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Abstract

Medicine is diagnosis, treatment and care. To diagnose is to consider the probability of the cause of discomfort experienced by the patient. The 
physician may face many options and all decisions are liable to uncertainty to some extent. The rational action is to perform selected tests and 
thereby increase the pre-test probability to reach a superior post-test probability of a particular option. To draw the right conclusions from a test, 
certain background information about the performance of the test is necessary. We set up a partially artificial dataset with measured results obta-
ined from the laboratory information system and simulated diagnosis attached. The dataset is used to explore the use of contingency tables with a 
unique graphic design and software to establish and compare ROC graphs. The loss of information in the ROC curve is compensated by a cumulative 
data analysis (CDA) plot linked to a display of the efficiency and predictive values. A standard for the contingency table is suggested and the use of 
dynamic reference intervals discussed.  
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Lessons in biostatistics

Introduction

Bayes’ theorem pertains to calculating and de-
scribing the gain in probability of correct predic-
tion of an event before and after performing a test 
designed to be specific for the event. “Event” shall 
be understood in the widest of possibilities e.g. 
rain or no rain, health or disease, true radar echo 
or false. 

Prediction is the essence of diagnosis; a prelimi-
nary diagnosis can be confirmed or discarded with 
a defined uncertainty considering the test result 
and its potential. Application of Bayes’ principle 
and its use in laboratory medicine is intuitive, but 
data collection, their systematic use and under-
standing are not always that easy. Its introduction 
to laboratories should rightly be ascribed to Galen 
and Gambino (1976) and their seminal treatise “Be-
yond normality” (1). 

History tells that receiver (or relative) operating (or 
operator) characteristics (ROC) plots were first 
used before and during the Second World War in 
order to optimize the signal to noise ratio in devel-
oping the radar technique, i.e. identifying true ob-
jects as different from false “blips”. Exactly how 
this was done is outside the scope of this presen-
tation but most likely the intensity or frequency of 
a signal was quantified and compared to a thresh-
old value defined to be fit for purpose. The use of 
ROC graphs was soon adopted in Signal Detection 
Theory but was not introduced in health sciences 
and related research fields until the early 1970s. 
ROC curves were much discussed during the 1990s 
(2,3). The ROC plot itself is a convenient tool to il-
lustrate the ability of a test to enhance a pre-test 
probability, predict the post-test probability and il-
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lustrate the Bayes’ theorem in practical diagnostic 
applications. It is particularly useful in optimizing a 
threshold value between two conditions e.g. 
health and non-health, i.e. definition of reference 
values whereas the actual value of the cut-off can-
not be read directly from the graph. The ROC tech-
nique is also used in comparing clinical usefulness 
of diagnostic procedures by calculating the area 
under the curve, which can be understood as an 
expression of correct ranking and ability to dis-
criminate. In this report, we discuss and display the 
Bayes’ theorem and explore some features of the 
ROC by innovative graphs with reference to estab-
lishing reference values.

Data collection and study design

Data required for defining and evaluating a diag-
nostic marker are the definitive numbers of dis-
eased and not diseased individuals identified by 
an independent procedure, cross-referenced to 
the biomarker. To define a suitable cut-off, the ref-
erence population needs to be representative of 
the population and situation in which the marker 
is intended to be used, e.g. screening, emergency, 
children etc. For illustration, we created a partly ar-
tificial dataset based on a large number of consec-
utive, unidentified plasma total cholesterol values 
obtained during a limited time from the laborato-
ry information system (LIS) (4). We selected all val-
ues between 2.8 and 5.0 mmol/L (in total about 
10,000 results) as possibly hypercholesterolemic. 
Since the study design did not include a clinical di-
agnosis, the patients’ diagnoses were assigned by 
simulation. This was designed to ensure that the 
“diseased” were represented by higher values, i.e. 
the distribution of diseased was skewed to the 
right. Eventually, we randomly selected 2500 indi-
viduals classified as not diseased and 2500 as dis-
eased from the initial cohort. This resulted in a 
prevalence of disease of 50%. The structure of the 
dataset is illustrated by the box-plot in Figure 1.

The obtained dataset was then entered into an Ex-
cel spreadsheet program which assigns the data to 
a 2x2 contingency table and allows the use of vari-
able cut-offs. The program also presents a ROC-
curve, based on the calculated sensitivity and 

specificity, a box-plot of the healthy and diseased 
groups, cumulative data analysis (CDA) and effi-
ciency graphs, a comparison between two perfor-
mance studies with a possibility to visually include 
four additional studies.

The contingency table 

The contingency table was organized with catego-
ries, e.g. the number of diseased in one row and 
the healthy (non-diseased) in the row below. The 
test results, i.e. the number of negative and posi-
tive results in relation to a particular quantity val-
ue, the cut-off, are given in columns (Table 1). The 
four outcomes are true results i.e. healthy and dis-
eased correctly classified (true negative and true 
positive, respectively) and false results, healthy in-
dividuals classified as diseased (false positive i.e. 
Type I error) and diseased that are not identified 
(false negative i.e. Type II error). The data present-
ed in Table 1 is also shown in corresponding 
graphical form in Figure 2. 

Figure 1. Box-plot of the test dataset after artificial grouping 
into diseased (D2) and healthy (H2) individuals. The median 
(horizontal lines across the box), arithmetic mean (diamond 
shapes), interquartile ranges (boxes) and minimum and maxi-
mum values (whiskers) of the groups are indicated.
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Calculated quantities 

The contingency table summarizes the findings 
and offers keys to statistical and practical infer-
ence. The most important quantities, or indices or 
performance characteristics, are the “true positive 
rate” or “sensitivity” (TPR) and the “true negative 
rate” or “specificity” (TNR), both calculated along 
the rows as the ratio between the number of true 
observations and all healthy or diseased, respec-

tively. From the columns the negative PV(-) and 
positive predictive value PV(+) are obtained (Table 
1 and Appendix 1). The “efficiency” or "accuracy" 
(deprecated term) is the true result rate, i.e. the ra-
tio between the total number of true results and 
all observations. The relative number of diseased 
in the reference population is the prevalence of 
disease in the population if the reference sample 
population is representative for that population. 

The sensitivity and specificity are regarded as con-
stants for a defined measuring system used for a 
clinical problem, i.e. the disease or condition in 
question. They are interrelated; if one is increased, 
the other will decrease (Figure 3), therefore, both 
cannot be increased (or decreased) simultaneous-
ly. Altering the cut-off value will change the rela-
tion between sensitivity and specificity but not 
the total number of diseased and not diseased, i.e. 
the number of observations in the rows. There-
fore, the relation between the number of diseased 
and not diseased depends on the prevalence of 
disease.

The predictive values are closely related to the 
prevalence of disease and thus the relation be-
tween diseased and healthy individuals. Therefore, 
the numbers are only valid in a given cohort. They 
will change if the disease is redefined or the preva-
lence changes. 

There are mathematical relations between the 
performance characteristics (Appendix 1) but they 
are not necessarily of practical value. Given the 
sensitivity, specificity and prevalence of disease, 
the complex pattern of predictive values can be il-
lustrated as in Figure 3.

Figure 2. Graph designed to mimic a contingency table for dif-
ferent outcomes marked. The diseased population is above the 
X-axis and characterized by high results. The cut-off is marked 
as a vertical line. Results on the left would be called ”negative” 
and those on the right ”positive”. Thus, false negatives (FN) 
are found in the small area under the curve to the left of the 
cut-off line and above the X-axis. False positives (FP) are found 
above the curve but under the X-axis to the right of the cut-off. 
Think of moving the cut-off to a new position and note that 
both the FN and the FP are changed but in different directions. 
Nota bene, it is unlikely that the quantity values of the diseased 
group will be normally distributed.

Negative test Positive test

Diseased FN TP Sensitivity, TP / D

Healthy TN FP Specificity, TN / H

PV(-), TN / NEG PV(+), TP / POS

FN – false negative. TP – true positive. FP – false positive. TN – true negative. FN, TP, FP and TN are expressed as numbers. PV(-) - 
negative predictive value. PV(+) - positive predictive value. NEG – total number of negatives, i.e. NEG = FN + TN. POS - total number 
of positives, i.e. POS = TP + FP. D - total number of diseased, i.e. D = FN + TP. H - total number of healthy, i.e. H = TN + FP. Total 
population sample N = FN + TN + TP + FP.

Table 1. Model of a contingency (2x2) table
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Bayes’ theorem

The calculated quantities in a contingency table 
allow us to resolve the relation between the pre-
test probability and the post-test probability. In 
the present context, Bayes’ theorem is used to es-
timate the gain in the probability of a correct pre-
diction that is achieved by performing and infer-
ring the results of an investigation. This requires 
the definition of factors known as positive and 
negative “likelihood ratio”. They are defined as the 
ratio of the true positive rates (TPR) to false posi-
tive rates (FPR), and false negative rates (FNR) and 
true negative rates (TNR), respectively. In laborato-
ry medicine these terms are better known as the 
sensitivity (or TPR), (1 – specificity) (or FPR), (1 – 
sensitivity) (or FNR) and specificity (or TNR), re-
spectively (see Appendix 1). Only the true rates (i.e. 
sensitivity and specificity) are directly calculated 
from the contingency table and listed as marginal 
quantities in a separate column.

The positive likelihood ratio (LR(+)) is the essence 
of Bayes’ theorem and states that the post-test 

probability equals the pre-test probability multi-
plied by the likelihood ratio. Commonly, only tests 
with a LR(+) of 3 or more are considered for a posi-
tive diagnosis. The calculations are inconvenient 
because they require that the probabilities are ex-
pressed as odds, whereas scientists and laboratori-
ans are more familiar with probabilities expressed 
for instance as percentage (Appendix 1). A useful, 
ingenious nomogram is available as a calculator or 
diagram on many internet sites, designed by 
Fagan (5). Most published Fagan diagrams convert 
the odds to probabilities in the axes for the con-
venience of the user.

The use of the two likelihood ratios may be ex-
plained by an example. Suppose we have a test 
that has a specificity of 80% and sensitivity of 90%. 
Thus, the LR(+) = 4.5 and the LR(-) = 0.125. Suppose 
we have a prevalence of disease (pre-test proba-
bility) of 2%. Suppose further that we have a posi-
tive result from a patient without any known risk 
factors. The odds corresponding to the probability 

Figure 3. Outcome in terms of predictive values at a fixed prev-
alence of 10% and interchanging sensitivity and specificity val-
ues. Clearly, if the sensitivity is increased (right panel) the over-
all performance (efficiency) drops as the likelihood decreases. 
This favours the ruling out of not diseased, the FN drops. PV (+) 
– positive predictive value. PV (-) – negative predictive value. LR 
(+) – positive likelihood ratio. LR (-) - negative likelihood ratio. 
The vertical dashed line represents the prevalence of disease 
and increasing the prevalence will improve the performance.

Left panel Right panel
Prevalence 0.10 0.10
Sensitivity 0.87 0.97
Specificity 0.97 0.87
Pre-odds 0.11 0.11
Post-odds 3.22 0.83
LR(+) 29.00 7.50
LR (–) 0.13 0.03
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for having the disease is 0.02 / (1 – 0.02) = 0.020. 
Thus, the post-test odds of a positive result is 0.020 
× 4.5 = 0.091, corresponding to a probability 8.4%. 
Suppose that the patient belongs to a sample 
population with a pre-test probability of 25% and 
we would like to know the probability that a nega-
tive value was true or false. The pre-test odds is 
0.25 / (1 ‑ 0.25) = 0.33, the post-test odds 0.33 x 
0.125 = 0.041, corresponding to a probability of a 
true result of about 3%. 

ROC curve

The present report addresses diagnostic situations 
where increased (high) values are characteristic for 
a disease. In the opposite case, decreased values in 
disease, many of the variables will be mirrored.

The ROC curve, or the ROC space, is represented 
by a two dimensional diagram with the sensitivity 
(true positive rate) along the Y-axis and (1 – speci-
ficity) (false positive rate) along the X-axis. The cat-
egories can be anything that can be recognized 
and separated or classified by a quantity value, e.g. 
healthy and not healthy individuals. 

Each point represents the sensitivity and (1 ‑ speci-
ficity) for a particular cut-off value, i.e. modifying 
the relative number of those classified as true and 
false in the categories. Obviously, the coordinates 
of the points are equal to the LR(+) of the quantity 
value and correspond to the slope of the ROC 
curve (tangent) in that particular point. This is an 
alternative way to understand the relation be-
tween the post-test and the pre-test probability, 
i.e. the likelihood ratio. 

The general pattern of the ROC curve shows a con-
vex arc “standing” on the diagonal sensitivity = (1 
– specificity), i.e. the “equality line” in the diagram 
(Figure 4); characterized by a LR(+) value of 1. The 
larger the LR(+) is, the larger is the gain by the test. 
ROC-curves that coincide with the equality line 
represent no gain at all and are regarded as a ran-
dom guess.

The maximal outcome is when both the sensitivity 
and specificity is 1, this will correspond to a point 
in the upper left corner and be as far away from 
the equality line as possible. 

The equality line summarizes all possible cut-offs 
which would generate a LR(+) of one. Therefore all 
points above the equality line indicate that the 
post-test probability will be higher that the pre-
test probability and therefore of diagnostic inter-
est. However we normally require a LR(+) above 
three to be really diagnostically useful. The lines 
corresponding to LR(+) equal to 2, 3 and 4 are 
shown in the graph (oblique dashed lines). The ra-
tional is that only outcomes above or to the left of 
these lines are really diagnostically useful. As 
shown in Figure 4 the available space with a LR(+) 
> 4 is reduced to a triangle with the base (1 ‑ speci-
ficity = 0.25 at the sensitivity = 1) or 25% of the 
available “diagnostic” space.

Several indices are available to summarize the in-
formation in a ROC graph. The most established is 
the Youden index (J), which was explained mathe-
matically already in the original publication (5-7). It 
is defined as J = sensitivity + specificity – 1.

Figure 4. Indices and help-lines in a ROC diagram. The solid 
line is the ROC curve with the tested cut-off values indicated. 
Only points above the equality line (dotted line, Sensitivity = 
1 - Specificity) have diagnostic power. The vertical line (dashed-
dotted line) is the J-index calculated at the cut-off. The quarter-
circle is the K-index at the cut-off and the oblique dashed lines 
are, from left to right, LR(+) = 4, 3 and 2, respectively.
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The Youden index can take any value between - 1 
(sensitivity or specificity = 0) and + 1 (sensitivity = 
specificity) which both represent extremes that 
are unlikely to occur in reality. The meaning of the 
J-index can be visualized in the ROC-plot. In Figure 
4, a Youden index is indicated as a vertical dashed 
line from an arbitrarily chosen cut-off with the co-
ordinates (1 - specificity0) / sensitivity0. By defini-
tion the X- and Y-coordinates are identical at the 
intersection of a vertical line with the equality line, 
i.e. (1 - specificity1) = sensitivity1. Therefore, the 
graphical representation of the J-index corre-
sponds to sensitivity0 ‑ (1 ‑ specificity1) = sensitivi-
ty0 – sensitivity1. Clearly, the J-index is the distance 
between the ROC-curve and the equality line, an 
index of the efficiency of a cut-off. A maximal J-in-
dex will be the optimal choice of cut-off – provid-
ed it could be assumed that the sensitivity and 
specificity were diagnostically of equal impor-
tance. Other considerations may prevail.

Another useful index recently introduced is the K-
index, which represents the distance from the up-
per left corner of the plot to the chosen cut-off 
representation on the ROC-curve (8,9). Since this is 
calculated using the Pythagoras theorem its 
graphical representation is a circle, a quarter of 
which is inside the ROC plot and shown in Figure 
4. The interpretation is that any point inside the 
quarter-circle will perform better than those 
where the circle crosses the ROC curve. Note that 
the K-index crosses the ROC curve twice. This may 
have implications if the K-value is used to identify 
optimal cut-off values.

In case of symmetrical ROC-graph the J- and the K-
index will coincide, with their interception lying on 
the negative diagonal, sensitivity = (1 - specificity).

Cumulative data analysis

Although the ROC curve conveys a substantial 
amount of information, some is lost in the process, 
most importantly the value of the cut-off at each 
LR(+). Since it is not necessarily the maximum J-in-
dex that serves the clinic best, it may be important 
to offer a tool to infer the effect of modifying the 
cut-off value on the sensitivity, specificity and like-

lihood ratios. Therefore, an accompanying graph 
that relates the cut-off to these indicators is valua-
ble. It summarizes the distributions and a suitable 
name is therefore cumulative data analysis (CDA) 
graph (10,11). In a spreadsheet application it linked 
to the ROC-graph. This allows graphical real-time 
effects of changing the cut-off value (Figure 5, left 
panel). 

If a ‘rule-in’ is desirable then the specificity should 
be favoured, i.e. the cut-off moved to a higher val-
ue if this is linked to disease, in accordance with 
the model shown in Figure 1. Cut-off values which 
would generate a LR(+) in the optimal area (see 
Figure 4) are also displayed in the CDA plot. The 
example in Figure 5 (for cholesterol) indicates that 
a cut-off at 3.7 mmol/L would correspond to a 
LR(+) of 1.9. A higher LR(+) might be desirable and 
the highest we can get seems to be about 3 which 
would increase the specificity to about 0.9, where-
as the sensitivity drops to 0.2 at a cut-off of 4.8 
mmol/L. This cut-off, whether a reference value or 
decision value, would surely “rule in” individuals in 
the hypercholesterolemia group. 

Given the prevalence of disease (pre-test probabil-
ity) a graph of the post-test probabilities (predic-
tive values of a negative of positive outcome, PV(-) 
and PV(+), respectively) encountered can be drawn 
(Figure 5, right panel) to illustrate the result of a 
change of the cut-off in a population with a given 
prevalence. In this particular example the preva-
lence was set to 50% for illustration purposes; if it 
is lower, the curves will be shifted to the right and 
eventually the chosen cut-off has no effect on the 
PV(+). 

Area under the curve 

The area under the ROC curve (AUC) is the discrim-
inatory ability of the test, i.e. ability to correctly 
classify the diseased and the healthy. It is also de-
scribed as the probability that the test will rank a 
randomly chosen positive result higher than a ran-
domly chosen negative result. Consequently, it is 
interesting to compare tests by comparing their 
AUC. Since the ROC curve is a summary of the 
LR(+) for every possible cut-off, trapezoids (a rec-
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tangular column with a triangle on top) can be vis-
ualized and their individual areas calculated as the 
average of two adjacent values of the sensitivity 
times the difference between the limiting (1‑ spec-
ificity) values. Their sum is an approximation of the 
AUC which obviously comes closer to the true val-
ue the more frequently the LR(+) is sampled, i.e. 
narrow columns, more cut-offs. 

It was shown by Hanley and McNeil in a seminal 
publication in 1982 that the AUC is equivalent to 
the Wilcoxon U-statistics (12). This is a standard 
procedure to compare the medians of non-normal 
distributions, available in most statistics packages 
and easily calculated in a spreadsheet program 
e.g. Excel. The mechanics of the Wilcoxon signed 
rank test is to rank all observations and then add 
the rank of those which belong to the diseased 
and the non-diseased separately. If the sums are 
equal there is no difference between the groups 
which in the ROC translates to the equality line 
(sensitivity / (1 ‑ specificity) = 1). In most programs 
the smallest U-value is evaluated; this, however, is 
not usually the desirable value in calculating the 
AUC and the U-value for the largest sum of ranks 
(usually the diseased) must be calculated. The U-
value can be calculated as follows

( )
2

1+×
−= DD

DD

nn
RU

and subsequently the AUC is calculated as

ND

D

nn
U

AUC
×

=

where RD is the sum of ranks in the group with the 
largest sum of ranks, and nD and nN the number of 
observations in the groups.

Comparison of AUCs

A common use of the AUC is to compare the per-
formance of different methods. There are an un-
limited number of ROC-curves with identical AUC 
and therefore the visual inspection of a ROC plot is 
essential. Often a visual inspection is sufficient to 
estimate the advantage of one of several methods 
but the AUC and its standard error of the mean 
can be calculated and the areas thus evaluated by 
the Student’s t-test.

Figure 5. Cumulative data analysis (CDA) representation. The left panel shows the cumulative data plot. The cut-off has been trans-
ferred from the ROC-graph (Figure 4). The likelihood ratios (LR(+) and LR(-)), sensitivity and specificity are displayed. The right panel 
shows the probability plot. The actual values of the post-test probabilities are shown. PV (+) – positive predictive value. PV (-) – nega-
tive predictive value.
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An estimation of the standard error of the AUC 
was advised by Greiner et al. and described for a 
simplified model as:

( ) ( ) ( )

ND

NNDD

nn
AQnAQnAA

A
×

−×−+−×−+−
=

22 1)1()1(
)(SE

A
A

Q
A

A
Q ND +

×
=

−
=

1
2

;
2

2

where SE(A) is the AUC’s standard error, nD and nN 
are the numbers of diseased and healthy exami-
nees, respectively, and A is the AUC (11,13).

Access to the AUCs of two ROC and their standard 
errors allows estimating the significance of a dif-
ference between AUCs referring to a Students t-
test:

( ) ( )22
2

1

21

AA

AA
t

+

−
=

SE SE
.

Discussion

The contingency table can be organized differently 
with regard to which quantities will populate the 
various cells, but for many the interpretation seems 
to be based on a visual memory of the table. Since a 
readership concerned with medical diagnosis and 
comparisons of measurement procedures are famil-
iar with scatter plots where high values of the inde-
pendent variable (X-axis) correspond to high values 
of the dependent variable (Y-axis), it seems logical 
to copy this structure. Therefore, the number of dis-
eased is in the first row, the number of negative re-
sults in the first column, accordingly, the true posi-
tives and the true negatives are placed along the 
positive diagonal of the table. This may be reversed 
if diseased are characterized by low values. Other 
designs are used in some literature.

Decisions are based on formulating, explicitly or 
implicitly, hypotheses and evaluating them in 
terms of probabilities. As soon as a physician faces 
a patient, a hypothesis on the reasons for com-
plaints, based on a narrative and visual signs and 
symptoms will be (sub)consciously created. For an 
experienced physician this information may be 

sufficient for a diagnosis and subsequent treat-
ment but modern techniques offer a wide variety 
of tests, which will narrow down the number of 
possible diagnoses. Rarely, however, will the out-
come of a single test be unambiguous but if the 
test is carefully chosen the post-test probability for 
a correct hypothesis will be superior to the pre-
test probability. It therefore becomes important 
for the physician to have a structured knowledge 
of the performance of requested tests. The Bayes’ 
theorem shows that the reliability of a test may de-
pend on the prevalence of the disease; therefore, 
sequential application of tests may be beneficial 
even if ordering a wide selection of tests and in-
vestigations may be rational and practical in real 
life. Indeed, one of the most important skills of the 
clinician is to increase the pre-test probability be-
fore adding more tests. 

The farther away from a cut-off value the less risk 
for false results, but false results become a major 
problem close to the reference interval limits. We 
need a tool to evaluate the risk for false answers; 
the false negatives (error Type II), which incorrectly 
dismiss a hypothesis, and false positives (error 
Type I) which falsely lead to unnecessary therapy. 
The sensitivity and specificity of the test are the 
key pieces of information and should be optimized 
considering the severity of the disease, the possi-
bilities to treat and social consequences (1). These 
quantities are determined by the cut-off, or refer-
ence value, which separates diseased from non-
diseased. 

By definition, reference intervals cover the values 
found in a certain part, usually 95%, of a reference 
cohort and are defined to fit the purpose (14-16). 
The choice of reference interval does not consider 
or evaluate the risk for false results in relation to 
the measured quantity value. The risk within the 
reference interval is principally the same – a uni-
form of rectangular distribution. A reference cut-
off may be defined differently, e.g. to include all 
diseased with a given probability or partitioned 
according to problem formulation or suspicion of 
a particular disease. Knowledge of the LR(+) values 
for different cut-offs would allow the physician to 
make decisions based on probabilities at certain 
quantity concentrations. This would serve “preci-



https://doi.org/10.11613/BM.2018.010101	 Biochem Med (Zagreb) 2018;28(1):010101 

		  9

Kallner A.	 ROC diagram in clinical decisions

sion medicine” better than the rigid, population 
based, reference intervals. Presently much of the 
information in the laboratory results is lost be-
cause it is dichotomized. Probability based refer-
ence values would have a potency to recover lost 
ground.

Necessary information is not yet available but 
once accumulated it could easily be made availa-
ble in hospital information systems or mobile nets 
e.g. smartphones. As Henderson and Rayana point-
ed out in 1985, this prompts us to report perfor-
mance data in a complete and standardized for-
mat (17).

Conclusion

Decisions are formally made according to Bayes’ 
theorem and their efficiency can be estimated, i.e. 
the effect on the performance by changing the 
cut-off values can be foreseen. The ROC plot is an 
excellent summary of the performance of a test 
but requires access to adequate computer sup-
port. Several of the indices, which may be difficult 
to communicate, can be included in the classical 

ROC plot. However, a ROC will not directly give the 
relation between the cut-off and the performance 
and therefore the CDA plot and visualization of 
the post-test probabilities are important comple-
ments and support in illustrating and deciding on 
the characteristics of a test. Risk assessment of re-
sults would be favoured by a redefinition of refer-
ence values and a personalized, dynamic use. Ac-
cess to modern software e.g. spreadsheet pro-
grams makes establishing ROC and CDA plots pos-
sible for the individual laboratory and eventually 
made feasible by modern communication tech-
niques.

A software package, coded in EXCEL, of the proce-
dures described in the report is available from the 
author. 
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Appendix 1.

Calculated quantities and their definitions

Calculated quantity Equation

Sensitivity (true positive rate, TPR)
DIS

=
+

TP
TP FN

TP

Specificity (true negative rate, TNR)
NDIS

=
+

TN
TN FP

TN

1-specificity (false positive rate, FPR) = =
+

TN
TN FP

FP
+TN FP +TN FP

TN + FP – TN1 – 

1-sensitivity (false negative rate, FNR) = =
+

TP
TP FN

FN
+TP FN +TP FN

TP + FN – TP1 – 

Efficiency (accuracy) = TP + TN
+TP FP + TN + FN N

TP + TN

Bayes’ factors

Positive predictive value, PV(+)
POS

=
+

TP
TP FP

TP

Negative predictive value, PV(-)
NEG

=
+

TN
TN FN

TN

Positive likelihood ratio, LR(+) 1 – speci�city
=TPR

FPR
Sensitivity

Negative likelihood ratio, LR(-) Speci�city
=FNR

TNR
1 – sensitivity

Post-test probability for a positive test (odds) Pre-test probability for a positive test (odds) x LR(+)

Probability = Odds Probability 
1 + Odds 1 – Probability 

;   Odds = .
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