an
infinite series of symmetric designs (compare with [3, Theorem 1, p. 624]).
For an introduction to design theory we refer the reader to [1] or [4]. Before
going into details, we want to state the main theorem.

Main Theorem. For every odd prime power q = pe, there is a symmetric

design D with parameters (2q2+1, q2, q
2
−1
2 ) possessing an automorphism group

A of order q2 · ( q−1
2 )2 · e2 · 2 which is isomorphic to the subdirect product

of the affine semilinear group AΓL1(q) with itself with respect to a certain
epimorphism ψ : AΓL1(q) → Z2 from AΓL1(q) into the cyclic group Z2, i.e.
A ∼= AΓL1(q) sdp(ψ,ψ) AΓL1(q).

We are going to prove this theorem in two steps. First we construct the
symmetric design D, whose existence is claimed in Theorem 3.1, and after
that we give a detailed description of the group A and show that A is an
automorphism group of D as stated in Corollary 3.2.
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Let Fq be the Galois field with q elements. As usual, we denote by F
+
q

the additive group of Fq which is isomorphic to the elementary abelian group
of order q and by F

∗

q the multiplicative group of Fq which is isomorphic to

the cyclic group of order q − 1. Put F
#
q = Fq \ {0}. Thus F

#
q is the set of all

non-zero elements of Fq. By 0, we denote the identity element of F
+
q , and by

1, the identity element of F
∗

q . Let D+ = F
2
q \ {0} = {x2 | x ∈ F

#
q } be the set

of all non-zero squares in Fq and D− = F
#
q \D+ the set of all non-squares in

Fq. We remark that the elements of D+ form a subgroup of index 2 in F
∗

q and
thus D− is a coset of D+ in F

∗

q , which means D− = D+t, for any t ∈ D−.

Consider the semidirect product F
+
q ⋊ρ F

∗

q of F
+
q by F

∗

q with respect to
the monomorphism

ρ : F
∗

q → Aut(F+
q ), a 7→ (F+

q → F
+
q , x 7→ ax)

from F
∗

q into Aut(F+
q ), where ρ simply indicates that F

∗

q acts on F
+
q by mul-

tiplication. Denote this extension, as usual, by AGL1(q), the 1-dimensional
affine general linear group over Fq, and note that the image of F

∗

q under ρ in

Aut(F+
q ) ∼= GLe(p) is usually called a Singer cycle. It should be mentioned

that the subgroup of index 2 of the Singer cycle operates in exactly three or-
bits of respective lengths 1, q−1

2 , and q−1
2 on F

+
q , which we may identify with

{0}, D+ and D− assuming that F
+
q is equipped with the multiplicative struc-

ture inherited from the field Fq. Clearly, there is a unique normal subgroup
N of index 2 in AGL1(q). Let ϕ : AGL1(q) → AGL1(q)/N be the natural
epimorphism from our affine linear group onto its factor group modulo N of
order 2. Then, the subdirect product of AGL1(q) with itself with respect to
ϕ is given by

AGL1(q) sdp(ϕ,ϕ) AGL1(q) = {(x, y) ∈ AGL1(q) ×AGL1(q) | ϕ(x) = ϕ(y)}.

From now on, we denote this group by G and its maximal normal p-subgroup
by Q = Op(G). In the following lemma, we list the main obvious properties
of the groups just introduced without providing a proof.

Lemma 1.1. The group G is solvable and its subgroup Q is a direct product
of two elementary abelian normal subgroups V and W of G of order q. If
q > 3, V and W are the only nontrivial normal subgroups of G contained in
Q. Furthermore, Q is an elementary abelian self-centralizing normal Sylow
p-subgroup of G of order q2. The group G is a split extension of Q by a

complement H of order (q−1)2

2 , which is a self-normalizing abelian subgroup

of type ( q−1
2 , q − 1). The complement H acts on the set of its G-conjugates

cclG(H) in five orbits of respective lengths 1, q − 1, q − 1, (q−1)2

2 , (q−1)2

2 .

Remark that we may identify the elements of the conjugacy class cclG(H)
– which is equal to cclQ(H) – with the elements of Q, since NG(H) = H .
According to the previous lemma, we obtain precisely five H-orbits on the



A SERIES OF GROUPS AND DESIGNS 259

elements of Q, of respective lengths 1, q− 1, q− 1, (q−1)2

2 , (q−1)2

2 . Throughout
the following calculations we identify Q with the outer direct sum F

+
q ⊕ F

+
q .

Therefore, V = F
+
q ⊕ {0} and W = {0} ⊕ F

+
q . In this sense, the five orbits of

H on Q, which we denote by O0, O1, . . . , O4, may be expressed as follows:

O0 = cclH
(

(0, 0)
)

= {(0, 0)} ,

O1 = cclH
(

(1, 0)
)

= (F#
q , {0}) = {(v, 0) | v ∈ F

#
q } ,

O2 = cclH
(

(0, 1)
)

= ({0},F#
q ) = {(0, w) | w ∈ F

#
q } ,

O3 = cclH
(

(1, 1)
)

= (D+, D+) ∪ (D−, D−)

= {(v, w) | v, w ∈ D+} ∪ {(v, w) | v, w ∈ D−} ,

O4 = cclH
(

(1, t)
)

= (D+, D−) ∪ (D−, D+)

= {(v, w) | v ∈ D+, w ∈ D−} ∪ {(v, w) | v ∈ D−, w ∈ D+} ,

where by t ∈ D− we denote a fixed non-square element from Fq.
To be able to reduce the calculations which follow below, we shall make

use of certain outer automorphisms of the group G. Let Y = AGL1(q) ≀reg Z2

be the wreath product of AGL1(q) with Z2. Since G is a subdirect product of
AGL1(q) with itself, we may – in a natural way – consider G as a subgroup
of the base group Y ♮ = AGL1(q)×AGL1(q) of the wreath product Y , which
itself may be treated as a subgroup of the full automorphism group Aut(G)
of G. Choose an element τ ∈ AGL1(q) \N , where N is the unique subgroup
of index 2 in AGL1(q). It can be easily seen that Y/G ∼= Z2 × Z2. Thus,
Y/G = 〈αG, βG〉, where α, β ∈ Y are defined by (x, y)α = (y, x), (x, y)β =
(xτ , y), for all (x, y) ∈ Y ♮. Obviously, α and β act on the orbits Oi, for
i ∈ {0, . . . , 4}, in the following way:

Oα1 = O2, Oαi = Oi, i ∈ {0, 3, 4},

Oβ3 = O4, Oβi = Oi, i ∈ {0, 1, 2},

Oαβ1 = O2, O
αβ
3 = O4, O

αβ
0 = O0.

2. Some Formulas

Throughout the following calculations we retain the notation introduced
in the previous section.

Lemma 2.1. Let d ∈ Fq and t ∈ D−.
(i) If q ≡ 1 (mod 4), then:

|(D+ + d) ∩D−| = |(D− + d) ∩D+| =

{

0, for d = 0
q−1
4 , for d 6= 0

,(2.1)
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|(D+ + d) ∩D+| =|(D− + dt) ∩D−| =











q−5
4 , for d ∈ D+

q−1
2 , for d = 0
q−1
4 , for d ∈ D−

.(2.2)

(ii) If q ≡ 3 (mod 4), then:

|(D+ + d) ∩D+| = |(D− + d) ∩D−| =

{

q−1
2 , for d = 0
q−3
4 , for d 6= 0

,(2.3)

|(D+ + d) ∩D−| =|(D− + dt) ∩D+| =











q+1
4 , for d ∈ D+

0, for d = 0
q−3
4 , for d ∈ D−

.(2.4)

Proof. (i) First note that for any x ∈ D+, y ∈ D−, and for any z ∈ D+,
one has xz ∈ D+ and yz ∈ D−. Thus, if an element d ∈ F

#
q can be written

as a difference d = x − y with x ∈ D+ and y ∈ D−, then by multiplying
with an element z ∈ D+ one gets the element dz = xz − yz as a difference
of elements xz ∈ D+ and yz ∈ D−. Hence, all elements from D+, as well as
those from D−, can be written in the same number of ways as a difference
x − y, x ∈ D+, y ∈ D−. It remains to show that an element of D+ has as
many such representations as an element of D−. Since q ≡ 1 (mod 4), we
have −1 ∈ D+. If d = x− y ∈ D+, with x ∈ D+ and y ∈ D−, and if t ∈ D−,
then dt = xt− yt = −yt− (−xt), where −yt ∈ D+ and −xt ∈ D−, turns out
to be the corresponding representation. That’s why there is always the same
number, say λ′ ∈ N, of possibilities to write an element of F

#
q as a difference

x − y of two elements x ∈ D+ and y ∈ D−. Clearly, this is also true for the
differences of the form y − x. By counting |D+ ×D−| in two different ways,

we get
(

q−1
2

)2
= (q−1)λ′, which results in λ′ = q−1

4 , and proves the equation
(2.1). Equation (2.2) now follows easily from (2.1). Namely: The element 0
is contained in D+ + d if and only if d ∈ D+. So, |(D+ + d) ∩ (D− ∪ {0})| is
either equal to λ′ + 1 for d ∈ D+ or to λ′ for d ∈ D−. As

|(D+ + d) ∩D+| = |D+ + d| − |(D+ + d) ∩ (D− ∪ {0})|,

we get the result.
(ii) In the case q ≡ 3 (mod 4), it is a well known fact, that D+ and

D− are so-called Paley difference sets for the parameters
(

q, q−1
2 , q−3

4

)

in the
elementary abelian group F

+
q (see for example [1, Theorem 1.12, p. 302]).

Hence, (2.3) follows immediately. With almost the same methods as in (i),
one can now also verify equation (2.4).

For the purpose of calculating intersections of representatives of block
orbits of the symmetric designs which we want to construct later, we shall
calculate intersections for some specific subsets of the direct sum F

+
q ⊕ F

+
q .



A SERIES OF GROUPS AND DESIGNS 261

Lemma 2.1 from above facilitates this task and here we will demonstrate this
giving an example in the case where q ≡ 1 (mod 4).

|[(D+, D+) + (v, w)] ∩ (D+, D+)|

= |(D+ + v,D+ + w) ∩ (D+, D+)|

= |(D+ + v) ∩D+| · |(D+ + w) ∩D+|

=











q−5
4 , for v ∈ D+

q−1
2 , for v = 0
q−1
4 , for v ∈ D−











·











q−5
4 , for w ∈ D+

q−1
2 , for w = 0
q−1
4 , for w ∈ D−











=



































(

q−5
4

)2
, for v, w ∈ D+

(

q−1
4

)2
, for v, w ∈ D−

q−5
4

q−1
4 , for v ∈ D+, w ∈ D− or v ∈ D−, w ∈ D+

q−5
4

q−1
2 , for v ∈ D+, w = 0 or v = 0, w ∈ D+

q−1
4

q−1
2 , for v = 0, w ∈ D− or v ∈ D−, w = 0

.

Similarly, repeated application of the previous lemma leads directly to the
following results, which will prove to be crucial for our further investigations.

Lemma 2.2. (i) If q ≡ 1 (mod 4), then:

|[(D+, D+) + (v, w)] ∩ (D+, D+)|

=



































(

q−5
4

)2
, for v, w ∈ D+

(

q−1
4

)2
, for v, w ∈ D−

q−5
4

q−1
4 , for v ∈ D+, w ∈ D− or v ∈ D−, w ∈ D+

q−5
4

q−1
2 , for v ∈ D+, w = 0 or v = 0, w ∈ D+

q−1
4

q−1
2 , for v = 0, w ∈ D− or v ∈ D−, w = 0

,

|[(D−, D−) + (v, w)] ∩ (D−, D−)|

=



































(

q−1
4

)2
, for v, w ∈ D+

(

q−5
4

)2
, for v, w ∈ D−

q−5
4

q−1
4 , for v ∈ D+, w ∈ D− or v ∈ D−, w ∈ D+

q−1
4

q−1
2 , for v ∈ D+, w = 0 or v = 0, w ∈ D+

q−5
4

q−1
2 , for v = 0, w ∈ D− or v ∈ D−, w = 0

,

|[(D+, D+) + (v, w)] ∩ (D−, D−)|

=

{

(

q−1
4

)2
, for v 6= 0, w 6= 0

0, for v = 0 or w = 0
,
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|[(D−, D−) + (v, w)] ∩ (D+, D+)|

=

{

(

q−1
4

)2
, for v 6= 0, w 6= 0

0, for v = 0 or w = 0
,

|[(D+, D+) + (v, w)] ∩ (D+, D−)|

=



























q−5
4

q−1
4 , for v ∈ D+, w 6= 0

(

q−1
4

)2
, for v ∈ D−, w 6= 0

(q−1)2

8 , for v = 0, w 6= 0

0, for w = 0

,

|[(D+, D+) + (v, w)] ∩ (D−, D+)|

=



























q−5
4

q−1
4 , for v 6= 0, w ∈ D+

(

q−1
4

)2
, for v 6= 0, w ∈ D−

(q−1)2

8 , for v 6= 0, w = 0

0, for v = 0

,

|[(D−, D−) + (v, w)] ∩ (D+, D−)|

=



























(

q−1
4

)2
, for v 6= 0, w ∈ D+

q−5
4

q−1
4 , for v 6= 0, w ∈ D−

(q−1)2

8 , for v 6= 0, w = 0

0, for v = 0

,

|[(D−, D−) + (v, w)] ∩ (D−, D+)|

=



























(

q−1
4

)2
, for v ∈ D+, w 6= 0

q−5
4

q−1
4 , for v ∈ D−, w 6= 0

(q−1)2

8 , for v = 0, w 6= 0

0, for w = 0

.

(ii) If q ≡ 3 (mod 4), then:

|[(D+, D+) + (v, w)] ∩ (D+, D+)|

=

{

(

q−3
4

)2
, for v 6= 0, w 6= 0

q−1
2

q−3
4 , for v = 0 or w = 0

,

|[(D−, D−) + (v, w)] ∩ (D−, D−)|

=

{

(

q−3
4

)2
, for v 6= 0, w 6= 0

q−1
2

q−3
4 , for v = 0 or w = 0

,
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|[(D+, D+) + (v, w)] ∩ (D−, D−)|

=



























(

q+1
4

)2
, for v, w ∈ D+

(

q−3
4

)2
, for v, w ∈ D−

q+1
4

q−3
4 , for v ∈ D+, w ∈ D− or v ∈ D−, w ∈ D+

0, for v = 0 or w = 0

,

|[(D−, D−) + (v, w)] ∩ (D+, D+)|

=



























(

q−3
4

)2
, for v, w ∈ D+

(

q+1
4

)2
, for v, w ∈ D−

q+1
4

q−3
4 , for v ∈ D+, w ∈ D− or v ∈ D−, w ∈ D+

0, for v = 0 or w = 0

,

|[(D+, D+) + (v, w)] ∩ (D+, D−)|

=



































q−3
4

q+1
4 , for v 6= 0, w ∈ D+

(

q−3
4

)2
, for v 6= 0, w ∈ D−

q−1
2

q+1
4 , for v = 0, w ∈ D+

q−1
2

q−3
4 , for v = 0, w ∈ D−

0, for w = 0

,

|[(D+, D+) + (v, w)] ∩ (D−, D+)|

=



































q−3
4

q+1
4 , for v ∈ D+, w 6= 0

(

q−3
4

)2
, for v ∈ D−, w 6= 0

q−1
2

q+1
4 , for v ∈ D+, w = 0

q−1
2

q−3
4 , for v ∈ D−, w = 0

0, for v = 0

,

|[(D−, D−) + (v, w)] ∩ (D+, D−)|

=



































(

q−3
4

)2
, for v ∈ D+, w 6= 0

q+1
4

q−3
4 , for v ∈ D−, w 6= 0

q−1
2

q−3
4 , for v ∈ D+, w = 0

q−1
2

q+1
4 , for v ∈ D−, w = 0

0, for v = 0

,
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|[(D−, D−) + (v, w)] ∩ (D−, D+)|

=



































(

q−3
4

)2
, for v 6= 0, w ∈ D+

q+1
4

q−3
4 , for v 6= 0, w ∈ D−

q−1
2

q−3
4 , for v = 0, w ∈ D+

q−1
2

q+1
4 , for v = 0, w ∈ D−

0, for w = 0

.

Having the equations of the above Lemma 2.2 at our disposal we are now
able to prove the following proposition.

Proposition 2.3. For every (v, w) ∈ Q \ {(0, 0)} one has:

|(O1 + (v, w)) ∩O1| =

{

q − 2, for w = 0

0, for w 6= 0
,

(2.5)

|(O2 + (v, w)) ∩O2| =

{

q − 2, for v = 0

0, for v 6= 0
,

(2.6)

|(O3 + (v, w)) ∩O3| =
q − 1

2

q − 3

2
+

{

1, for v, w ∈ D+ or v, w ∈ D−

0, otherwise
,

(2.7)

|(O4 + (v, w)) ∩O4| =
q − 1

2

q − 3

2
+











1, for v ∈ D+, w ∈ D−

or v ∈ D−, w ∈ D+

0, otherwise

,

(2.8)

|(O1 + (v, w)) ∩O2| = |(O2 + (v, w)) ∩O1|

(2.9)

=

{

1, for v 6= 0, w 6= 0

0, otherwise
,

|(O1 + (v, w)) ∩O3| = |(O3 + (v, w)) ∩O1|

(2.10)

=











q−3
2 , for v, w ∈ D+ or v, w ∈ D−

0, for w = 0
q−1
2 , for v ∈ D+, w ∈ D− or v ∈ D−, w ∈ D+ or v = 0

,
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|(O1 + (v, w)) ∩O4| = |(O4 + (v, w)) ∩O1|

(2.11)

=











q−1
2 , for v, w ∈ D+ or v, w ∈ D− or v = 0

0, for w = 0
q−3
2 , for v ∈ D+, w ∈ D− or v ∈ D−, w ∈ D+

,

|(O2 + (v, w)) ∩O3| = |(O3 + (v, w)) ∩O2|

(2.12)

=











q−3
2 , for v, w ∈ D+ or v, w ∈ D−

0, for v = 0
q−1
2 , for v ∈ D+, w ∈ D− or v ∈ D−, w ∈ D+ or w = 0

,

|(O2 + (v, w)) ∩O4| = |(O4 + (v, w)) ∩O2|

(2.13)

=











q−1
2 , for v, w ∈ D+ or v, w ∈ D− or w = 0

0, for v = 0
q−3
2 , for v ∈ D+, w ∈ D− or v ∈ D−, w ∈ D+

,

|(O3 + (v, w)) ∩O4| = |(O4 + (v, w)) ∩O3|

(2.14)

=

{

q−1
2

q−3
2 , for v 6= 0, w 6= 0

(q−1)2

4 , for v = 0 or w = 0
.

Proof. Throughout the following calculations we shall be using the for-
mulas from Lemma 2.2 which depend on q being congruent to either 1 or 3
modulo 4.

First we consider the cardinality of all symmetric intersections, i.e. inter-
sections between a set Oi and the shifted set Oi + (v, w) for i ∈ {1, 2, 3, 4}.

|(O1 + (v, w)) ∩O1| =
∣

∣[(F#
q , {0}) + (v, w)] ∩ (F#

q , {0})
∣

∣

=
∣

∣(F#
q + v, {w}) ∩ (F#

q , {0})
∣

∣ =

{

|Fq \ {0, v}| = q − 2, for w = 0

0, for w 6= 0
,

|(O2 + (v, w)) ∩O2|

= |(Oα1 + (w, v)α) ∩Oα1 | = |(O1 + (w, v))α ∩Oα1 |

= |(O1 + (w, v)) ∩O1| =

{

q − 2, for v = 0

0, for v 6= 0
.

In a similar way, using the symmetry provided by the automorphisms α and
β, it can be shown that we do not need to prove explicitly the equations (2.8),
(2.11), (2.12) and (2.13), once we have proved the equations (2.7) and (2.10).
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If q ≡ 1 (mod 4), we get for (2.7):

|(O3 + (v, w)) ∩O3|

=
∣

∣

(

[(D+, D+) ∪ (D−, D−)] + (v, w)
)

∩ [(D+, D+) ∪ (D−, D−)]
∣

∣

=
∣

∣

(

(D+, D+) + (v, w)
)

∩ (D+, D+)
∣

∣ +
∣

∣

(

(D+, D+) + (v, w)
)

∩ (D−, D−)
∣

∣

+
∣

∣

(

(D−, D−) + (v, w)
)

∩ (D+, D+)
∣

∣ +
∣

∣

(

(D−, D−) + (v, w)
)

∩ (D−, D−)
∣

∣

=



































(

q−5
4

)2
+ 2 ·

(

q−1
4

)2
+

(

q−1
4

)2
= (q−1)(q−3)

4 + 1, for v, w ∈ D+

or v, w ∈ D−

2 · q−5
4

q−1
4 + 2 ·

(

q−1
4

)2
= (q−1)(q−3)

4 , for v ∈ D+, w ∈ D−

or v ∈ D−, w ∈ D+

q−5
4 · q−1

2 + 2 · 0 + q−1
4

q−1
2 = (q−1)(q−3)

4 , for v = 0 or w = 0

=
q − 1

2

q − 3

2
+

{

1, for v, w ∈ D+ or v, w ∈ D−

0, otherwise
.

If q ≡ 3 (mod 4), the same expression becomes:

|(O3 + (v, w)) ∩O3|

=
∣

∣

(

[(D+, D+) ∪ (D−, D−)] + (v, w)
)

∩ [(D+, D+) ∪ (D−, D−)]
∣

∣

=
∣

∣

(

(D+, D+) + (v, w)
)

∩ (D+, D+)
∣

∣ +
∣

∣

(

(D+, D+) + (v, w)
)

∩ (D−, D−)
∣

∣

+
∣

∣

(

(D−, D−) + (v, w)
)

∩ (D+, D+)
∣

∣ +
∣

∣

(

(D−, D−) + (v, w)
)

∩ (D−, D−)
∣

∣

=



































2 ·
(

q−3
4

)2
+

(

q+1
4

)2
+

(

q−3
4

)2
= (q−1)(q−3)

4 + 1, for v, w ∈ D+

or v, w ∈ D−

2 ·
(

q−3
4

)2
+ 2 · q+1

4
q−3
4 = (q−1)(q−3)

4 , for v ∈ D+, w ∈ D−

or v ∈ D−, w ∈ D+

2 · q−1
2 · q−3

4 + 2 · 0 = (q−1)(q−3)
4 , for v = 0 or w = 0

=
q − 1

2

q − 3

2
+

{

1, for v, w ∈ D+ or v, w ∈ D−

0, otherwise
.

Now, we go on proving all equations which involve asymmetric intersections.

|(O1 + (v, w)) ∩O2| =
∣

∣[(F#
q , {0}) + (v, w)] ∩ ({0},F#

q )
∣

∣

=
∣

∣(Fq \ {v}, {w}) ∩ ({0},F#
q )

∣

∣ =

{

1, for v 6= 0, w 6= 0

0, for v = 0 or w = 0
.

Before we continue to prove the remaining formulas, we point out that it is
sufficient to prove only one equation for each pair (2.9)–(2.14). We illustrate
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this by examining the counterpart of the above equation.

|(O2 + (v, w)) ∩O1| = |O2 ∩ (O1 − (v, w))|

= |O2 ∩ (O1 + (−v,−w))| = |(O1 + (v, w)) ∩O2|.

We are now going to verify equation (2.10):

|(O1 + (v, w)) ∩O3| =
∣

∣[(F#
q , {0}) + (v, w)] ∩ [(D+, D+) ∪ (D−, D−)]

∣

∣

=
∣

∣(Fq \ {v}, {w}) ∩ [(D+, D+) ∪ (D−, D−)]
∣

∣ =











|D+ \ {v}|, for w ∈ D+

0, for w = 0

|D− \ {v}|, for w ∈ D−

=











q−3
2 , for v, w ∈ D+ or v, w ∈ D−

0, for w = 0
q−1
2 , for v ∈ D+, w ∈ D− or v ∈ D−, w ∈ D+ or v = 0

.

If q ≡ 1 (mod 4), we get for (2.14):

|(O3 + (v, w)) ∩O4|

=
∣

∣

(

[(D+, D+) ∪ (D−, D−)] + (v, w)
)

∩ [(D+, D−) ∪ (D−, D+)]
∣

∣

=
∣

∣

(

(D+, D+) + (v, w)
)

∩ (D+, D−)
∣

∣ +
∣

∣

(

(D+, D+) + (v, w)
)

∩ (D−, D+)
∣

∣

+
∣

∣

(

(D−, D−) + (v, w)
)

∩ (D+, D−)
∣

∣ +
∣

∣

(

(D−, D−) + (v, w)
)

∩ (D−, D+)
∣

∣

=























































2 · q−5
4

q−1
4 + 2 ·

(

q−1
4

)2
= (q−1)(q−3)

4 , for v, w ∈ D+

2 · q−5
4

q−1
4 + 2 ·

(

q−1
4

)2
= (q−1)(q−3)

4 , for v, w ∈ D−

2 · q−5
4

q−1
4 + 2 ·

(

q−1
4

)2
= (q−1)(q−3)

4 , for v ∈ D+, w ∈ D−

2 · q−5
4

q−1
4 + 2 ·

(

q−1
4

)2
= (q−1)(q−3)

4 , for v ∈ D−, w ∈ D+

2 · (q−1)2

8 + 2 · 0 = (q−1)2

4 , for v = 0, w 6= 0

2 · (q−1)2

8 + 2 · 0 = (q−1)2

4 , for v 6= 0, w = 0

=

{

q−1
2

q−3
2 , for v 6= 0, w 6= 0

(q−1)2

4 , for v = 0 or w = 0
.

If q ≡ 3 (mod 4), the same expression becomes:

|(O3 + (v, w)) ∩O4|

=
∣

∣

(

[(D+, D+) ∪ (D−, D−)] + (v, w)
)

∩ [(D+, D−) ∪ (D−, D+)]
∣

∣

=
∣

∣

(

(D+, D+) + (v, w)
)

∩ (D+, D−)
∣

∣ +
∣

∣

(

(D+, D+) + (v, w)
)

∩ (D−, D+)
∣

∣

+
∣

∣

(

(D−, D−) + (v, w)
)

∩ (D+, D−)
∣

∣ +
∣

∣

(

(D−, D−) + (v, w)
)

∩ (D−, D+)
∣

∣
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=















































































2 · q+1
4

q−3
4 + 2 ·

(

q−3
4

)2
= (q−1)(q−3)

4 , for v, w ∈ D+

2 · q+1
4

q−3
4 + 2 ·

(

q−3
4

)2
= (q−1)(q−3)

4 , for v, w ∈ D−

2 · q+1
4

q−3
4 + 2 ·

(

q−3
4

)2
= (q−1)(q−3)

4 , for v ∈ D+, w ∈ D−

2 · q+1
4

q−3
4 + 2 ·

(

q−3
4

)2
= (q−1)(q−3)

4 , for v ∈ D−, w ∈ D+

q−1
2

q+1
4 + q−1

2
q−3
4 + 2 · 0 = (q−1)2

4 , for v = 0, w ∈ D+

q−1
2

q+1
4 + q−1

2
q−3
4 + 2 · 0 = (q−1)2

4 , for v = 0, w ∈ D−

q−1
2

q+1
4 + q−1

2
q−3
4 + 2 · 0 = (q−1)2

4 , for v ∈ D+, w = 0

q−1
2

q+1
4 + q−1

2
q−3
4 + 2 · 0 = (q−1)2

4 , for v ∈ D−, w = 0

=

{

q−1
2

q−3
2 , for v 6= 0, w 6= 0

(q−1)2

4 , for v = 0 or w = 0
.

3. The Series of Designs

Remember that we have denoted the maximal normal p-subgroup of G by
Q and have identified it with F

+
q ⊕F

+
q . The subgroup Q splits into 5 G-orbits

under conjugation. Using the notation previously introduced we put

Q = O0 ∪O1 ∪O2 ∪O3 ∪O4.

Take two further copies of Q and denote them by Q′ and Q′′. We consider Q,
Q′, and Q′′ to be pairwise disjoint. As we did for Q, we put

Q′ = O′

0 ∪O
′

1 ∪O
′

2 ∪O
′

3 ∪O
′

4 and Q′′ = O′′

0 ∪O′′

1 ∪O′′

2 ∪O′′

3 ∪O′′

4 .

Here, the O′

i and the O′′

i play the same role for Q′ and Q′′, respectively, as
the Oi do for Q. With that set-up we are able to define the following sets:

B0 = Q′, B1 = O0∪O
′

1∪O
′

3∪O
′′

2 ∪O
′′

4 and B2 = O′

2∪O
′

4∪O
′′

0 ∪O
′′

2 ∪O
′′

4 .

Further, we define the orbits of these blocks, which we get by adding to them
the elements of Q as follows:

Bi = BQi = {Bi + (v, w) | (v, w) ∈ Q}, i ∈ {0, 1, 2},

where

Bi + (v, w) = {(x+ v, y + w) | (x, y) ∈ Bi}.

When computing the sum (x, y) + (v, w), the reader should be aware of the
fact that the result (x + v, y + w) belongs to the same copy of Q as (x, y).
For the lengths of these block orbits we get |B0| = 1, |B1| = |Q| = q2 and
|B2| = |Q| = q2.
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Theorem 3.1. Let P = O0 ∪ Q′ ∪ Q′′ be the set of points and B =
B0 ∪ B1 ∪ B2 the set of blocks of a finite incidence structure D = (P ,B,∈).

Then D is a symmetric design with parameters (2q2 + 1, q2, q
2
−1
2 ).

Proof. Clearly, |P| = |B| = v = 2q2 + 1. As |Bi| = q2, for i ∈ {0, 1, 2},
it is obvious that |B| = k = q2 for each block B ∈ B. It remains only to
show that the intersection of any two different blocks from the set B consists

of precisely λ = q2−1
2 points. To do this we take advantage of the equations

from Proposition 2.3. Obviously, it suffices to determine these cardinalities
for the following intersections. Take first two blocks from B1. One gets:

|(B1 + (v, w)) ∩B1|

=
∣

∣

(

O0 + (v, w)
)

∩O0

∣

∣ +
∣

∣

(

[O′

1 ∪O
′

3] + (v, w)
)

∩ [O′

1 ∪O
′

3]
∣

∣

+
∣

∣

(

[O′′

2 ∪O′′

4 ] + (v, w)
)

∩ [O′′

2 ∪O′′

4 ]
∣

∣

= 1 + |(O1 + (v, w)) ∩O1| + |(O1 + (v, w)) ∩O3|

+ |(O3 + (v, w)) ∩O1| + |(O3 + (v, w)) ∩O3|

+ |(O2 + (v, w)) ∩O2| + |(O2 + (v, w)) ∩O4|

+ |(O4 + (v, w)) ∩O2| + |(O4 + (v, w)) ∩O4|

=
q2 − 1

2
, ∀ (v, w) ∈ Q \ {(0, 0)}.

For two different blocks from B2 the calculation looks as follows:

|(B2 + (v, w)) ∩B2| =
∣

∣

(

[O′

2 ∪O
′

4] + (v, w)
)

∩ [O′

2 ∪O
′

4]
∣

∣

+
∣

∣

(

[O′′

0 ∪O′′

2 ∪O′′

4 ] + (v, w)
)

∩ [O′′

0 ∪O′′

2 ∪O′′

4 ]
∣

∣

= |(O2 + (v, w)) ∩O2| + |(O2 + (v, w)) ∩O4|

+ |(O4 + (v, w)) ∩O2| + |(O4 + (v, w)) ∩O4|

+ |(O0 + (v, w)) ∩O0| + |(O0 + (v, w)) ∩O2| + |(O0 + (v, w)) ∩O4|

+ |(O2 + (v, w)) ∩O0| + |(O2 + (v, w)) ∩O2| + |(O2 + (v, w)) ∩O4|

+ |(O4 + (v, w)) ∩O0| + |(O4 + (v, w)) ∩O2| + |(O4 + (v, w)) ∩O4|

=
q2 − 1

2
, ∀ (v, w) ∈ Q \ {(0, 0)}.

Finally, if we take two blocks from different block orbits, one from B1 and the
other from B2, the intersections always summarize to the number expected:

|(B1 + (v, w)) ∩B2| =
∣

∣

(

[O′

1 ∪O
′

3] + (v, w)
)

∩ [O′

2 ∪O
′

4]
∣

∣

+
∣

∣

(

[O′′

2 ∪O′′

4 ] + (v, w)
)

∩ [O′′

0 ∪O′′

2 ∪O′′

4 ]
∣

∣

= |(O1 + (v, w)) ∩O2| + |(O1 + (v, w)) ∩O4|

+ |(O3 + (v, w)) ∩O2| + |(O3 + (v, w)) ∩O4|

+ |(O2 + (v, w)) ∩O0| + |(O2 + (v, w)) ∩O2| + |(O2 + (v, w)) ∩O4|
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+ |(O4 + (v, w)) ∩O0| + |(O4 + (v, w)) ∩O2| + |(O4 + (v, w)) ∩O4|

=
q2 − 1

2
, ∀ (v, w) ∈ Q.

From the construction of the design D it follows immediately that G acts
on D as an automorphism group. We can derive even a slightly stronger result
about the automorphisms of D from the above theorem. For that purpose,
we first of all introduce the group

AΓL1(q) = {x 7→ a · xσ + b | a ∈ F
∗

q , b ∈ Fq and σ ∈ Aut(Fq)}

of all affine semilinear transformations of the field Fq considered as a 1-
dimensional vector space over itself, which is called the 1-dimensional affine
general semilinear group over Fq. Evidently, the group of all field automor-
phisms Aut(Fq), which is cyclic of order e, as well as the 1-dimensional affine
general linear group AGL1(q) of order q · (q− 1), which had been used at the
beginning of this paper in the process of defining the group G, are naturally
embedded in AΓL1(q), such that this group is a faithful split extension of the
normal subgroup AGL1(q) by C, where C = Aut(Fq). For further details con-
cerning the groups AΓLn(q) in general we refer the reader to [1, pp. 185-186].
We know from our earlier investigation of AGL1(q), that this group contains
a unique and therefore characteristic subgroup N of index 2, hence N is a
normal subgroup of AΓL1(q). Clearly, the product M = NC is a normal
subgroup of index 2 in AΓL1(q). The reader should be aware of the fact that
M is not necessarily the only subgroup of index 2 in AΓL1(q), although this
is known to be true for N in AGL1(q). Let

ψ : AΓL1(q) → AΓL1(q)/M

be the natural epimorphism from AΓL1(q) onto its factor group modulo M
of order 2. We are now able to define

A = AΓL1(q) sdp(ψ,ψ) AΓL1(q)

= {(x, y) ∈ AΓL1(q) ×AΓL1(q) | ψ(x) = ψ(y)}

to be the subdirect product of AΓL1(q) with itself with respect to ψ, which
obviously containsG as a normal subgroup and thus is a split extension ofG by

C×C of order q2 ·
(

q−1
2

)2
·e2 ·2. Since C preserves the multiplicative structure

of Fq and in particular keeps the subsets {0}, D+ and D− of Fq invariant, the
group C × C leaves the orbits O0, O1, . . . , O4 of H on Q invariant and hence
belongs as well as H to each of the stabilizers of the base blocks B0, B1, and
B2. Therefore, the construction of the design D in Theorem 3.1 leads directly
to the following conclusion.
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Corollary 3.2. For every odd prime power q = pe the group A – defined
above – is contained in the full automorphism group Aut(D) of the symmetric
design D.

The corollary shows that the known partA of Aut(D) containsG precisely
then properly if e 6= 1, that means if q = pe is not a prime.

Finally, in the following remark, we want to formulate a conjecture – based
on computations with GAP [2] – about the generic situation concerning the
full automorphism group Aut(D) of the symmetric design D.

Remark 3.3. By inspection of Aut(D) for some small values of q = pe

we find that for almost every such q the group A always coincides with the
full automorphism group Aut(D) of the symmetric design D, except for q ∈
{3, 5, 7}. In these three exceptional cases the group A is therefore properly
contained in the full automorphism group Aut(D) which is, for every q ∈
{3, 5, 7}, always isomorphic to a split extension of an elementary abelian group
Eq2 of order q2 by a certain complement acting faithfully on Eq2 . It turns out
that by the property of being a faithful split extension the three automorphism
groups are uniquely determined up to isomorphism. For these three values of
q the structure of Aut(D) is as follows:

1. If q = 3, then Aut(D) ∼= E9 : D8 and has order 72.
2. If q = 5, then Aut(D) ∼= E25 : (S3 × Z4) and has order 600.
3. If q = 7, then Aut(D) ∼= E49 : (SL2(3) × Z3) and has order 3528.

It seems to be natural to assume that for every odd prime power q = pe, except
for q ∈ {3, 5, 7}, the full automorphism group Aut(D) of the symmetric design
D is equal to the group A.
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