ON LINEAR SUBSPACES OF \mathcal{M}_{n} AND THEIR SINGULAR SETS RELATED TO THE CHARACTERISTIC MAP

Marcin SkrzyńSki
Cracow University of Technology, Poland

Abstract

We study linear subspaces $\mathcal{L} \subseteq \mathcal{M}_{n}$ (over an algebraically closed field \mathbb{F} of characteristic zero) and their singular sets $\mathcal{S}(\mathcal{L})$ defined by $\mathcal{S}(\mathcal{L})=\left\{A \in \mathcal{M}_{n}: \chi(A+\mathcal{L})\right.$ is not dense in $\left.\mathbb{F}^{n}\right\}$, where $\chi: \mathcal{M}_{n} \longrightarrow \mathbb{F}^{n}$ is the characteristic map. We give a complete characterization of the subspaces $\mathcal{L} \subset \mathcal{M}_{2}$ such that $\emptyset \neq \mathcal{S}(\mathcal{L}) \neq \mathcal{M}_{2}$. We also provide a complete characterization of the singular sets $\mathcal{S}(\mathcal{L})$ in the case of $n=2$. Finally, we give a characterization of the n-dimensional subspaces $\mathcal{L} \subset \mathcal{M}_{n}$ such that $\mathcal{S}(\mathcal{L})=\emptyset$ by means of their intersections with conjugacy classes.

1. Preliminaries and introduction

We work throughout over an algebraically closed field \mathbb{F} of characteristic zero. We define $\mathbb{F}^{*}=\mathbb{F} \backslash\{0\}$. We denote by $\# E$ the cardinality of a finite set E. The set of all $(n \times n)$-matrices whose entries are elements of \mathbb{F} is denoted by \mathcal{M}_{n}. (We assume throughout that $n \geq 2$.) The zero matrix and the unit matrix belonging to \mathcal{M}_{n} are denoted by O and I, respectively. We define $\mathcal{G} \mathcal{L}_{n}$ to be the full linear group of size n over the field \mathbb{F}, i. e. $\mathcal{G} \mathcal{L}_{n}=\left\{U \in \mathcal{M}_{n}: \operatorname{det}(U) \neq 0\right\}$. The conjugacy class of a matrix $A \in \mathcal{M}_{n}$ is denoted by $\mathcal{O}(A)$. (In other words, $\mathcal{O}(A)=\left\{U^{-1} A U: U \in \mathcal{G} \mathcal{L}_{n}\right\}$.) A subset $\mathcal{E} \subseteq \mathcal{M}_{n}$ is said to be triangularizable if there is a $U \in \mathcal{G} \mathcal{L}_{n}$ such that $U^{-1} \mathcal{E} U:=\left\{U^{-1} A U: A \in \mathcal{E}\right\}$ consists of upper triangular matrices. The subset \mathcal{E} is said to be $\mathcal{G} \mathcal{L}_{n}$-invariant if $U^{-1} \mathcal{E} U \subseteq \mathcal{E}$ for all $U \in \mathcal{G} \mathcal{L}_{n}$.

We consider $\mathbb{F}^{n}, \mathcal{M}_{n} \cong \mathbb{F}^{n^{2}}$, and their subsets as topological spaces endowed with the Zariski topology. We say that a property holds for a generic

[^0]matrix $A \in \mathcal{M}_{n}$ if there exists a nonempty Zariski open subset $\mathcal{W} \subseteq \mathcal{M}_{n}$ such that the property holds for all $A \in \mathcal{W}$. The Zariski closure of a set E contained either in \mathbb{F}^{n} or in \mathcal{M}_{n} is denoted by \bar{E}.

For an $A \in \mathcal{M}_{n}$ and a positive integer $j \leq n$ we define $\mathrm{s}_{j}(A)$ to be the sum of all principal minors of size j of the matrix A. (Therefore,

$$
T^{n}+\sum_{j=1}^{n}(-1)^{j} \mathrm{~s}_{j}(A) T^{n-j} \in \mathbb{F}[T]
$$

is the characteristic polynomial of A.) The regular map $\chi: \mathcal{M}_{n} \longrightarrow \mathbb{F}^{n}$ defined by $\chi(A)=\left(\mathrm{s}_{1}(A), \ldots, \mathrm{s}_{n}(A)\right)$ is referred to as the characteristic map. Notice that Helton, Rosenthal and Wang [3] define the characteristic map by $A \mapsto\left((-1)^{j} \mathrm{~S}_{j}(A)\right)_{j=1}^{n}$.

For a linear subspace $\mathcal{L} \subseteq \mathcal{M}_{n}$ we define a singular set $\mathcal{S}(\mathcal{L})$ related to the characteristic map. Namely,

$$
\mathcal{S}(\mathcal{L})=\left\{A \in \mathcal{M}_{n}: \chi(A+\mathcal{L}) \text { is not dense in } \mathbb{F}^{n}\right\}
$$

Observe that the condition which defines the set $\mathcal{S}(\mathcal{L})$ may be reformulated in the following way: the regular map $\mathcal{L} \ni B \mapsto \chi(A+B) \in \mathbb{F}^{n}$ is not dominant. We refer to [2] for all needed information about matrix theory, to [5] for algebra, and to [6, 4] for algebraic geometry and invariant theory.

In [3] Helton, Rosenthal and Wang proved that the image $\chi(A+\mathcal{L})$ is dense in \mathbb{F}^{n} for a generic matrix $A \in \mathcal{M}_{n}$ if and only if the dimension of a linear subspace $\mathcal{L} \subseteq \mathcal{M}_{n}$ is not smaller than n and there is a $B \in \mathcal{L}$ such that $\operatorname{tr}(B) \neq 0$. (Notice that $\chi(A+\mathcal{L})$ is a constructible subset of \mathbb{F}^{n}.) Applying the above introduced language we can rephrase the Helton - Rosenthal Wang result as follows: $\mathcal{S}(\mathcal{L}) \neq \mathcal{M}_{n}$ if and only $\operatorname{if} \operatorname{dim} \mathcal{L} \geq n$ and tr does not identically vanish on \mathcal{L}; moreover, $\mathcal{S}(\mathcal{L})$ is a (Zariski) closed subset of \mathcal{M}_{n}. In [7] we studied basic set-theorical, geometrical and topological properties of the singular sets $\mathcal{S}(\mathcal{L})$. In particular, we derived a counterpart of the Helton - Rosenthal - Wang theorem in the case of $n=2$ and obtained a characterization of the linear subspaces $\mathcal{L} \subseteq \mathcal{M}_{n}$ such that $\mathcal{S}(\mathcal{L})=\emptyset$. The present note is a continuation of [7]. Our first goal is to complete the study of the linear subspaces of \mathcal{M}_{2} and their singular sets. The second goal is to give a characterization of the n-dimensional linear subspaces of \mathcal{M}_{n} whose singular set is empty by means of their intersections with conjugacy classes (the case of $n=2$ being considered in a detailed way).

2. The case of $n=2$

We start with a continuation of the study of linear subspaces of \mathcal{M}_{2} originated in [7, Section 2]. Our purpose is to characterize the subspaces $\mathcal{L} \subset \mathcal{M}_{2}$ such that $\emptyset \neq \mathcal{S}(\mathcal{L}) \neq \mathcal{M}_{2}$.

For $\lambda \in \mathbb{F}$ we define

$$
\mathcal{T}_{\lambda}=\left\{\left[\begin{array}{cc}
t & s \\
0 & \lambda t
\end{array}\right]: t, s \in \mathbb{F}\right\}
$$

Furthermore, we define

$$
\mathcal{K}=\left\{\left[\begin{array}{ll}
0 & s \\
0 & t
\end{array}\right]: t, s \in \mathbb{F}\right\} .
$$

Theorem 2.1. Let \mathcal{L} be a linear subspace of \mathcal{M}_{2}. Then the following conditions are equivalent:
(1) $\emptyset \neq \mathcal{S}(\mathcal{L}) \neq \mathcal{M}_{2}$,
(2) either $\mathcal{L}=U^{-1} \mathcal{T}_{\lambda} U$ for a $U \in \mathcal{G} \mathcal{L}_{2}$ and a $\lambda \in \mathbb{F} \backslash\{-1\}$, or $\mathcal{L}=U^{-1} \mathcal{K} U$ for a $U \in \mathcal{G} \mathcal{L}_{2}$.
Proof. If condition (2) is satisfied, then $\operatorname{dim} \overline{\chi(\mathcal{L})}=1$ and

$$
U^{-1}\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] U \notin \mathcal{S}(\mathcal{L})
$$

Condition (1) follows.
Assume that (1) is satisfied. Since $\mathcal{S}(\mathcal{L}) \neq \mathcal{M}_{2}$, we have that $\operatorname{dim} \mathcal{L} \geq 2$ and that tr does not identically vanish on \mathcal{L}. The nonemptiness of $\mathcal{S}(\mathcal{L})$ yields $\operatorname{dim} \mathcal{L}<3$ [7, Corollary 1.7]. Pick two matrices $A, B \in \mathcal{L}$ such that $\operatorname{tr}(A) \neq 0 \neq \operatorname{tr}(B)$ and (A, B) is a basis for \mathcal{L}.

Consider first the case where A is not diagonalizable. Then there are a $V \in \mathcal{G} \mathcal{L}_{2}$ and a $\mu \in \mathbb{F}^{*}$ such that

$$
\widetilde{A}:=V^{-1}(\mu A) V=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

Define $\widetilde{\mathcal{L}}=V^{-1} \mathcal{L} V$ and $\widetilde{B}=V^{-1} B V$. It is easy to see that $\mathcal{S}(\widetilde{\mathcal{L}})=$ $V^{-1} \mathcal{S}(\mathcal{L}) V$. Furthermore, $(\widetilde{A}, \widetilde{B})$ is a basis for $\widetilde{\mathcal{L}}$. Put $\widetilde{B}=\left[\beta_{j k}\right]$. By implication $(1) \Rightarrow(2)$ in $\left[7\right.$, Proposition 2.3], we obtain $\beta_{11}+\beta_{22}-\beta_{21}=\beta_{11}+\beta_{22}$ and $4\left(\beta_{11} \beta_{22}-\beta_{12} \beta_{21}\right)=\left(\beta_{11}+\beta_{22}\right)\left(\beta_{11}+\beta_{22}-\beta_{21}\right)$. These equalities yield $\beta_{21}=0$ and $\beta_{11}=\beta_{22}$. Notice that $\beta_{12} \neq \beta_{11} \neq 0$ (because \widetilde{A} and \widetilde{B} are linearly independent and $\operatorname{tr}(\widetilde{B}) \neq 0)$. Consequently,

$$
\widetilde{\mathcal{L}}=\left\{\left[\begin{array}{cc}
t+\beta_{11} s & t+\beta_{12} s \\
0 & t+\beta_{11} s
\end{array}\right]: t, s \in \mathbb{F}\right\} .
$$

Condition (2) follows (with $\lambda=1$).
Now, consider the case where $A \notin \mathbb{F} I$ is a diagonalizable matrix. Then there are a $V \in \mathcal{G} \mathcal{L}_{2}$ and a $\mu \in \mathbb{F}^{*}$ such that

$$
\widetilde{A}=V^{-1}(\mu A) V=\left[\begin{array}{ll}
1 & 0 \\
0 & \alpha
\end{array}\right]
$$

with an $\alpha \in \mathbb{F} \backslash\{ \pm 1\}$. Define $\widetilde{\mathcal{L}}$ and $\widetilde{B}=\left[\beta_{j k}\right] \in \widetilde{\mathcal{L}}$ as in the previous part of the proof. By implication $(1) \Rightarrow(2)$ in [7, Proposition 2.3], we get

$$
(1+\alpha)\left(\beta_{22}+\alpha \beta_{11}\right)=2 \alpha\left(\beta_{11}+\beta_{22}\right)
$$

and
$(\bullet) \quad 2(1+\alpha)\left(\beta_{11} \beta_{22}-\beta_{12} \beta_{21}\right)=\left(\beta_{11}+\beta_{22}\right)\left(\beta_{22}+\alpha \beta_{11}\right)$.
Observe that equality (\bullet) yields $\beta_{11} \neq 0$. (If $\beta_{11}=0$, then $\beta_{22}=0$, because $\alpha \neq 1$. This contradicts the fact that $\operatorname{tr}(\widetilde{B}) \neq 0$.) Reformulating (\bullet) we obtain $(\alpha-1)\left(\alpha \beta_{11}-\beta_{22}\right)=0$. Therefore, $\alpha=\frac{\beta_{22}}{\beta_{11}}$. This means that the diagonal entries of the matrix $\beta_{11} \widetilde{A}$ coincide with the diagonal entries of \widetilde{B}. The linear independence of \widetilde{A} and \widetilde{B} implies now that at least one of the elements β_{12}, β_{21} is different from 0 . On the other hand, substituting $\alpha=\frac{\beta_{22}}{\beta_{11}}$ into equality $(\bullet \bullet)$ we get $\beta_{12} \beta_{21}=0$. Consequently, either

$$
\widetilde{\mathcal{L}}=\left\{\left[\begin{array}{cc}
t+s & \frac{\beta_{12}}{\beta_{11}} s \\
0 & \alpha(t+s)
\end{array}\right]: t, s \in \mathbb{F}\right\}
$$

with $\beta_{12} \neq 0$, or

$$
\widetilde{\mathcal{L}}=\left\{\left[\begin{array}{cc}
t+s & 0 \\
\frac{\beta_{21}}{\beta_{11}} s & \alpha(t+s)
\end{array}\right]: t, s \in \mathbb{F}\right\}
$$

with $\beta_{21} \neq 0$. In the first case condition (2) follows in an obvious way. Define

$$
P=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

In the second case, $P^{-1} \widetilde{\mathcal{L}} P=\mathcal{T}_{\alpha^{-1}}$ whenever $\alpha \neq 0$, and $P^{-1} \widetilde{\mathcal{L}} P=\mathcal{K}$ whenever $\alpha=0$.

Finally, consider the case of $A=I$. Let $V \in \mathcal{G} \mathcal{L}_{2}$ be such that $\widetilde{B}=V^{-1} B V$ is an upper triangular matrix. Implication $(1) \Rightarrow(2)$ in $[7$, Proposition 2. 3] applied to the matrices I and \widetilde{B} yields $(\operatorname{tr}(\widetilde{B}))^{2}=4 \operatorname{det}(\widetilde{B})$, which means that \widetilde{B} has the double eigenvalue. In virtue of the linear independence of I and \widetilde{B} we have

$$
\widetilde{B}=\left[\begin{array}{ll}
\xi & \nu \\
0 & \xi
\end{array}\right]
$$

for some $\xi, \nu \in \mathbb{F}^{*}$. Thus,

$$
V^{-1} \mathcal{L} V=\left\{\left[\begin{array}{cc}
t+\xi s & \nu s \\
0 & t+\xi s
\end{array}\right]: t, s \in \mathbb{F}\right\} .
$$

Condition (2) follows.

We have proven that each linear subspace of \mathcal{M}_{2} with "nontrivial" singular set is triangularizable. As a simple consequence we obtain a complete characterization of the singular sets $\mathcal{S}(\mathcal{L})$ in the case of $n=2$.

Corollary 2.2. Let \mathcal{E} be a nonempty proper subset of \mathcal{M}_{2} and let $\mathcal{T} \subset \mathcal{M}_{2}$ be the set of all upper triangular matrices. Then the following are equivalent:
(1) $\mathcal{E}=\mathcal{S}(\mathcal{L})$ for a linear subspace $\mathcal{L} \subset \mathcal{M}_{2}$,
(2) there is a $U \in \mathcal{G} \mathcal{L}_{2}$ such that $\mathcal{E}=U^{-1} \mathcal{T} U$.

Proof. A direct calculation shows that $\mathcal{S}\left(U^{-1} \mathcal{T}_{\lambda} U\right)=U^{-1} \mathcal{S}\left(\mathcal{T}_{\lambda}\right) U=$ $U^{-1} \mathcal{T} U=\mathcal{S}\left(U^{-1} \mathcal{K} U\right)$ for an arbitrary $U \in \mathcal{G} \mathcal{L}_{2}$, an arbitrary $\lambda \in \mathbb{F} \backslash\{-1\}$, and the subspaces \mathcal{T}_{λ} and \mathcal{K} defined as at the beginning of the section. Now implication $(2) \Rightarrow(1)$ is obvious. Furthermore, if condition (1) is satisfied, then, by Theorem 2.1, either $\mathcal{L}=U^{-1} \mathcal{T}_{\lambda} U$ for a $U \in \mathcal{G} \mathcal{L}_{2}$ and a $\lambda \in \mathbb{F} \backslash\{-1\}$ or $\mathcal{L}=U^{-1} \mathcal{K} U$ for a $U \in \mathcal{G} \mathcal{L}_{2}$. Condition (2) follows.

Notice that for each subspace $\mathcal{L} \subset \mathcal{M}_{2}$ such that $\emptyset \neq \mathcal{S}(\mathcal{L}) \neq \mathcal{M}_{2}$ there is a matrix $A \in \mathcal{M}_{2}$ such that $\chi(A+\mathcal{L})=\mathbb{F}^{2}$. (To see this take into consideration

$$
A=U^{-1}\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] U
$$

with a suitable $U \in \mathcal{G} \mathcal{L}_{2}$, as at the beginning of the proof of Theorem 2.1.) In [7, Example 1.9] we considered a two-dimensional linear subspace $\mathcal{L}_{0} \subset \mathcal{M}_{2}$ with $\mathcal{S}\left(\mathcal{L}_{0}\right)=\emptyset$ such that $\chi\left(A+\mathcal{L}_{0}\right) \neq \mathbb{F}^{2}$ for all $A \in \mathcal{M}_{2}$.

Let X be a finite-dimensional vector space over \mathbb{F}. Denote by $\mathbb{G}_{k}(X)$ the Grassmann variety of all k-dimensional linear subspaces of X. The full linear group $\mathcal{G} \mathcal{L}_{n}$ acts on $\mathbb{G}_{k}\left(\mathcal{M}_{n}\right)$ by $\mathbb{G}_{k}\left(\mathcal{M}_{n}\right) \times \mathcal{G} \mathcal{L}_{n} \ni(\mathcal{L}, U) \mapsto U^{-1} \mathcal{L} U \in$ $\mathbb{G}_{k}\left(\mathcal{M}_{n}\right)$. It is obvious that the family of all linear subspaces $\mathcal{L} \subset \mathcal{M}_{n}$ such that $\operatorname{dim} \mathcal{L}=k$ and $\emptyset \neq \mathcal{S}(\mathcal{L}) \neq \mathcal{M}_{n}$ is invariant under that action. Let \mathfrak{F} be the family of all linear subspaces $\mathcal{L} \subset \mathcal{M}_{2}$ whose singular sets $\mathcal{S}(\mathcal{L})$ are nontrivial. Theorem 2.1 implies that $\mathfrak{F} \subset \mathbb{G}_{2}\left(\mathcal{M}_{2}\right)$ contains infinitely many orbits of the above defined action of $\mathcal{G} \mathcal{L}_{2}$ on $\mathbb{G}_{2}\left(\mathcal{M}_{2}\right)$. Furthermore, observe that the orbit of the subspace \mathcal{K} is disjoint with the orbit of any subspace of the form \mathcal{T}_{λ}.

We conclude the section with an example of a linear subspace of \mathcal{M}_{3} that is not triangularizable and whose singular set is nontrivial.

Example 2.3. Define

$$
\mathcal{L}=\left\{\left[\begin{array}{ccc}
s & 0 & t \\
u & s & 0 \\
0 & t & s
\end{array}\right]: s, t, u \in \mathbb{F}\right\}
$$

It is easy to verify that \mathcal{L} is not a triangularizable subspace of \mathcal{M}_{3}. Making use of the Jacobian determinant of the map

$$
\mathbb{F}^{3} \ni(s, t, u) \mapsto \chi\left(\left[\begin{array}{ccc}
\alpha_{11}+s & \alpha_{12} & \alpha_{13}+t \\
\alpha_{21}+u & \alpha_{22}+s & \alpha_{23} \\
\alpha_{31} & \alpha_{32}+t & \alpha_{33}+s
\end{array}\right]\right) \in \mathbb{F}^{3}
$$

(cf. the proof of [7, Theorem 2.1]) one can prove that a matrix $A=\left[\alpha_{j k}\right] \in \mathcal{M}_{3}$ is an element of the singular set $\mathcal{S}(\mathcal{L})$ if and only if $\alpha_{23}+\alpha_{31}=0$ and $\alpha_{12}=0$. Therefore, $\mathcal{S}(\mathcal{L})$ is a linear subspace of codimension 2 in \mathcal{M}_{3}.

3. Subspaces of dimension n whose singular set is empty

We begin with certain remarks on the set of all diagonal matrices.
Example 3.1. Let $\mathcal{D} \subset \mathcal{M}_{n}$ be the set of all diagonal matrices. Obviously, $\chi(\mathcal{D})=\mathbb{F}^{n}$. Define

$$
\mathcal{Z}=\left\{A \in \mathcal{M}_{n} \mid \text { the eigenvalues of } A \text { are pairwise distinct }\right\}
$$

It is easy to see that $\#(\mathcal{D} \cap \mathcal{O}(A))=n$! for all $A \in \mathcal{Z}$. In [1] Friedland proved that the map $\mathcal{D} \ni A \mapsto \chi(B+A) \in \mathbb{F}^{n}$, where $B \in \mathcal{M}_{n}$ is a fixed matrix, is onto and that each fibre of this map has n ! elements (when counted with multiplicities). Friedland's result implies that $0<\#((B+\mathcal{D}) \cap \mathcal{O}(A)) \leq n$! for an arbitrary $B \in \mathcal{M}_{n}$ and an arbitrary $A \in \mathcal{Z}$. (Notice that $(B+\mathcal{D}) \cap \mathcal{O}(A)=$ $\left.(B+\mathcal{D}) \cap \chi^{-1}(\chi(A)).\right)$

The above observations lead to a characterization of the n-dimensional subspaces $\mathcal{L} \subset \mathcal{M}_{n}$ with $\mathcal{S}(\mathcal{L})=\emptyset$.

Theorem 3.2. Let \mathcal{L} be an n-dimensional linear subspace of \mathcal{M}_{n}. Then the following conditions are equivalent:
(1) $\mathcal{S}(\mathcal{L})=\emptyset$,
(2) the image $\chi(\mathcal{L})$ is dense in \mathbb{F}^{n},
(3) for each $B \in \mathcal{M}_{n}$ there is a nonempty open subset $\mathcal{W}_{B} \subseteq \mathcal{M}_{n}$ and an integer $q_{B}>0$ such that $\#((B+\mathcal{L}) \cap \mathcal{O}(A))=q_{B}$ for all $A \in \mathcal{W}_{B}$,
(4) $0<\#(\mathcal{L} \cap \mathcal{O}(A))<\infty$ for a generic $A \in \mathcal{M}_{n}$.

Proof. Equivalence (1) $\Leftrightarrow(2)$ follows from [7, Theorem 1.5]. Implication $(3) \Rightarrow(4)$ is obvious.

Consider the set \mathcal{Z} defined in Example 3.1. It is open in \mathcal{M}_{n} and $\mathcal{G} \mathcal{L}_{n^{-}}$ invariant. Furthermore, $\chi^{-1}(\chi(A))=\mathcal{O}(A)$ for all $A \in \mathcal{Z}$.

Assume that condition (1) is satisfied, pick a $B \in \mathcal{M}_{n}$, and denote $\mathcal{L}_{B}=B+\mathcal{L}$. It follows from (1) that $\chi\left(\mathcal{L}_{B}\right)$ is dense in \mathbb{F}^{n}. Thus, $\mathcal{L}_{B} \cap \mathcal{Z} \neq \emptyset$. (If $\mathcal{L}_{B} \cap \mathcal{Z}=\emptyset$, then the discriminant of the characteristic polynomial of the matrix A vanishes for all $A \in \mathcal{L}_{B}$, which implies that $\chi\left(\mathcal{L}_{B}\right)$ is contained in a hypersurface in \mathbb{F}^{n}, a contradiction.) Since the restriction $\left.\chi\right|_{\mathcal{L}_{B}}: \mathcal{L}_{B} \longrightarrow \mathbb{F}^{n}$ is a dominant map and $\operatorname{dim} \mathcal{L}_{B}=\operatorname{dim} \mathcal{L}=n$, we get that there is a nonempty
open subset $Y \subseteq \mathbb{F}^{n}$ and an integer $q_{B}>0$ such that $\#\left(\mathcal{L}_{B} \cap \chi^{-1}(y)\right)=q_{B}$ for all $y \in Y$. Define $\mathcal{W}_{B}=\chi^{-1}(Y) \cap \mathcal{Z}$. Then \mathcal{W}_{B} is a nonempty open subset of \mathcal{M}_{n}. For an arbitrary $A \in \mathcal{W}_{B}$ we have

$$
\#\left(\mathcal{L}_{B} \cap \mathcal{O}(A)\right)=\#\left(\mathcal{L}_{B} \cap \chi^{-1}(\chi(A))\right)=q_{B}
$$

because $A \in \mathcal{Z}$ and $\chi(A) \in Y$. Condition (3) follows.
Assume that (4) is satisfied. Denote by \mathcal{W} a nonempty open subset of \mathcal{M}_{n} such that $0<\#(\mathcal{L} \cap \mathcal{O}(A))<\infty$ for all $A \in \mathcal{W}$. Observe that $\mathcal{Z} \cap \mathcal{W} \neq \emptyset$ and that $\cup_{A \in \mathcal{W}} \mathcal{O}(A)$ is an open subset of \mathcal{M}_{n}. Thus,

$$
\widetilde{\mathcal{W}}:=\mathcal{L} \cap \mathcal{Z} \cap \bigcup_{A \in \mathcal{W}} \mathcal{O}(A)
$$

is a nonempty open subset of \mathcal{L}. Pick an arbitrary $C \in \widetilde{\mathcal{W}}$. There is an $A \in \mathcal{W}$ such that $C \in \mathcal{O}(A)$. Since $C \in \mathcal{Z}$, we have $\mathcal{L} \cap \chi^{-1}(\chi(C))=\mathcal{L} \cap \mathcal{O}(C)=$ $\mathcal{L} \cap \mathcal{O}(A)$. Consequently, $0<\#\left(\mathcal{L} \cap \chi^{-1}(\chi(C))\right)<\infty$. By the theorem on the dimension of fibres of a dominant map and by the openess of $\widetilde{\mathcal{W}}$, we obtain $\operatorname{dim} \overline{\chi(\mathcal{L})}=\operatorname{dim} \mathcal{L}-\operatorname{dim}\left(\mathcal{L} \cap \chi^{-1}\left(\chi\left(C_{0}\right)\right)\right)=n-0=n$, where C_{0} is a suitable element of $\widetilde{\mathcal{W}}$. Condition (2) follows.

We conclude the note with a two-dimensional counterpart of Friedland's result.

Theorem 3.3. Let $\mathcal{L} \subset \mathcal{M}_{2}$ be a two-dimensional linear subspace with $\mathcal{S}(\mathcal{L})=\emptyset$ and let $B \in \mathcal{M}_{2}$ be an arbitrary matrix. Then
(i) $\#((B+\mathcal{L}) \cap \mathcal{O}(A))=2$ for a generic $A \in \mathcal{M}_{n}$ provided there is no nilpotent matrix in $\mathcal{L} \backslash\{O\}$,
(ii) $\#((B+\mathcal{L}) \cap \mathcal{O}(A))=1$ for a generic $A \in \mathcal{M}_{n}$ provided there is a nilpotent matrix $N \in \mathcal{L} \backslash\{O\}$.

Proof. Let $f, g: \mathcal{M}_{2} \longrightarrow \mathbb{F}$ be linearly independent linear forms such that $\mathcal{L}=f^{-1}(0) \cap g^{-1}(0)$. For $\lambda \in \mathbb{F}$ define

$$
\mathcal{X}_{\lambda}=\left\{C \in \mathcal{M}_{2}: \quad f(C-B)=0=g(C-B), \operatorname{tr}(C)=\lambda\right\} .
$$

Making use of the fact that tr does not identically vanish on \mathcal{L} (because $\mathcal{S}(\mathcal{L})=$ $\emptyset)$ and of elementary properties of systems of linear equations, we get that there is a matrix $C_{0} \in \mathcal{L} \backslash\{O\}$ and a nonconstant affine map $\Phi: \mathbb{F} \longrightarrow \mathcal{M}_{2}$ such that $\operatorname{tr}\left(C_{0}\right)=0$ and $\mathcal{X}_{\lambda}=\Phi(\lambda)+\mathbb{F} C_{0}$. Now, for an arbitrary $(\lambda, \mu) \in \mathbb{F}^{2}$ define $\mathcal{Y}_{(\lambda, \mu)}=\left\{C \in \mathcal{X}_{\lambda}: \operatorname{det}(C)=\mu\right\}$. Observe that

$$
\operatorname{det}\left(\Phi(\lambda)+t C_{0}\right)=\operatorname{det}\left(C_{0}\right) t^{2}+h(\lambda) t+\operatorname{det}(\Phi(\lambda))
$$

where $t \in \mathbb{F}$ and $h: \mathbb{F} \longrightarrow \mathbb{F}$ is an affine function. Consequently, $\# \mathcal{Y}_{(\lambda, \mu)} \leq 2$. Furthermore, if $A \in \mathcal{M}_{2}$ is a matrix with two different eigenvalues, then

$$
\begin{aligned}
& (B+\mathcal{L}) \cap \mathcal{O}(A) \\
& =\left\{C \in \mathcal{M}_{2}: f(C-B)=0=g(C-B), \operatorname{tr}(C)=\operatorname{tr}(A), \operatorname{det}(C)=\operatorname{det}(A)\right\} \\
& =\mathcal{Y}_{\chi(A)}
\end{aligned}
$$

Assume that there is no nilpotent matrix in $\mathcal{L} \backslash\{O\}$. Then $\operatorname{det}\left(C_{0}\right) \neq 0$. Therefore, the set $\mathcal{Y}_{(\lambda, \mu)}$ (with an arbitrary $(\lambda, \mu) \in \mathbb{F}^{2}$) has exactly two elements if and only if $\Delta(\lambda, \mu):=(h(\lambda))^{2}-4 \operatorname{det}\left(C_{0}\right)(\operatorname{det}(\Phi(\lambda))-\mu) \neq 0$. Consequently, $Y:=\left\{(\lambda, \mu) \in \mathbb{F}^{2}: \# \mathcal{Y}_{(\lambda, \mu)}=2\right\}$ is a nonempty open subset of \mathbb{F}^{2}. Define

$$
\mathcal{W}=\left\{A \in \chi^{-1}(Y): A \text { has two different eigenvalues }\right\}
$$

The set \mathcal{W} is nonempty and open in \mathcal{M}_{2}. Moreover, for an arbitrary $A \in \mathcal{W}$ we have $\#((B+\mathcal{L}) \cap \mathcal{O}(A))=\# \mathcal{Y}_{\chi(A)}=2$. This completes the proof for case (i).

If there is a nilpotent matrix $N \in \mathcal{L} \backslash\{O\}$, then $C_{0}=\alpha N$ for an $\alpha \in \mathbb{F}^{*}$. Consequently, $\operatorname{det}\left(\Phi(\lambda)+t C_{0}\right)=h(\lambda) t+\operatorname{det}(\Phi(\lambda))$. Thus, $\mathcal{Y}_{(\lambda, \mu)}$ has at most one element (for an arbitrary $(\lambda, \mu) \in \mathbb{F}^{2}$). Let $\mathcal{W}_{B} \subseteq \mathcal{M}_{2}$ be a nonempty open subset from condition (3) of Theorem 3.2. Recall that \mathcal{W}_{B} consists of matrices with two different eigenvalues. Therefore,

$$
1 \leq \#((B+\mathcal{L}) \cap \mathcal{O}(A))=\# \mathcal{Y}_{\chi(A)} \leq 1
$$

for all $A \in \mathcal{W}_{B}$. The proof is complete.
Notice that the subspace

$$
\mathcal{L}_{0}:=\left\{\left[\begin{array}{ll}
t & t \\
s & t
\end{array}\right]: s, t \in \mathbb{F}\right\} \subset \mathcal{M}_{2}
$$

considered in [7, Example 1.9] satisfies the assumptions of case (ii) in the above theorem.

References

[1] S. Friedland, Inverse eigenvalue problems, Linear Algebra Appl. 17 (1977), 15-51.
[2] F. R. Gantmacher, Théorie des matrices, Dunod, Paris, 1966.
[3] W. Helton, J. Rosenthal and X. Wang, Matrix extensions and eigenvalue completions, the generic case, Trans. Amer. Math. Soc. 349 (1997), 3401-3408.
[4] H.-P. Kraft, Geometrische Methoden in der Invariantentheorie, Friedr. Vieweg \& Sohn, Braunschweig - Wiesbaden, 1984.
[5] S. Lang, Algebra, Addison Wesley, Reading, MA, 1993.
[6] I. R. Shafarevich, Basic Algebraic Geometry, Springer-Verlag, Berlin - Heidelberg New York, 1977.
[7] M. Skrzyński, On a singular set for the restriction of the characteristic map to a linear subspace of \mathcal{M}_{n}, Math. Slovaca 54 (2004), 229-236.
M. Skrzyński

Institute of Mathematics
Cracow University of Technology
ul. Warszawska 24
31-155 Kraków
Poland
E-mail: pfskrzyn@cyf-kr.edu.pl
Received: 13.7. 2005.

[^0]: 2000 Mathematics Subject Classification. 15A18, 14A10, 14L35.
 Key words and phrases. Characteristic polynomial of a matrix, characteristic map, dominant map, linear space of matrices, triangularizable set of matrices, conjugacy class of a matrix.

