SEQUENCES OF ITERATES OF RANDOM-VALUED VECTOR FUNCTIONS AND CONTINUOUS SOLUTIONS OF RELATED EQUATIONS

RAFAŁ KAPICA Silesian University, Poland

ABSTRACT. Given a probability space (Ω, \mathcal{A}, P) , a separable metric space X, and a random-valued vector function $f: X \times \Omega \to X$, we obtain some theorems on the existence and on the uniqueness of continuous solutions $\varphi: X \to \mathbb{R}$ of the equation $\varphi(x) = \int_{\Omega} \varphi(f(x, \omega)) P(d\omega)$.

1. Introduction

The basic technique for getting a solution of functional equations in a single variable is iteration. However it may happen that instead of the exact value of a function at a point we know only some parameters of this value. The iterates of such functions were defined independently by K. Baron and M. Kuczma [4] and Ph. Diamond [5]. In [3] and [6, 8] these iterates were applied (for the first time in [3]) to equations of the form

(1.1)
$$\varphi(x) = \int_{\Omega} \varphi(f(x,\omega)) P(d\omega).$$

Equation (1.1) appears in many branches of mathematics and its solutions φ are extensively studied (see [2, Part 4] and [1, Part 3]). A very particular case of (1.1) was studied by W. Sierpiński in [15] (cf. [9, Theorem 11.11]) to characterize Cantor's function. A more general equation, but still much less general then (1.1), was considered by S. Paganoni Marzegalli [14]. J. Morawiec elaborated on her method in [12] and [13] to the case of (1.1) but on the real line only. The aim of this paper is to enlarge the procedure of J. Morawiec to

 $^{2000\} Mathematics\ Subject\ Classification.\ 39B12,\ 39B52,\ 60B12.$

 $[\]it Key\ words\ and\ phrases.$ Random-valued vector functions, sequences of iterates, iterative functional equations, continuous solutions.

get the continuity of the solution given via probability distribution of a limit of the sequence of iterates $(f^n(x,\cdot))$ of the given function f in the vector case.

2. RANDOM-VALUED FUNCTIONS AND THEIR ITERATES

Fix a probability space (Ω, \mathcal{A}, P) and a separable metric space X. Let $\mathcal{B}(X)$ denote the σ -algebra of all Borel subsets of X. We say that $f: X \times \Omega \to X$ is a random-valued function if it is measurable with respect to the product σ -algebra $\mathcal{B}(X) \otimes \mathcal{A}$. The iterates of such a function f are defined by

 $f^1(x,\omega_1,\omega_2,\dots)=f(x,\omega_1),\ f^{n+1}(x,\omega_1,\omega_2,\dots)=f(f^n(x,\omega_1,\omega_2,\dots),\omega_{n+1})$ for x from X and $(\omega_1,\omega_2,\dots)$ from Ω^{∞} defined as $\Omega^{\mathbb{N}}$. Note that $f^n:X\times\Omega^{\infty}\to X$ is a random-valued function on the product probability space $(\Omega^{\infty},\mathcal{A}^{\infty},P^{\infty})$. More exactly, the n-th iterate f^n is $\mathcal{B}(X)\otimes\mathcal{A}_n$ -measurable, where \mathcal{A}_n denotes the σ -algebra of all the sets of the form

$$\{(\omega_1, \omega_2, \dots) \in \Omega^{\infty} : (\omega_1, \omega_2, \dots, \omega_n) \in A\}$$

with A from the product σ -algebra \mathcal{A}^n . (See [4, 7]; also [10, Sec. 1.4]). Since, in fact, $f^n(\cdot, \omega)$ depends only on the first n coordinates of ω , instead of $f^n(x, \omega_1, \omega_2, \dots)$ we will write also $f^n(x, \omega_1, \dots, \omega_n)$.

3. Main results

Being motivated by the paper [3] (especially by [3, Proposition 2.2]) we will get continuity of the solution of (1.1) given via the probability distribution of the limit of $(f^n(x,\cdot))$ (cf. also [8]). For this purpose we will obtain the vector counterparts of [12, Proposition 1, Theorem 1] adopting methods of S. Paganoni Marzegalli and J. Morawiec.

Fix a nonempty set S, and for every $s \in S$ fix a nonempty subset X_s of X and a function $u_s: X_s \to \mathbb{R}$. We are interested in solutions $\varphi: X \to \mathbb{R}$ of (1.1) in the class \mathcal{F} defined by

$$\mathcal{F} = \{ \varphi : X \to \mathbb{R} \mid \varphi \text{ is a bounded function,}$$

$$\varphi(x) = u_s(x) \text{ for } x \in X_s \text{ and } s \in S \}.$$

First we prove a theorem on the existence and uniqueness of such solutions accepting the following assumptions:

(A) For every $s \in S$ there exist: an open set $U_s \subset X$, an event $A_s \in \mathcal{A}$ of positive probability and a positive integer m such that

$$(3.1) f^m(U_s \times A_s^{\mathbb{N}}) \subset X_s;$$

moreover, for some $s_0 \in S$ the function $f(\cdot, \omega)$ is continuous for $\omega \in A_{s_0}$ and there exists an $m_0 \in \mathbb{N}$ such that

(3.2)
$$f^{m_0}((X \setminus \bigcup_{s \in S} U_s) \times A_{s_0}^{\mathbb{N}}) \subset \bigcup_{s \in S} U_s.$$

The following theorem is an extension of [12, Proposition 1].

THEOREM 3.1. Assume (A). If the closure of $X \setminus \bigcup_{s \in S} X_s$ is compact, then equation (1.1) has in the class \mathcal{F} at most one solution.

PROOF. Assume that $\varphi_1, \varphi_2 \in \mathcal{F}$ are solutions of (1.1) and put $\varphi = \varphi_1 - \varphi_2$. Clearly φ is a solution of (1.1) and

(3.3)
$$\varphi(x) = 0 \quad \text{for } x \in \bigcup_{s \in S} X_s.$$

Suppose that

$$M := \sup\{|\varphi(x)| : x \in X\} > 0$$

and consider the set

 $Y = \{x \in X : \text{there exists a sequence } (x_n) \text{ such that } \}$

$$\lim_{n \to \infty} x_n = x \text{ and } \lim_{n \to \infty} |\varphi(x_n)| = M\}.$$

Since M > 0, (3.3) and compactness of $\operatorname{cl}(X \setminus \bigcup_{s \in S} X_s)$ show that the set Y is nonempty. We will prove that $U_s \cap Y = \emptyset$ for every $s \in S$. To get this suppose that $x \in U_s \cap Y$ for some $s \in S$. Then

(3.4)
$$\lim_{n \to \infty} x_n = x \text{ and } \lim_{n \to \infty} |\varphi(x_n)| = M$$

for some sequence (x_n) of points of U_s . Applying (1.1), (3.1) and (3.3) we see that

$$|\varphi(x_n)| = \Big| \int_{\Omega} \Big(\dots \Big(\int_{\Omega} \varphi(f^m(x_n, \omega_1, \dots, \omega_m)) P(d\omega_m) \Big) \dots \Big) P(d\omega_1) \Big|$$

$$\leq \int_{A_s} \Big(\dots \Big(\int_{A_s} |\varphi(f^m(x_n, \omega_1, \dots, \omega_m))| P(d\omega_m) \Big) \dots \Big) P(d\omega_1)$$

$$+ M P^{\infty} \{ (\omega_1, \omega_2, \dots) \in \Omega^{\infty} : (\omega_1, \dots, \omega_m) \notin A_s^m \}$$

$$= M \Big(1 - P(A_s)^m \Big)$$

for every $n \in \mathbb{N}$, which is a contradiction. Consequently,

$$(3.5) Y \subset X \setminus \bigcup_{s \in S} U_s.$$

Now fix an $x \in Y$ and an (x_n) satisfying (3.4). Applying Fatou's Lemma and (1.1) we obtain

$$0 \leqslant \int_{\Omega} \liminf_{n \to \infty} \left(M - \left| \varphi (f(x_n, \omega)) \right| \right) P(d\omega)$$

$$\leqslant \liminf_{n \to \infty} \int_{\Omega} \left(M - \left| \varphi (f(x_n, \omega)) \right| \right) P(d\omega)$$

$$\leqslant \liminf_{n \to \infty} \left(M - \left| \varphi (x_n) \right| \right) = 0.$$

This gives $\liminf_{n\to\infty} (M - |\varphi(f(x_n,\omega))|) = 0$ a.e. In particular,

$$\limsup_{n \to \infty} \left| \varphi \big(f(x_n, \omega_1) \big) \right| = M$$

for some $\omega_1 \in A_{s_0}$. By the continuity of $f(\cdot, \omega_1)$ we have $f(x, \omega_1) \in Y$. Replacing x by $f(x, \omega_1)$ we can find $\omega_2 \in A_{s_0}$ such that $f(f(x, \omega_1), \omega_2) \in Y$, i.e. $f^2(x, \omega_1, \omega_2) \in Y$. After m_0 steps we obtain a sequence $\omega_1, \ldots, \omega_{m_0}$ of elements of A_{s_0} such that

$$f^{m_0}(x,\omega_1,\ldots,\omega_{m_0}) \in Y.$$

On the other hand, on account of (3.5) and (3.2), $f^{m_0}(x, \omega_1, \dots, \omega_{m_0})$ belongs to $\bigcup_{s \in S} U_s$ which is a contradiction.

Now fix a family $\mathcal{F}_0 \subset \mathcal{F}$. We will prove a theorem on the existence and on the uniqueness of solutions of (1.1) in the class \mathcal{F}_0 under the following assumptions:

(B) There exist an $m \in \mathbb{N}$ and $U_s \subset X$, $A_s \in \mathcal{A}$ for $s \in S$ such that

$$\inf\{P(A_s): s \in S\} > 0,$$

condition (3.1) holds for every $s \in S$, and for some $s_0 \in S$ we have

(3.6)
$$f^{m}((X \setminus \bigcup_{s \in S} U_{s}) \times A_{s_{0}}^{\mathbb{N}}) \subset \bigcup_{s \in S} X_{s}.$$

(C) For every $\varphi \in \mathcal{F}_0$ the function $\varphi \circ f(x, \cdot)$ is measurable for $x \in X$, and the function ψ given by

(3.7)
$$\psi(x) = \int_{\Omega} \varphi(f(x,\omega)) P(d\omega)$$

belongs to \mathcal{F}_0 .

In the proof of the next theorem we will integrate nonnegative functions possibly nonmeasurable. If $A \in \mathcal{A}$ and $h: A \to [0, \infty)$, then

$$\int_{A} h(\omega)P(d\omega) = \sup_{\Pi} \sum_{E \in \Pi} P(E) \inf h(E)$$

where the supremum is taken over all partitions Π of A into a countable number of pairwise disjoint members of A (cf. [11, p. 117]).

THEOREM 3.2. Assume (B) and (C). If \mathcal{F}_0 is nonempty and closed in uniform convergence, then equation (1.1) has in \mathcal{F}_0 exactly one solution.

PROOF. Consider the operator $L: \mathcal{F}_0 \to \mathcal{F}_0$ given by

$$L\varphi(x) = \int_{\Omega} \varphi(f(x,\omega)) P(d\omega).$$

It is enough to prove that $L^m: \mathcal{F}_0 \to \mathcal{F}_0$ is a contraction in the supremum metric τ . To this end we will show (by induction) that for every $n \in \mathbb{N}$, $\varphi_1, \varphi_2 \in \mathcal{F}_0, x \in X$ and $A \in \mathcal{A}$ the following inequality holds:

$$|L^{n}\varphi_{1}(x) - L^{n}\varphi_{2}(x)| \leq \tau(\varphi_{1}, \varphi_{2}) (1 - P(A)^{n})$$

$$(3.8) + \int_{A} \left(\dots \left(\int_{A} \left| (\varphi_{1} - \varphi_{2}) \left(f^{n}(x, \omega_{1}, \dots, \omega_{n}) \right) \right| P(d\omega_{n}) \right) \dots \right) P(d\omega_{1}).$$

In fact, if $\varphi_1, \varphi_2 \in \mathcal{F}_0$, then putting $\varphi = \varphi_1 - \varphi_2$, for every $x \in X$ and $A \in \mathcal{A}$ we have

$$|L\varphi_{1}(x) - L\varphi_{2}(x)| \leq \int_{\Omega \setminus A} |\varphi(f(x,\omega))| P(d\omega) + \int_{A} |\varphi(f(x,\omega))| P(d\omega)$$
$$\leq \tau(\varphi_{1}, \varphi_{2})(1 - P(A)) + \int_{A} |\varphi(f(x,\omega))| P(d\omega)$$

and

$$|L^{n+1}\varphi_{1}(x) - L^{n+1}\varphi_{2}(x)| = |L^{n}L\varphi_{1}(x) - L^{n}L\varphi_{2}(x)|$$

$$\leq \tau(L\varphi_{1}, L\varphi_{2})(1 - P(A)^{n})$$

$$+ \int_{A} \Big(\dots \Big(\int_{A} |(L\varphi_{1} - L\varphi_{2}) \Big(f^{n}(x, \omega_{1}, \dots, \omega_{n}) \Big) | P(d\omega_{n}) \Big) \dots \Big) P(d\omega_{1})$$

$$\leq \tau(\varphi_{1}, \varphi_{2}) \Big(1 - P(A)^{n} \Big)$$

$$+ \int_{A} \Big(\dots \Big(\int_{A} \{ \tau(\varphi_{1}, \varphi_{2}) (1 - P(A)) \Big)$$

$$+ \int_{A} |\varphi \Big(f(f^{n}(x, \omega_{1}, \dots, \omega_{n}), \omega_{n+1}) \Big) | P(d\omega_{n+1}) \} P(d\omega_{n}) \Big) \dots \Big) P(d\omega_{1})$$

$$= \tau(\varphi_{1}, \varphi_{2}) \Big(1 - P(A)^{n} \Big) + \tau(\varphi_{1}, \varphi_{2}) \Big(1 - P(A) \Big) P(A)^{n}$$

$$+ \int_{A} \Big(\dots \Big(\int_{A} |\varphi \Big(f^{n+1}(x, \omega_{1}, \dots, \omega_{n+1}) \Big) | P(d\omega_{n+1}) \Big) \dots \Big) P(d\omega_{1}).$$

Fix $\varphi_1, \varphi_2 \in \mathcal{F}_0$ and, using (B), fix also an $m \in \mathbb{N}$ satisfying (3.1) and (3.6). If $s \in S$ and $x \in U_s$, then by (3.8) and (3.1) we have

$$|L^m \varphi_1(x) - L^m \varphi_2(x)| \leqslant \tau(\varphi_1, \varphi_2) (1 - P(A_s)^m),$$

whilst if $x \in X \setminus \bigcup_{s \in S} U_s$, then (3.8) and (3.6) give

$$|L^m \varphi_1(x) - L^m \varphi_2(x)| \leqslant \tau(\varphi_1, \varphi_2) (1 - P(A_{s_0})^m).$$

By this we obtain

$$|L^m \varphi_1(x) - L^m \varphi_2(x)| \leqslant \tau(\varphi_1, \varphi_2) \sup\{1 - P(A_s)^m : s \in S\}$$

for every $x \in X$ and, consequently,

$$\tau(L^m \varphi_1, L^m \varphi_2) \leqslant \tau(\varphi_1, \varphi_2) \sup\{1 - P(A_s)^m : s \in S\}.$$

REMARK 3.3. Under the assumptions of Theorems 3.1 and 3.2 equation (1.1) has in \mathcal{F} exactly one solution and this solution belongs to \mathcal{F}_0 .

Now we proceed to the case where

$$\mathcal{F}_0 = \{ \varphi : X \to \mathbb{R} \mid \varphi \text{ is a bounded continuous function,}$$

$$\varphi(x) = 0 \text{ for } x \in X_1, \ \varphi(x) = 1 \text{ for } x \in X_2 \}$$

for some Borel subsets $X_1, X_2 \subset X$, assuming the following:

(D) There exist open sets $U_1, U_2 \subset X$, events A_1, A_2 of positive probability, and an $m \in \mathbb{N}$ such that (3.1) holds for $s \in \{1, 2\}$,

$$f^m((X\setminus (U_1\cup U_2))\times A_1^{\mathbb{N}})\subset (X_1\cup X_2)\cap (U_1\cup U_2),$$

$$(3.9) f(X_1 \times \Omega) \subset X_1, \quad f(X_2 \times \Omega) \subset X_2,$$

 $f(\cdot,\omega)$ is continuous for every $\omega \in A_1$ and f is P-continuous (i.e., if $x_n \to x$, then $f(x_n,\cdot) \to f(x,\cdot)$ in probability).

The main result of this paper, which is a generalization of [3, Proposition 2.2], reads as follows.

THEOREM 3.4. Assume (D), $\operatorname{dist}(X_1, X_2) > 0$ and that $\operatorname{cl}(X \setminus (X_1 \cup X_2))$ is compact. Then:

- (i) Equation (1.1) has exactly one bounded solution $\varphi: X \to \mathbb{R}$ such that
- (3.10) $\varphi(x) = 0 \quad \text{for } x \in X_1, \qquad \varphi(x) = 1 \quad \text{for } x \in X_2;$ this solution is a continuous function.
- (ii) If X is complete and the function $\pi: X \times \mathcal{B}(X) \to [0,1]$ given by $\pi(x,B) = P^{\infty}(\{\omega \in \Omega^{\infty} : \text{ the sequence } (f^{n}(x,\omega)) \}$ $\text{converges and its limit belongs to } B\})$

satisfies

$$\pi(x, X_2) = 0$$
 for $x \in X_1$, $\pi(x, X_2) = 1$ for $x \in X_2$, then $\pi(\cdot, X_2)$ is a continuous solution of (1.1).

(iii) If for every $x \in X$ the sequence $(f^n(x,\cdot))$ converges in probability to a random variable $\xi(x,\cdot)$, and the function $\pi: X \times \mathcal{B}(X) \to [0,1]$ given by

(3.12)
$$\pi(x,B) = P^{\infty}(\xi(x,\cdot) \in B)$$

satisfies

(3.13)
$$\pi(x, X_1) = 1 \text{ for } x \in X_1, \quad \pi(x, X_2) = 1 \text{ for } x \in X_2,$$

then for every bounded and continuous function $u: X \to \mathbb{R}$ such that

(3.14)
$$u(x) = 0 \text{ for } x \in X_1, \quad u(x) = 1 \text{ for } x \in X_2,$$

the function $\varphi: X \to \mathbb{R}$ defined by

(3.15)
$$\varphi(x) = \int_X u(y)\pi(x, dy) = \int_{\Omega^{\infty}} u(\xi(x, \omega))P^{\infty}(d\omega)$$

is a continuous solution of equation (1.1) and has property (3.10).

PROOF. Since $\operatorname{cl} X_1$ and $\operatorname{cl} X_2$ are disjoint, the family \mathcal{F}_0 is nonempty. It is also closed in the uniform convergence. Fix a $\varphi \in \mathcal{F}_0$. By the continuity of φ the function $\varphi \circ f(x,\cdot)$ is measurable for every $x \in X$. Consider the function $\psi: X \to \mathbb{R}$ defined by (3.7). Obviously ψ is a bounded function, $\psi(x) = 0$ for $x \in X_1$ and $\psi(x) = 1$ for $x \in X_2$. We will prove that ψ is continuous. If the sequence (x_n) of points of X converges to an x, then the sequence $(\varphi \circ f(x_n,\cdot))$ of uniformly bounded functions converges in probability to $\varphi \circ f(x,\cdot)$ and on account of the Lebesgue-Vitali Dominated Convergence Theorem the sequence $(\psi(x_n))$ converges to $\psi(x)$. This shows (C) with

$$S = \{1, 2\}, \quad u_1 = 0, \quad u_2 = 1.$$

Clearly, conditions (A) and (B) are fulfilled. Applying Remark 3.3 we get the first assertion.

To prove the second one it is enough to observe that by [8, Theorem 1] (for $u = \mathbf{1}_{X_2}$) the function $\pi(\cdot, X_2)$ is a (bounded) solution of (1.1) and to apply (i).

Passing to a proof of the third assertion fix a $u \in \mathcal{F}_0$. According to [8, Theorem 2.(i)] the function $\varphi : X \to \mathbb{R}$ given by (3.15) is a bounded solution of (1.1). In view of the first part of Theorem 3.4 it is enough to verify that φ satisfies (3.10). This however follows immediately from (3.13) and (3.14): if $x \in X_1$, then

$$\varphi(x) = \int_{X_1} u(y)\pi(x, dy) = 0,$$

and for $x \in X_2$ we have

$$\varphi(x) = \int_{X_2} u(y)\pi(x, dy) = 1.$$

4. Examples

The following shows a possible application of Theorem 3.4.

Fix an $N \in \mathbb{N}$ and let $X = [0, 1]^N$.

Denoting the set $\{1,\ldots,N\}$ by I, define the subsets X_1,X_2 and U_1,U_2 of X as follows:

$$X_1 = \{0\}, \quad X_2 = \{x \in X : x_n = 1 \text{ for some } n \in I\},$$

 $U_1 = \{x \in X : x_n < b \text{ for } n \in I\}, \quad U_2 = \{x \in X : x_n > a \text{ for some } n \in I\},$ where 0 < b < a < 1 are fixed. Assume that $\alpha_1, \ldots, \alpha_N : [0,1] \to [0,1]$ are nondecreasing continuous functions such that (4.1)

$$\alpha_n(t) = 0$$
 for $t \in [0, b]$, $\alpha_n(1) = 1$ and $\alpha_n(t) < t$ for $t \in (0, 1)$,

and let $v_1,\ldots,v_N,w_1,\ldots,w_N:X\to [0,1]$ be continuous functions. Given $p_1>0$ and $p_2>0$ summing up to 1, consider also $\Omega=\{\omega_1,\omega_2\}$ and define the function $f:X\times\Omega\to X$ by

$$f(x,\omega_i) = f_i(x),$$

where

$$f_1(x) = (\alpha_1(v_1(x)), \dots, \alpha_N(v_N(x))), \quad f_2(x) = (w_1(x), \dots, w_N(x)).$$

Since f_1, f_2 are continuous, it follows that f is random-valued. Equation (1.1) takes the form

$$(4.2) \qquad \varphi(x) = p_1 \varphi \left(\alpha_1(v_1(x)), \dots, \alpha_N(v_N(x)) \right) + p_2 \varphi \left(w_1(x), \dots, w_N(x) \right).$$

(I) Assume that

$$(4.3) v_1(x), \dots, v_N(x) \leqslant \max\{x_1, \dots, x_N\} \text{for } x \in X \setminus U_2,$$

(4.4)
$$\max\{v_1(x), \dots, v_N(x)\} = 1 \quad \text{for } x \in X_2,$$

(4.5)
$$\max\{w_1(x), \dots, w_N(x)\} = 1$$
 for $x \in U_2$,

$$(4.6) w_1(0) = \ldots = w_N(0) = 0.$$

We will show that:

(i) Equation (4.2) has exactly one bounded solution $\varphi: X \to [0,1]$ satisfying

(4.7)
$$\varphi(0) = 0 \quad \text{and} \quad \varphi(x) = 1 \quad \text{for } x \in X_2;$$

this solution is a continuous function.

(ii) If the function π given by (3.11) fullfils

(4.8)
$$\pi(x, X_2) = 1$$
 for $x \in X_2$,

then $\pi(\cdot, X_2)$ is a continuous solution of (4.2).

PROOF. First we show that (D) holds. Let $A_1 = \{\omega_1\}, A_2 = \{\omega_2\}$. We claim that

$$(4.9) f_1(U_1) \subset X_1, f_2(U_2) \subset X_2.$$

If $x \in U_1$, then $x_n < b$ for $n \in I$ and according to (4.3) we have $v_n(x) < b$ for $n \in I$, hence by (4.1) we see that $\alpha_n(v_n(x)) = 0$ for $n \in I$, i.e. $f_1(x) = 0$. If $x \in U_2$, then (4.5) gives $f_2(x) \in X_2$. From this (4.9) follows, and since $X_1 \subset U_1$ and $X_2 \subset U_2$, we have (3.1) for every $m \in \mathbb{N}$ and $s \in \{1, 2\}$.

Similarly we verify that (3.9) holds. The task is now to find a positive integer m with

$$f_1^m(x) = 0$$
 for $x \in X \setminus U_2$.

Put $\alpha(t) = \max\{\alpha_1(t), \dots, \alpha_N(t)\}\$ for $t \in [0, 1]$. Clearly, α is a continuous nondecreasing function,

$$\alpha(t) = 0$$
 for $t \in [0, b]$ and $\alpha(t) < t$ for $t \in (0, 1)$.

In particular, $\lim_{m\to\infty} \alpha^m(a) = 0$. Hence $\alpha^m(a) = 0$ for some $m \in \mathbb{N}$. Fix an $x \in X \setminus U_2$. By the monotonicity of α and (4.3) we have

$$f_1(x) \leqslant (\alpha(v_1(x)), \dots, \alpha(v_N(x))) \leqslant$$

$$\leqslant (\alpha(\max\{x_1, \dots, x_N\}), \dots, \alpha(\max\{x_1, \dots, x_N\})),$$

whence

$$f_1(x) \leqslant (\alpha(a), \dots, \alpha(a)) \leqslant (a, \dots, a).$$

In particular, $f_1(x) \in X \setminus U_2$ and since $x \in X \setminus U_2$ was arbitrarily fixed we can replace it by $f_1(x)$ to get

$$f_1^2(x) \leq (\alpha(\max\{(f_1(x))_n : n \in I\}), \dots, \alpha(\max\{(f_1(x))_n : n \in I\}))$$

 $\leq (\alpha^2(\max\{x_1, \dots, x_N\}), \dots, \alpha^2(\max\{x_1, \dots, x_N\}))$
 $\leq (\alpha^2(a), \dots, \alpha^2(a)).$

After m steps

$$f_1^m(x) \leqslant (\alpha^m(a), \dots, \alpha^m(a))$$

and $f_1^m(x) = 0$. This ends the proof of (D).

Consequently Theorem 3.4(i) yields part (i) of our example.

Since $f_1(0) = f_2(0) = 0$, we conclude that for π given by (3.11) we have $\pi(0, X_2) = 0$. The continuity of $\pi(\cdot, X_2)$ follows from (4.8) and Theorem 3.4(ii).

Consider now continuous functions $\beta_1, \dots, \beta_N : [0,1] \to [0,1]$ such that

$$\beta_n(0) = 0, \quad \beta_n(t) = 1 \text{ for } t \in [a, 1], \ n \in I.$$

(II) The functions $v_1, \ldots, v_N, w_1, \ldots, w_N$ defined by

 $v_n(x) = \max\{x_1, \dots, x_N\}, \quad w_n(x) = \beta_n(\min\{x_1 + \dots + x_N, 1\}) \quad \text{for } x \in X$ satisfy (4.3) - (4.6). By Example (I).(i) the equation

$$\varphi(x) = p_1 \varphi(\alpha_1(\max\{x_1, \dots, x_N\}), \dots, \alpha_N(\max\{x_1, \dots, x_N\}))$$

$$(4.10) + \varphi(\beta_1(\min\{x_1 + \ldots + x_N, 1\}), \ldots, \beta_N(\min\{x_1 + \ldots + x_N, 1\}))$$

has exactly one bounded solution $\varphi: X \to \mathbb{R}$ satisfying (4.7) and this solution is a continuous function. We will show that it equals to

(4.11)
$$x \mapsto P^{\infty} \Big(\lim_{n \to \infty} f^n(x, \cdot) = (1, \dots, 1) \Big), \quad x \in X.$$

In fact, according to [8, Theorem 1 (with $u = \mathbf{1}_{\{(1,\dots,1)\}}$)] the function (4.11) is a (bounded) solution of (4.10). If $x \in X_2$, then

$$v_n(x) = 1 = \min\{x_1 + \ldots + x_N, 1\}$$
 for $n \in I$,

whence $f(x, \omega_i) = (1, \dots, 1) \in X_2$ for i = 1, 2. Consequently

$$f^n(x,\omega) = (1,\ldots,1)$$
 for $n \in \mathbb{N}, \ x \in X_2 \text{ and } \omega \in \Omega^{\infty}$,

and the function (4.11) takes the value 1 on X_2 . Moreover, $f(0, \omega_i) = 0$ for i = 1, 2, whence $f^n(0, \omega) = 0$ for $n \in \mathbb{N}$ and $\omega \in \Omega^{\infty}$ and, consequently, $\pi(0, \cdot) = 0$.

(III) Define now the functions $v_1, \ldots, v_N, w_1, \ldots, w_N$ by

$$v_n(x) = x_n, \quad w_n(x) = \beta_n(x_n) \quad \text{for } x \in X.$$

Clearly (4.3)–(4.6) are fulfilled. Consequently the equation

$$(4.12) \qquad \varphi(x) = p_1 \varphi(\alpha_1(x_1), \dots, \alpha_N(x_N)) + p_2 \varphi(\beta_1(x_1), \dots, \beta_N(x_N))$$

has exactly one bounded solution $\varphi: X \to \mathbb{R}$ satisfying (4.7). Assume additionally (cf. [3, Example 2.1]) that $p_2 \leq b$ and

$$\alpha_n(t) = 0$$
 for $t \in [0, a]$, $\alpha_n(t) \leqslant \frac{t - p_2}{p_1}$ for $t \in [a, 1]$,

$$\beta_n(t) = 1$$
 for $t \in [b, 1]$, $\beta_n(t) \leqslant \frac{t}{p_2}$ for $t \in [0, b]$,

for $n \in I$. Then

$$p_1\alpha_n(t) + p_2\beta_n(t) \leqslant t$$
 for $t \in [0, 1]$ and $n \in I$,

and

$$p_1 f_1(x) + p_2 f_2(x) \leqslant x$$
 for $x \in X$.

Due to [7, Theorem 4] for every $x \in X$ the sequence $(f^n(x,\cdot))$ converges a.s. to a measurable function $\xi(x,\cdot):\Omega^{\infty}\to X$. In particular, the functions (3.11) and (3.12) coincide. Since $f_1(X_2)\subset X_2, f_2(X_2)\subset X_2$, we have

$$f^n(x,\omega) \in X_2$$
 for $x \in X_2$, $\omega \in \Omega^{\infty}$, $n \in \mathbb{N}$.

This gives (4.8), because X_2 is closed. Thus $\pi(\cdot, X_2)$ is a continuous solution of (4.12).

ACKNOWLEDGEMENTS.

The research was supported by the Silesian University Mathematics Department (Iterative Functional Equations and Real Analysis program).

References

- [1] K. Baron, Recent results in the theory of functional equations in a single variable, Seminar LV 15 (2003), 16 pp.
- [2] K. Baron, W. Jarczyk, Recent results on functional equations in a single variable, perspectives and open problems, Aequationes Math. 61 (2001), 1-48.
- [3] K. Baron, W. Jarczyk, Random-valued functions and iterative functional equations, Aequationes Math. 67 (2004), 140-153.
- [4] K. Baron, M. Kuczma, Iteration of random-valued functions on the unit interval, Colloq. Math. 37 (1977), 263-269.
- [5] Ph. Diamond, A stochastic functional equation, Aequationes Math. 15 (1977), 225-
- [6] R. Kapica, Sequences of iterates of random-valued vector functions and continuous solutions of a linear functional equation of infinite order, Bull. Polish Acad. Sci. Math. 50 (2002), 447-455.
- [7] R. Kapica, Convergence of sequences of iterates of random-valued vector functions, Colloq. Math. 97 (2003), 1-6.
- [8] R. Kapica, Sequences of iterates of random-valued vector functions and solutions of related equations, Sitzungsber. Abt. II 213 (2004), 113-118.
- [9] M. Kuczma, Functional equations in a single variable, Państwowe Wydawnictwo Naukowe, Warszawa, 1968.
- [10] M. Kuczma, B. Choczewski, R. Ger, Iterative functional equations, Cambridge University Press, Cambridge, 1990.
- [11] S. Lojasiewicz, An introduction to the theory of real functions, John Wiley and Sons, New York 1988.
- [12] J. Morawiec, On a linear functional equation, Bull. Polish Acad. Sci. Math. 43 (1995), 131-142.
- $[13] \ \ \text{J. Morawiec}, \ Some \ properties \ of \ probability \ distribution \ solutions \ of \ linear \ functional$ equations, Aequationes Math. 56 (1998), 81-90.
- [14] S. Paganoni Marzegalli, One-parameter system of functional equations, Aequationes Math. 47 (1994), 50-59.
- [15] W. Sierpiński, Sur un système d'equations fonctionnelles, définissant une fonction avec un ensemble dense d'intervalles d'invariabilité, Bull. Intern. Acad. Sci. Cracovie A (1911), 577-582.

R. Kapica Institute of Mathematics Silesian University Bankowa 14 PL-40-007 Katowice

Poland

E-mail: rkapica@ux2.math.us.edu.pl

Received: 2.1.2006. Revised: 4.7.2006.