SEQUENCES OF ITERATES OF RANDOM-VALUED VECTOR FUNCTIONS AND CONTINUOUS SOLUTIONS OF RELATED EQUATIONS

RAFAŁ KAPICA

Silesian University, Poland

Abstract. Given a probability space \((\Omega, \mathcal{A}, P)\), a separable metric space \(X\), and a random-valued vector function \(f : X \times \Omega \to X\), we obtain some theorems on the existence and on the uniqueness of continuous solutions \(\varphi : X \to \mathbb{R}\) of the equation \(\varphi(x) = \int_{\Omega} \varphi(f(x, \omega)) P(d\omega)\).

1. Introduction

The basic technique for getting a solution of functional equations in a single variable is iteration. However, it may happen that instead of the exact value of a function at a point we know only some parameters of this value. The iterates of such functions were defined independently by K. Baron and M. Kuczma [4] and Ph. Diamond [5]. In [3] and [6, 8] these iterates were applied (for the first time in [3]) to equations of the form

\[\varphi(x) = \int_{\Omega} \varphi(f(x, \omega)) P(d\omega). \]

Equation (1.1) appears in many branches of mathematics and its solutions \(\varphi\) are extensively studied (see [2, Part 4] and [1, Part 3]). A very particular case of (1.1) was studied by W. Sierpiński in [15] (cf. [9, Theorem 11.11]) to characterize Cantor’s function. A more general equation, but still much less general than (1.1), was considered by S. Paganoni Marzegalli [14]. J. Morawiec elaborated on her method in [12] and [13] to the case of (1.1) but on the real line only. The aim of this paper is to enlarge the procedure of J. Morawiec to

2000 Mathematics Subject Classification. 39B12, 39B52, 60B12.

Key words and phrases. Random-valued vector functions, sequences of iterates, iterative functional equations, continuous solutions.
get the continuity of the solution given via probability distribution of a limit of the sequence of iterates \((f^n(x, \cdot)) \) of the given function \(f \) in the vector case.

2. Random-valued functions and their iterates

Fix a probability space \((\Omega, \mathcal{A}, P)\) and a separable metric space \(X\). Let \(\mathcal{B}(X)\) denote the \(\sigma\)-algebra of all Borel subsets of \(X\). We say that \(f : X \times \Omega \to X\) is a random-valued function if it is measurable with respect to the product \(\sigma\)-algebra \(\mathcal{B}(X) \otimes \mathcal{A}\). The iterates of such a function \(f\) are defined by

\[
f^1(x, \omega_1, \omega_2, \ldots) = f(x, \omega_1), \quad f^{n+1}(x, \omega_1, \omega_2, \ldots) = f(f^n(x, \omega_1, \omega_2, \ldots), \omega_{n+1})
\]

for \(x\) from \(X\) and \((\omega_1, \omega_2, \ldots)\) from \(\Omega^\infty\) defined as \(\Omega^N\). Note that \(f^n : X \times \Omega^\infty \to X\) is a random-valued function on the product probability space \((\Omega^\infty, \mathcal{A}^\infty, P^\infty)\). More exactly, the \(n\)-th iterate \(f^n\) is \(\mathcal{B}(X) \otimes \mathcal{A}_n\)-measurable, where \(\mathcal{A}_n\) denotes the \(\sigma\)-algebra of all the sets of the form

\[
\{ (\omega_1, \omega_2, \ldots) \in \Omega^\infty : (\omega_1, \omega_2, \ldots, \omega_n) \in A \}
\]

with \(A\) from the product \(\sigma\)-algebra \(\mathcal{A}^n\). (See [4, 7]; also [10, Sec. 1.4]). Since, in fact, \(f^n(\cdot, \omega)\) depends only on the first \(n\) coordinates of \(\omega\), instead of \(f^n(x, \omega_1, \omega_2, \ldots)\) we will write also \(f^n(x, \omega_1, \ldots, \omega_n)\).

3. Main results

Being motivated by the paper [3] (especially by [3, Proposition 2.2]) we will get continuity of the solution of (1.1) given via the probability distribution of the limit of \((f^n(x, \cdot))\) (cf. also [8]). For this purpose we will obtain the vector counterparts of [12, Proposition 1, Theorem 1] adopting methods of S. Paganoni Marzegalli and J. Morawiec.

Fix a nonempty set \(S\), and for every \(s \in S\) fix a nonempty subset \(X_s\) of \(X\) and a function \(u_s : X_s \to \mathbb{R}\). We are interested in solutions \(\varphi : X \to \mathbb{R}\) of (1.1) in the class \(\mathcal{F}\) defined by

\[
\mathcal{F} = \{ \varphi : X \to \mathbb{R} \mid \varphi \text{ is a bounded function,} \quad \varphi(x) = u_s(x) \text{ for } x \in X_s \text{ and } s \in S \}.
\]

First we prove a theorem on the existence and uniqueness of such solutions accepting the following assumptions:

(A) For every \(s \in S\) there exist: an open set \(U_s \subset X\), an event \(A_s \in \mathcal{A}\) of positive probability and a positive integer \(m\) such that

\[
f^m(U_s \times A_s^N) \subset X_s;
\]

moreover, for some \(s_0 \in S\) the function \(f(\cdot, \omega)\) is continuous for \(\omega \in A_{s_0}\) and there exists an \(m_0 \in \mathbb{N}\) such that

\[
f^{m_0}(X \setminus \bigcup_{s \in S} U_s) \times A_{m_0}^N \subset \bigcup_{s \in S} U_s.
\]
The following theorem is an extension of [12, Proposition 1].

Theorem 3.1. Assume (A). If the closure of $X \setminus \bigcup_{s \in S} X_s$ is compact, then equation (1.1) has in the class \mathcal{F} at most one solution.

Proof. Assume that $\varphi_1, \varphi_2 \in \mathcal{F}$ are solutions of (1.1) and put $\varphi = \varphi_1 - \varphi_2$. Clearly φ is a solution of (1.1) and

\[(3.3) \quad \varphi(x) = 0 \quad \text{for } x \in \bigcup_{s \in S} X_s.\]

Suppose that $M := \sup \{|\varphi(x)| : x \in X\} > 0$ and consider the set

\[Y = \{x \in X : \text{there exists a sequence } (x_n) \text{ such that } \lim_{n \to \infty} x_n = x \text{ and } \lim_{n \to \infty} |\varphi(x_n)| = M\}.\]

Since $M > 0$, (3.3) and compactness of $\overline{X \setminus \bigcup_{s \in S} X_s}$ show that the set Y is nonempty. We will prove that $U_s \cap Y = \emptyset$ for every $s \in S$. To get this suppose that $x \in U_s \cap Y$ for some $s \in S$. Then

\[(3.4) \quad \lim_{n \to \infty} x_n = x \quad \text{and } \lim_{n \to \infty} |\varphi(x_n)| = M\]

for some sequence (x_n) of points of U_s. Applying (1.1), (3.1) and (3.3) we see that

\[
|\varphi(x_n)| = \left| \int_{\Omega} \left(\cdots \left(\int_{\Omega} \varphi(f^m(x_n, \omega_1, \ldots, \omega_m)) P(d\omega_m) \right) \cdots \right) P(d\omega_1) \right| \\
\leq \int_{A_s} \left(\cdots \left(\int_{A_s} |\varphi(f^m(x_n, \omega_1, \ldots, \omega_m))| P(d\omega_m) \right) \cdots \right) P(d\omega_1) \\
+ M P^{\infty}\{(\omega_1, \omega_2, \ldots) \in \Omega^\infty : (\omega_1, \ldots, \omega_m) \notin A_s^m \} \\
= M(1 - P(A_s)^m)
\]

for every $n \in \mathbb{N}$, which is a contradiction. Consequently,

\[(3.5) \quad Y \subset X \setminus \bigcup_{s \in S} U_s.\]

Now fix an $x \in Y$ and an (x_n) satisfying (3.4). Applying Fatou’s Lemma and (1.1) we obtain

\[
0 \leq \int_{\Omega} \liminf_{n \to \infty} \left(M - |\varphi(f(x_n, \omega))| \right) P(d\omega) \\
\leq \liminf_{n \to \infty} \int_{\Omega} \left(M - |\varphi(f(x_n, \omega))| \right) P(d\omega) \\
\leq \liminf_{n \to \infty} \left(M - |\varphi(x_n)| \right) = 0.
\]
This gives \(\liminf_{n \to \infty} \left(M - |\varphi(f(x_n, \omega))| \right) = 0 \) a.e. In particular,
\[
\limsup_{n \to \infty} |\varphi(f(x_n, \omega_1))| = M
\]
for some \(\omega_1 \in A_{s_0} \). By the continuity of \(f(\cdot, \omega_1) \) we have \(f(x, \omega_1) \in Y \). Replacing \(x \) by \(f(x, \omega) \) we can find \(\omega_2 \in A_{s_0} \) such that \(f(f(x, \omega_1), \omega_2) \in Y \), i.e. \(f^2(x, \omega_1, \omega_2) \in Y \). After \(m_0 \) steps we obtain a sequence \(\omega_1, \ldots, \omega_{m_0} \) of elements of \(A_{s_0} \) such that
\[
f^{m_0}(x, \omega_1, \ldots, \omega_{m_0}) \in Y.
\]
On the other hand, on account of (3.5) and (3.2), \(f^{m_0}(x, \omega_1, \ldots, \omega_{m_0}) \) belongs to \(\bigcup_{s \in S} U_s \) which is a contradiction.

Now fix a family \(F_0 \subset F \). We will prove a theorem on the existence and on the uniqueness of solutions of (1.1) in the class \(F_0 \) under the following assumptions:

(B) There exist an \(m \in \mathbb{N} \) and \(U_s \subset X, A_s \in A \) for \(s \in S \) such that
\[
\inf \{ P(A_s) : s \in S \} > 0,
\]
condition (3.1) holds for every \(s \in S \), and for some \(s_0 \in S \) we have

\[
f^m((X \setminus \bigcup_{s \in S} U_s) \times A_{s_0}) \subset \bigcup_{s \in S} X_s.
\]

(C) For every \(\varphi \in F_0 \) the function \(\varphi \circ f(x, \cdot) \) is measurable for \(x \in X \), and the function \(\psi \) given by
\[
\psi(x) = \int_{\Omega} \varphi(f(x, \omega)) P(d\omega)
\]
belongs to \(F_0 \).

In the proof of the next theorem we will integrate nonnegative functions possibly nonmeasurable. If \(A \in A \) and \(h : A \to [0, \infty) \), then
\[
\int_A h(\omega) P(d\omega) = \sup_{\Pi} \sum_{E \in \Pi} P(E) \inf E h(E)
\]
where the supremum is taken over all partitions \(\Pi \) of \(A \) into a countable number of pairwise disjoint members of \(A \) (cf. [11, p. 117]).

Theorem 3.2. Assume (B) and (C). If \(F_0 \) is nonempty and closed in uniform convergence, then equation (1.1) has in \(F_0 \) exactly one solution.

Proof. Consider the operator \(L : F_0 \to F_0 \) given by
\[
L\varphi(x) = \int_{\Omega} \varphi(f(x, \omega)) P(d\omega).
\]
It is enough to prove that \(L^m : \mathcal{F}_0 \to \mathcal{F}_0\) is a contraction in the supremum metric \(\tau\). To this end we will show (by induction) that for every \(n \in \mathbb{N}\), \(\varphi_1, \varphi_2 \in \mathcal{F}_0\), \(x \in X\) and \(A \in \mathcal{A}\) the following inequality holds:
\[
|L^n \varphi_1(x) - L^n \varphi_2(x)| \leq \tau(\varphi_1, \varphi_2)(1 - P(A)^n)
\]
(3.8) + \(\int_A \ldots (\int_A |(\varphi_1 - \varphi_2)(f^n(x, \omega_1, \ldots, \omega_n))|P(d\omega_n)) \ldots P(d\omega_1)\).

In fact, if \(\varphi_1, \varphi_2 \in \mathcal{F}_0\), then putting \(\varphi = \varphi_1 - \varphi_2\), for every \(x \in X\) and \(A \in \mathcal{A}\) we have
\[
|L\varphi_1(x) - L\varphi_2(x)| \leq \int_{\Omega, A} \|\varphi(f(x, \omega))\|P(d\omega) + \int_A \|\varphi(f(x, \omega))\|P(d\omega)
\]
\[
\leq \tau(\varphi_1, \varphi_2)(1 - P(A)) + \int_A \|\varphi(f(x, \omega))\|P(d\omega)
\]
and
\[
|L^{n+1} \varphi_1(x) - L^{n+1} \varphi_2(x)| = |L^n L\varphi_1(x) - L^n L\varphi_2(x)|
\]
\[
\leq \tau(L\varphi_1, L\varphi_2)(1 - P(A)^n)
\]
\[
+ \int_A \ldots (\int_A |(L\varphi_1 - L\varphi_2)(f^n(x, \omega_1, \ldots, \omega_n))|P(d\omega_n)) \ldots P(d\omega_1)
\]
\[
\leq \tau(\varphi_1, \varphi_2)(1 - P(A)^n)
\]
\[
+ \int_A \ldots (\int_A \tau(\varphi_1, \varphi_2)(1 - P(A))
\]
\[
+ \int_A |\varphi(f^n(x, \omega_1, \ldots, \omega_n, \omega_{n+1}))|P(d\omega_{n+1}) \ldots P(d\omega_1)
\]
\[
= \tau(\varphi_1, \varphi_2)(1 - P(A)^n) + \tau(\varphi_1, \varphi_2)(1 - P(A))P(A)^n
\]
\[
+ \int_A \ldots (\int_A |\varphi(f^{n+1}(x, \omega_1, \ldots, \omega_{n+1}))|P(d\omega_{n+1})) \ldots P(d\omega_1).
\]

Fix \(\varphi_1, \varphi_2 \in \mathcal{F}_0\) and, using (B), fix also an \(m \in \mathbb{N}\) satisfying (3.1) and (3.6). If \(s \in S\) and \(x \in U_s\), then by (3.8) and (3.1) we have
\[
|L^m \varphi_1(x) - L^m \varphi_2(x)| \leq \tau(\varphi_1, \varphi_2)(1 - P(A)^m),
\]
whilst if \(x \in X \setminus \bigcup_{s \in S} U_s\), then (3.8) and (3.6) give
\[
|L^m \varphi_1(x) - L^m \varphi_2(x)| \leq \tau(\varphi_1, \varphi_2)(1 - P(A_0)^m).
\]
By this we obtain
\[
|L^m \varphi_1(x) - L^m \varphi_2(x)| \leq \tau(\varphi_1, \varphi_2)\sup\{1 - P(A_s)^m : s \in S\}
\]
for every \(x \in X\) and, consequently,
\[
\tau(L^m \varphi_1, L^m \varphi_2) \leq \tau(\varphi_1, \varphi_2)\sup\{1 - P(A_s)^m : s \in S\}.
\]
Remark 3.3. Under the assumptions of Theorems 3.1 and 3.2 equation (1.1) has in \(F \) exactly one solution and this solution belongs to \(F_0 \).

Now we proceed to the case where

\[F_0 = \{ \varphi : X \to \mathbb{R} \mid \varphi \text{ is a bounded continuous function,} \]

\[\varphi(x) = 0 \text{ for } x \in X_1, \varphi(x) = 1 \text{ for } x \in X_2 \}

for some Borel subsets \(X_1, X_2 \subset X \), assuming the following:

(D) There exist open sets \(U_1, U_2 \subset X \), events \(A_1, A_2 \) of positive probability, and an \(m \in \mathbb{N} \) such that (3.1) holds for \(s \in \{1, 2\} \),

\[f^m((X \setminus (U_1 \cup U_2)) \times \mathbb{R}^n) \subset (X_1 \cup X_2) \cap (U_1 \cup U_2), \]

(3.9) \[f(X_1 \times \Omega) \subset X_1, f(X_2 \times \Omega) \subset X_2, \]

\(f(\cdot, \omega) \) is continuous for every \(\omega \in A_1 \) and \(f \) is \(P \)-continuous (i.e., if \(x_n \to x \), then \(f(x_n, \cdot) \to f(x, \cdot) \) in probability).

The main result of this paper, which is a generalization of [3, Proposition 2.2], reads as follows.

Theorem 3.4. Assume (D), \(\text{dist}(X_1, X_2) > 0 \) and that \(\text{cl}(X \setminus (X_1 \cup X_2)) \) is compact. Then:

(i) Equation (1.1) has exactly one bounded solution \(\varphi : X \to \mathbb{R} \) such that

\[\varphi(x) = 0 \text{ for } x \in X_1, \varphi(x) = 1 \text{ for } x \in X_2; \]

this solution is a continuous function.

(ii) If \(X \) is complete and the function \(\pi : X \times \mathcal{B}(X) \to [0, 1] \) given by

\[\pi(x, B) = P^{\infty}\left(\{ \omega \in \Omega^\infty : \text{the sequence } (f^n(x, \omega)) \text{ converges and its limit belongs to } B \} \right) \]

(3.11) satisfies

\[\pi(x, X_2) = 0 \text{ for } x \in X_1, \pi(x, X_2) = 1 \text{ for } x \in X_2, \]

then \(\pi(\cdot, X_2) \) is a continuous solution of (1.1).

(iii) If for every \(x \in X \) the sequence \((f^n(x, \cdot)) \) converges in probability to a random variable \(\xi(x, \cdot) \), and the function \(\pi : X \times \mathcal{B}(X) \to [0, 1] \) given by

\[\pi(x, B) = P^{\infty}(\xi(x, \cdot) \in B) \]

(3.12) satisfies

\[\pi(x, X_1) = 1 \text{ for } x \in X_1, \pi(x, X_2) = 1 \text{ for } x \in X_2, \]
then for every bounded and continuous function $u : X \to \mathbb{R}$ such that
\begin{equation}
(3.14)
\quad u(x) = 0 \text{ for } x \in X_1, \quad u(x) = 1 \text{ for } x \in X_2,
\end{equation}
the function $\varphi : X \to \mathbb{R}$ defined by
\begin{equation}
(3.15)
\quad \varphi(x) = \int_X u(y)\pi(x,dy) = \int_{\Omega} u(\xi(x,\omega))P^\infty(d\omega)
\end{equation}
is a continuous solution of equation (1.1) and has property (3.10).

Proof. Since $\text{cl}X_1$ and $\text{cl}X_2$ are disjoint, the family \mathcal{F}_0 is nonempty. It
is also closed in the uniform convergence. Fix a $\varphi \in \mathcal{F}_0$. By the continuity
of φ the function $\varphi \circ f(x,\cdot)$ is measurable for every $x \in X$. Consider the
function $\psi : X \to \mathbb{R}$ defined by (3.7). Obviously ψ is a bounded function,
$\psi(x) = 0$ for $x \in X_1$ and $\psi(x) = 1$ for $x \in X_2$. We will prove that ψ is
continuous. If the sequence (x_n) of points of X converges to an x, then the
sequence $(\varphi \circ f(x_n,\cdot))$ of uniformly bounded functions converges in probability
to $\varphi \circ f(x,\cdot)$ and on account of the Lebesgue-Vitali Dominated Convergence
Theorem the sequence $(\psi(x_n))$ converges to $\psi(x)$. This shows (C) with
\begin{equation*}
S = \{1, 2\}, \quad u_1 = 0, \quad u_2 = 1.
\end{equation*}
Clearly, conditions (A) and (B) are fulfilled. Applying Remark 3.3 we get the
first assertion.

To prove the second one it is enough to observe that by [8, Theorem 1]
(for $u = 1_{X_2}$) the function $\pi(\cdot,X_2)$ is a (bounded) solution of (1.1) and to
apply (i).

Passing to a proof of the third assertion fix a $u \in \mathcal{F}_0$. According to [8,
Theorem 2.(i)] the function $\varphi : X \to \mathbb{R}$ given by (3.15) is a bounded solution
of (1.1). In view of the first part of Theorem 3.4 it is enough to verify that φ
satisfies (3.10). This however follows immediately from (3.13) and (3.14): if
$x \in X_1$, then
\begin{equation*}
\varphi(x) = \int_{X_1} u(y)\pi(x,dy) = 0,
\end{equation*}
and for $x \in X_2$ we have
\begin{equation*}
\varphi(x) = \int_{X_2} u(y)\pi(x,dy) = 1.
\end{equation*}

4. Examples

The following shows a possible application of Theorem 3.4.

Fix an $N \in \mathbb{N}$ and let $X = [0,1]^N$.

Denoting the set $\{1,\ldots,N\}$ by I, define the subsets X_1, X_2 and U_1, U_2
of X as follows:
\begin{align*}
X_1 &= \{0\}, \quad X_2 = \{x \in X : x_n = 1 \text{ for some } n \in I\},
\end{align*}
\begin{align}
U_1 = \{ x \in X : x_n < b \text{ for } n \in I \}, \quad U_2 = \{ x \in X : x_n > a \text{ for some } n \in I \},
\end{align}
where \(0 < b < a < 1 \) are fixed. Assume that \(\alpha_1, \ldots, \alpha_N : [0,1] \to [0,1] \) are nondecreasing continuous functions such that
\begin{align}
(4.1) \quad \alpha_n(t) = 0 \quad \text{for } t \in [0,b], \quad \alpha_n(1) = 1 \quad \text{and} \quad \alpha_n(t) < t \quad \text{for } t \in (0,1),
\end{align}
and let \(v_1, \ldots, v_N, w_1, \ldots, w_N : X \to [0,1] \) be continuous functions. Given \(p_1 > 0 \) and \(p_2 > 0 \) summing up to 1, consider also \(\Omega = \{ \omega_1, \omega_2 \} \) and define the function \(f : X \times \Omega \to X \) by
\begin{align}
f(x, \omega_i) = f_i(x),
\end{align}
where
\begin{align}
f_1(x) = (\alpha_1(v_1(x)), \ldots, \alpha_N(v_N(x))), \quad f_2(x) = (w_1(x), \ldots, w_N(x)).
\end{align}
Since \(f_1, f_2 \) are continuous, it follows that \(f \) is random-valued. Equation (1.1) takes the form
\begin{align}
(4.2) \quad \varphi(x) = p_1 \varphi(\alpha_1(v_1(x)), \ldots, \alpha_N(v_N(x))) + p_2 \varphi(w_1(x), \ldots, w_N(x)).
\end{align}
(1) Assume that
\begin{align}
(4.3) \quad v_1(x), \ldots, v_N(x) \leq \max\{x_1, \ldots, x_N\} \quad \text{for } x \in X \setminus U_2,
(4.4) \quad \max\{v_1(x), \ldots, v_N(x)\} = 1 \quad \text{for } x \in X_2,
(4.5) \quad \max\{w_1(x), \ldots, w_N(x)\} = 1 \quad \text{for } x \in U_2,
(4.6) \quad w_1(0) = \ldots = w_N(0) = 0.
\end{align}
We will show that:
\begin{enumerate}
\item Equation (4.2) has exactly one bounded solution \(\varphi : X \to [0,1] \) satisfying
\begin{align}
(4.7) \quad \varphi(0) = 0 \quad \text{and} \quad \varphi(x) = 1 \quad \text{for } x \in X_2;
\end{align}
this solution is a continuous function.
\item If the function \(\pi \) given by (3.11) fulfills
\begin{align}
(4.8) \quad \pi(x, X_2) = 1 \quad \text{for } x \in X_2,
\end{align}
then \(\pi(\cdot, X_2) \) is a continuous solution of (4.2).
\end{enumerate}
\textbf{Proof.} First we show that (D) holds. Let \(A_1 = \{ \omega_1 \}, A_2 = \{ \omega_2 \} \). We claim that
\begin{align}
(4.9) \quad f_1(U_1) \subset X_1, \quad f_2(U_2) \subset X_2.
\end{align}
If \(x \in U_1 \), then \(x_n < b \) for \(n \in I \) and according to (4.3) we have \(v_n(x) < b \) for \(n \in I \), hence by (4.1) we see that \(\alpha_n(v_n(x)) = 0 \) for \(n \in I \), i.e. \(f_1(x) = 0 \).
If \(x \in U_2 \), then (4.5) gives \(f_2(x) \in X_2 \). From this (4.9) follows, and since \(X_1 \subset U_1 \) and \(X_2 \subset U_2 \), we have (3.1) for every \(m \in \mathbb{N} \) and \(s \in \{1,2\} \).
Similarly we verify that (3.9) holds. The task is now to find a positive integer m with

$$f^m_n(x) = 0 \quad \text{for } x \in X \setminus U_2.$$

Put $\alpha(t) = \max\{\alpha_1(t), \ldots, \alpha_N(t)\}$ for $t \in [0, 1]$. Clearly, α is a continuous nondecreasing function,

$$\alpha(t) = 0 \quad \text{for } t \in [0, b] \quad \text{and} \quad \alpha(t) < t \quad \text{for } t \in (0, 1).$$

In particular, $\lim_{m \to \infty} \alpha^m(a) = 0$. Hence $\alpha^m(a) = 0$ for some $m \in \mathbb{N}$. Fix an $x \in X \setminus U_2$. By the monotonicity of α and (4.3) we have

$$f_1(x) \leq (\alpha(v_1(x)), \ldots, \alpha(v_N(x))) \leq \cdots \leq (\alpha(\max\{x_1, \ldots, x_N\}), \ldots, \alpha(\max\{x_1, \ldots, x_N\})).$$

whence

$$f_1(x) \leq (\alpha(a), \ldots, \alpha(a)) \leq (a, \ldots, a).$$

In particular, $f_1(x) \in X \setminus U_2$ and since $x \in X \setminus U_2$ was arbitrarily fixed we can replace it by $f_1(x)$ to get

$$f^2(x) \leq (\alpha(\max\{f_1(x) : n \in I\}), \ldots, \alpha(\max\{f_1(x) : n \in I\})) \leq (\alpha^2(\max\{x_1, \ldots, x_N\}), \ldots, \alpha^2(\max\{x_1, \ldots, x_N\})) \leq (\alpha^2(a), \ldots, \alpha^2(a)).$$

After m steps

$$f^m_n(x) \leq (\alpha^m(a), \ldots, \alpha^m(a))$$

and $f^m_n(x) = 0$. This ends the proof of (D).

Consequently Theorem 3.4(i) yields part (i) of our example.

Since $f_1(0) = f_2(0) = 0$, we conclude that for π given by (3.11) we have $\pi(0, X_2) = 0$. The continuity of $\pi(\cdot, X_2)$ follows from (4.8) and Theorem 3.4(ii).

Consider now continuous functions $\beta_1, \ldots, \beta_N : [0, 1] \to [0, 1]$ such that

$$\beta_n(0) = 0, \quad \beta_n(t) = 1 \quad \text{for } t \in [a, 1], \ n \in I.$$

(II) The functions $v_1, \ldots, v_N, w_1, \ldots, w_N$ defined by

$$v_n(x) = \max\{x_1, \ldots, x_N\}, \quad w_n(x) = \beta_n(\min\{x_1 + \ldots + x_N, 1\}) \quad \text{for } x \in X$$

satisfy (4.3)-(4.6). By Example (I).(i) the equation

$$\varphi(x) = p_1(\varphi_1(\max\{x_1, \ldots, x_N\}), \ldots, \varphi_N(\max\{x_1, \ldots, x_N\})) + \varphi(\beta_1(\min\{x_1 + \ldots + x_N, 1\}), \ldots, \beta_N(\min\{x_1 + \ldots + x_N, 1\}))$$

has exactly one bounded solution $\varphi : X \to \mathbb{R}$ satisfying (4.7) and this solution is a continuous function. We will show that it equals to

$$x \mapsto P^\infty_n(\lim_{n \to \infty} f^n(x, \cdot) = (1, \ldots, 1)), \quad x \in X.$$
In fact, according to [8, Theorem 1 (with \(u = 1_{\{(1, \ldots, 1)\}} \)] the function (4.11) is a (bounded) solution of (4.10). If \(x \in X_2 \), then
\[
v_n(x) = 1 = \min\{x_1 + \ldots + x_N, 1\} \quad \text{for} \ n \in I,
\]
whence \(f(x, \omega_i) = (1, \ldots, 1) \in X_2 \) for \(i = 1, 2 \). Consequently
\[
f^n(x, \omega) = (1, \ldots, 1) \quad \text{for} \ n \in \mathbb{N}, \ x \in X_2 \text{ and } \omega \in \Omega^\infty,
\]
and the function (4.11) takes the value 1 on \(X_2 \). Moreover, \(f(0, \omega_i) = 0 \) for \(i = 1, 2 \), whence \(f^n(0, \omega) = 0 \) for \(n \in \mathbb{N} \) and \(\omega \in \Omega^\infty \) and, consequently, \(\pi(0, \cdot) = 0 \).

(III) Define now the functions \(v_1, \ldots, v_N, w_1, \ldots, w_N \) by
\[
v_n(x) = x_n, \quad w_n(x) = \beta_n(x_n) \quad \text{for} \ x \in X.
\]
Clearly (4.3)–(4.6) are fulfilled. Consequently the equation
\[
\varphi(x) = p_1 \varphi(\alpha_1(x_1), \ldots, \alpha_N(x_N)) + p_2 \varphi(\beta_1(x_1), \ldots, \beta_N(x_N))
\]
has exactly one bounded solution \(\varphi : X \rightarrow \mathbb{R} \) satisfying (4.7). Assume additionally (cf. [3, Example 2.1]) that \(p_2 \leq b \) and
\[
\alpha_n(t) = 0 \quad \text{for} \ t \in [0, a], \quad \alpha_n(t) \leq \frac{t - p_2}{p_1} \quad \text{for} \ t \in [a, 1],
\]
\[
\beta_n(t) = 1 \quad \text{for} \ t \in [b, 1], \quad \beta_n(t) \leq \frac{t}{p_2} \quad \text{for} \ t \in [0, b],
\]
for \(n \in I \). Then
\[
p_1 \alpha_n(t) + p_2 \beta_n(t) \leq t \quad \text{for} \ t \in [0, 1] \text{ and } n \in I,
\]
and
\[
p_1 f_1(x) + p_2 f_2(x) \leq x \quad \text{for} \ x \in X.
\]
Due to [7, Theorem 4] for every \(x \in X \) the sequence \((f^n(x, \cdot)) \) converges a.s. to a measurable function \(\xi(x, \cdot) : \Omega^\infty \rightarrow X \). In particular, the functions (3.11) and (3.12) coincide. Since \(f_1(X_2) \subset X_2, f_2(X_2) \subset X_2 \), we have
\[
f^n(x, \omega) \in X_2 \quad \text{for} \ x \in X_2, \ \omega \in \Omega^\infty, \ n \in \mathbb{N}.
\]
This gives (4.8), because \(X_2 \) is closed. Thus \(\pi(\cdot, X_2) \) is a continuous solution of (4.12).

Acknowledgements.

The research was supported by the Silesian University Mathematics Department (Iterative Functional Equations and Real Analysis program).
REFERENCES

R. Kapica
Institute of Mathematics
Silesian University
Bankowa 14
PL-40-007 Katowice
Poland
E-mail: rkapica@ux2.math.us.edu.pl
Received: 2.1.2006.
Revised: 4.7.2006.