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Abstract. We study linear subspaces L ⊆ Mn (over an algebraically
closed field F of characteristic zero) and their singular sets S(L) defined by
S(L) = {A ∈ Mn : χ(A + L) is not dense in F

n}, where χ : Mn −→ F
n

is the characteristic map. We give a complete characterization of the sub-
spaces L ⊂ M2 such that ∅ 6= S(L) 6= M2. We also provide a complete
characterization of the singular sets S(L) in the case of n = 2. Finally, we
give a characterization of the n-dimensional subspaces L ⊂ Mn such that
S(L) = ∅ by means of their intersections with conjugacy classes.

1. Preliminaries and introduction

We work throughout over an algebraically closed field F of characteristic
zero. We define F

∗ = F \ {0}. We denote by #E the cardinality of a finite
set E. The set of all (n × n)-matrices whose entries are elements of F is
denoted by Mn. (We assume throughout that n ≥ 2.) The zero matrix
and the unit matrix belonging to Mn are denoted by O and I, respectively.
We define GLn to be the full linear group of size n over the field F, i. e.
GLn = {U ∈ Mn : det(U) 6= 0}. The conjugacy class of a matrix A ∈ Mn is
denoted by O(A). (In other words, O(A) = {U−1AU : U ∈ GLn}.) A subset
E ⊆ Mn is said to be triangularizable if there is a U ∈ GLn such that
U−1EU := {U−1AU : A ∈ E} consists of upper triangular matrices. The
subset E is said to be GLn-invariant if U−1EU ⊆ E for all U ∈ GLn.

We consider F
n, Mn

∼= F
n2

, and their subsets as topological spaces en-
dowed with the Zariski topology. We say that a property holds for a generic
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matrix A ∈ Mn if there exists a nonempty Zariski open subset W ⊆ Mn

such that the property holds for all A ∈ W. The Zariski closure of a set E
contained either in Fn or in Mn is denoted by E.

For an A ∈ Mn and a positive integer j ≤ n we define sj(A) to be the
sum of all principal minors of size j of the matrix A. (Therefore,

T n +

n∑

j=1

(−1)jsj(A)T n−j ∈ F[T ]

is the characteristic polynomial of A.) The regular map χ : Mn −→ F
n

defined by χ(A) = (s1(A), . . . , sn(A)) is referred to as the characteristic map.
Notice that Helton, Rosenthal and Wang [3] define the characteristic map by
A 7→ ((−1)jsj(A))n

j=1.
For a linear subspace L ⊆ Mn we define a singular set S(L) related to

the characteristic map. Namely,

S(L) = {A ∈ Mn : χ(A + L) is not dense in F
n}.

Observe that the condition which defines the set S(L) may be reformulated
in the following way: the regular map L ∋ B 7→ χ(A + B) ∈ F

n is not
dominant. We refer to [2] for all needed information about matrix theory, to
[5] for algebra, and to [6, 4] for algebraic geometry and invariant theory.

In [3] Helton, Rosenthal and Wang proved that the image χ(A + L) is
dense in Fn for a generic matrix A ∈ Mn if and only if the dimension of a
linear subspace L ⊆ Mn is not smaller than n and there is a B ∈ L such that
tr(B) 6= 0. (Notice that χ(A + L) is a constructible subset of Fn.) Applying
the above introduced language we can rephrase the Helton – Rosenthal –
Wang result as follows: S(L) 6= Mn if and only if dimL ≥ n and tr does not
identically vanish on L; moreover, S(L) is a (Zariski) closed subset of Mn.
In [7] we studied basic set-theorical, geometrical and topological properties
of the singular sets S(L). In particular, we derived a counterpart of the
Helton – Rosenthal – Wang theorem in the case of n = 2 and obtained a
characterization of the linear subspaces L ⊆ Mn such that S(L) = ∅. The
present note is a continuation of [7]. Our first goal is to complete the study
of the linear subspaces of M2 and their singular sets. The second goal is to
give a characterization of the n-dimensional linear subspaces of Mn whose
singular set is empty by means of their intersections with conjugacy classes
(the case of n = 2 being considered in a detailed way).

2. The case of n = 2

We start with a continuation of the study of linear subspaces of M2

originated in [7, Section 2]. Our purpose is to characterize the subspaces
L ⊂ M2 such that ∅ 6= S(L) 6= M2.
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For λ ∈ F we define

Tλ =

{[
t s
0 λt

]
: t, s ∈ F

}
.

Furthermore, we define

K =

{[
0 s
0 t

]
: t, s ∈ F

}
.

Theorem 2.1. Let L be a linear subspace of M2. Then the following

conditions are equivalent:

(1) ∅ 6= S(L) 6= M2,

(2) either L = U−1TλU for a U ∈ GL2 and a λ ∈ F\{−1}, or L = U−1KU
for a U ∈ GL2.

Proof. If condition (2) is satisfied, then dimχ(L) = 1 and

U−1

[
0 0
1 0

]
U /∈ S(L).

Condition (1) follows.
Assume that (1) is satisfied. Since S(L) 6= M2, we have that dimL ≥ 2

and that tr does not identically vanish on L. The nonemptiness of S(L)
yields dimL < 3 [7, Corollary 1.7]. Pick two matrices A, B ∈ L such that
tr(A) 6= 0 6= tr(B) and (A, B) is a basis for L.

Consider first the case where A is not diagonalizable. Then there are a
V ∈ GL2 and a µ ∈ F∗ such that

Ã := V −1(µA)V =

[
1 1
0 1

]
.

Define L̃ = V −1LV and B̃ = V −1BV . It is easy to see that S(L̃) =

V −1S(L)V . Furthermore, (Ã, B̃) is a basis for L̃. Put B̃ = [βjk]. By implica-
tion (1) ⇒ (2) in [7, Proposition 2.3], we obtain β11 + β22 − β21 = β11 + β22

and 4(β11β22 − β12β21) = (β11 + β22)(β11 + β22 − β21). These equalities yield

β21 = 0 and β11 = β22. Notice that β12 6= β11 6= 0 (because Ã and B̃ are

linearly independent and tr(B̃) 6= 0). Consequently,

L̃ =

{[
t + β11s t + β12s

0 t + β11s

]
: t, s ∈ F

}
.

Condition (2) follows (with λ = 1).
Now, consider the case where A /∈ FI is a diagonalizable matrix. Then

there are a V ∈ GL2 and a µ ∈ F∗ such that

Ã = V −1(µA)V =

[
1 0
0 α

]
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with an α ∈ F \ {±1}. Define L̃ and B̃ = [βjk] ∈ L̃ as in the previous part of
the proof. By implication (1) ⇒ (2) in [7, Proposition 2.3], we get

(•) (1 + α)(β22 + αβ11) = 2α(β11 + β22)

and

(••) 2(1 + α)(β11β22 − β12β21) = (β11 + β22)(β22 + αβ11).

Observe that equality (•) yields β11 6= 0. (If β11 = 0, then β22 = 0, because

α 6= 1. This contradicts the fact that tr(B̃) 6= 0.) Reformulating (•) we obtain

(α − 1)(αβ11 − β22) = 0. Therefore, α =
β22

β11
. This means that the diagonal

entries of the matrix β11Ã coincide with the diagonal entries of B̃. The linear

independence of Ã and B̃ implies now that at least one of the elements β12, β21

is different from 0. On the other hand, substituting α =
β22

β11
into equality

(••) we get β12β21 = 0. Consequently, either

L̃ =

{[
t + s β12

β11

s

0 α(t + s)

]
: t, s ∈ F

}

with β12 6= 0, or

L̃ =

{[
t + s 0
β21

β11

s α(t + s)

]
: t, s ∈ F

}

with β21 6= 0. In the first case condition (2) follows in an obvious way. Define

P =

[
0 1
1 0

]
.

In the second case, P−1L̃P = Tα−1 whenever α 6= 0, and P−1L̃P = K
whenever α = 0.

Finally, consider the case of A = I. Let V ∈ GL2 be such that

B̃ = V −1BV is an upper triangular matrix. Implication (1) ⇒ (2) in [7,

Proposition 2. 3] applied to the matrices I and B̃ yields (tr(B̃))2 = 4 det(B̃),

which means that B̃ has the double eigenvalue. In virtue of the linear inde-

pendence of I and B̃ we have

B̃ =

[
ξ ν
0 ξ

]

for some ξ, ν ∈ F∗. Thus,

V −1LV =

{[
t + ξs νs

0 t + ξs

]
: t, s ∈ F

}
.

Condition (2) follows.
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We have proven that each linear subspace of M2 with ”nontrivial” sin-
gular set is triangularizable. As a simple consequence we obtain a complete
characterization of the singular sets S(L) in the case of n = 2.

Corollary 2.2. Let E be a nonempty proper subset of M2 and let

T ⊂ M2 be the set of all upper triangular matrices. Then the following

are equivalent:

(1) E = S(L) for a linear subspace L ⊂ M2,

(2) there is a U ∈ GL2 such that E = U−1T U .

Proof. A direct calculation shows that S(U−1TλU) = U−1S(Tλ)U =
U−1T U = S(U−1KU) for an arbitrary U ∈ GL2, an arbitrary λ ∈ F \ {−1},
and the subspaces Tλ and K defined as at the beginning of the section. Now
implication (2) ⇒ (1) is obvious. Furthermore, if condition (1) is satisfied,
then, by Theorem 2.1, either L = U−1TλU for a U ∈ GL2 and a λ ∈ F \ {−1}
or L = U−1KU for a U ∈ GL2. Condition (2) follows.

Notice that for each subspace L ⊂ M2 such that ∅ 6= S(L) 6= M2 there is
a matrix A ∈ M2 such that χ(A+L) = F

2. (To see this take into consideration

A = U−1

[
0 0
1 0

]
U

with a suitable U ∈ GL2, as at the beginning of the proof of Theorem 2.1.) In
[7, Example 1.9] we considered a two-dimensional linear subspace L0 ⊂ M2

with S(L0) = ∅ such that χ(A + L0) 6= F2 for all A ∈ M2.
Let X be a finite-dimensional vector space over F. Denote by Gk(X)

the Grassmann variety of all k-dimensional linear subspaces of X . The full
linear group GLn acts on Gk(Mn) by Gk(Mn)× GLn ∋ (L, U) 7→ U−1LU ∈
Gk(Mn). It is obvious that the family of all linear subspaces L ⊂ Mn such
that dimL = k and ∅ 6= S(L) 6= Mn is invariant under that action. Let F

be the family of all linear subspaces L ⊂ M2 whose singular sets S(L) are
nontrivial. Theorem 2.1 implies that F ⊂ G2(M2) contains infinitely many
orbits of the above defined action of GL2 on G2(M2). Furthermore, observe
that the orbit of the subspace K is disjoint with the orbit of any subspace of
the form Tλ.

We conclude the section with an example of a linear subspace of M3 that
is not triangularizable and whose singular set is nontrivial.

Example 2.3. Define

L =








s 0 t
u s 0
0 t s


 : s, t, u ∈ F



 .
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It is easy to verify that L is not a triangularizable subspace of M3. Making
use of the Jacobian determinant of the map

F
3 ∋ (s, t, u) 7→ χ







α11 + s α12 α13 + t
α21 + u α22 + s α23

α31 α32 + t α33 + s




 ∈ F

3

(cf. the proof of [7, Theorem 2.1]) one can prove that a matrix A = [αjk] ∈ M3

is an element of the singular set S(L) if and only if α23 +α31 = 0 and α12 = 0.
Therefore, S(L) is a linear subspace of codimension 2 in M3.

3. Subspaces of dimension n whose singular set is empty

We begin with certain remarks on the set of all diagonal matrices.

Example 3.1. Let D ⊂ Mn be the set of all diagonal matrices. Obvi-
ously, χ(D) = Fn. Define

Z = {A ∈ Mn | the eigenvalues of A are pairwise distinct}.

It is easy to see that #(D∩O(A)) = n! for all A ∈ Z. In [1] Friedland proved
that the map D ∋ A 7→ χ(B + A) ∈ F

n, where B ∈ Mn is a fixed matrix,
is onto and that each fibre of this map has n! elements (when counted with
multiplicities). Friedland’s result implies that 0 < #((B+D)∩O(A)) ≤ n! for
an arbitrary B ∈ Mn and an arbitrary A ∈ Z. (Notice that (B+D)∩O(A) =
(B + D) ∩ χ−1(χ(A)).)

The above observations lead to a characterization of the n-dimensional
subspaces L ⊂ Mn with S(L) = ∅.

Theorem 3.2. Let L be an n-dimensional linear subspace of Mn. Then

the following conditions are equivalent:

(1) S(L) = ∅,
(2) the image χ(L) is dense in Fn,

(3) for each B ∈ Mn there is a nonempty open subset WB ⊆ Mn and an

integer qB > 0 such that #((B + L) ∩ O(A)) = qB for all A ∈ WB ,

(4) 0 < #(L ∩ O(A)) < ∞ for a generic A ∈ Mn.

Proof. Equivalence (1) ⇔ (2) follows from [7, Theorem 1.5]. Implica-
tion (3) ⇒ (4) is obvious.

Consider the set Z defined in Example 3.1. It is open in Mn and GLn-
invariant. Furthermore, χ−1(χ(A)) = O(A) for all A ∈ Z.

Assume that condition (1) is satisfied, pick a B ∈ Mn, and denote
LB = B+L. It follows from (1) that χ(LB) is dense in Fn. Thus, LB∩Z 6= ∅.
(If LB ∩ Z = ∅, then the discriminant of the characteristic polynomial of the
matrix A vanishes for all A ∈ LB , which implies that χ(LB) is contained in a
hypersurface in Fn, a contradiction.) Since the restriction χ|LB

: LB −→ F
n

is a dominant map and dimLB = dimL = n, we get that there is a nonempty
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open subset Y ⊆ Fn and an integer qB > 0 such that #(LB ∩ χ−1(y)) = qB

for all y ∈ Y . Define WB = χ−1(Y ) ∩ Z. Then WB is a nonempty open
subset of Mn. For an arbitrary A ∈ WB we have

#(LB ∩ O(A)) = #(LB ∩ χ−1(χ(A))) = qB,

because A ∈ Z and χ(A) ∈ Y . Condition (3) follows.
Assume that (4) is satisfied. Denote by W a nonempty open subset of

Mn such that 0 < #(L∩O(A)) < ∞ for all A ∈ W. Observe that Z ∩W 6= ∅
and that ∪A∈WO(A) is an open subset of Mn. Thus,

W̃ := L ∩ Z ∩
⋃

A∈W

O(A)

is a nonempty open subset of L. Pick an arbitrary C ∈ W̃. There is an A ∈ W
such that C ∈ O(A). Since C ∈ Z, we have L ∩ χ−1(χ(C)) = L ∩ O(C) =
L∩O(A). Consequently, 0 < #(L∩χ−1(χ(C))) < ∞. By the theorem on the

dimension of fibres of a dominant map and by the openess of W̃ , we obtain
dimχ(L) = dimL−dim(L∩χ−1(χ(C0))) = n− 0 = n, where C0 is a suitable

element of W̃ . Condition (2) follows.

We conclude the note with a two-dimensional counterpart of Friedland’s
result.

Theorem 3.3. Let L ⊂ M2 be a two-dimensional linear subspace with

S(L) = ∅ and let B ∈ M2 be an arbitrary matrix. Then

(i) #((B + L) ∩ O(A)) = 2 for a generic A ∈ Mn provided there is no

nilpotent matrix in L \ {O},
(ii) #((B + L) ∩ O(A)) = 1 for a generic A ∈ Mn provided there is a

nilpotent matrix N ∈ L \ {O}.

Proof. Let f, g : M2 −→ F be linearly independent linear forms such
that L = f−1(0) ∩ g−1(0). For λ ∈ F define

Xλ = {C ∈ M2 : f(C − B) = 0 = g(C − B), tr(C) = λ}.

Making use of the fact that tr does not identically vanish onL (because S(L) =
∅) and of elementary properties of systems of linear equations, we get that
there is a matrix C0 ∈ L \ {O} and a nonconstant affine map Φ : F −→ M2

such that tr(C0) = 0 and Xλ = Φ(λ)+FC0. Now, for an arbitrary (λ, µ) ∈ F2

define Y(λ, µ) = {C ∈ Xλ : det(C) = µ}. Observe that

det(Φ(λ) + tC0) = det(C0)t
2 + h(λ)t + det(Φ(λ)),
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where t ∈ F and h : F −→ F is an affine function. Consequently, #Y(λ, µ) ≤ 2.
Furthermore, if A ∈ M2 is a matrix with two different eigenvalues, then

(B + L) ∩ O(A)

= {C ∈ M2 : f(C − B) = 0 = g(C − B), tr(C) = tr(A), det(C) = det(A)}

= Yχ(A).

Assume that there is no nilpotent matrix in L \ {O}. Then det(C0) 6= 0.
Therefore, the set Y(λ, µ) (with an arbitrary (λ, µ) ∈ F2) has exactly two

elements if and only if ∆(λ, µ) := (h(λ))2 − 4 det(C0)(det(Φ(λ)) − µ) 6= 0.
Consequently, Y := {(λ, µ) ∈ F

2 : #Y(λ, µ) = 2} is a nonempty open subset

of F2. Define

W = {A ∈ χ−1(Y ) : A has two different eigenvalues}.

The set W is nonempty and open in M2. Moreover, for an arbitrary A ∈ W
we have #((B + L) ∩ O(A)) = #Yχ(A) = 2. This completes the proof for
case (i).

If there is a nilpotent matrix N ∈ L \ {O}, then C0 = αN for an α ∈ F∗.
Consequently, det(Φ(λ)+ tC0) = h(λ)t+det(Φ(λ)). Thus, Y(λ, µ) has at most

one element (for an arbitrary (λ, µ) ∈ F2). Let WB ⊆ M2 be a nonempty
open subset from condition (3) of Theorem 3.2. Recall that WB consists of
matrices with two different eigenvalues. Therefore,

1 ≤ #((B + L) ∩ O(A)) = #Yχ(A) ≤ 1

for all A ∈ WB. The proof is complete.

Notice that the subspace

L0 :=

{[
t t
s t

]
: s, t ∈ F

}
⊂ M2

considered in [7, Example 1.9] satisfies the assumptions of case (ii) in the
above theorem.
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