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Statistical convergence and rate of convergence of

a sequence of positive linear operators

Fadime Dirik∗

Abstract. In the present paper, a modification of positive linear
operators which was proposed by O. Agratini is introduced. This modifi-
cation which preserves function e2 (x) = x2 provides a better estimation
than operators given by Agratini. Also, using the concept of statistical
convergence, we give the Korovkin type approximation theorem for this
modification.
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1. Introduction

A. Lupaş defined the following operators [7]. Let α = nx, x � 0 and consider the
linear operators

Ln (f ;x) = (1− a)nx
∞∑

k=0

(nx)k
k!

akf

(
k

n

)
(1.1)

with f : [0,∞)→ R where

1
(1− a)α

=
∞∑

k=0

(α)k
k!

ak, |a| < 1

and

(α)0 = 1, (α)k = α (α+ 1) ... (α+ k − 1) , k ≥ 1.

Agratini [1] found a = 1
2 for Ln (e1;x) = e1 (x) where ei (x) = xi, i = 0, 1, 2,

using operators Ln which defined by (1.1). Then, Agratini gave the following oper-
ators:

Ln (f ;x) = 2−nx
∞∑

k=0

(nx)k
2kk!

f

(
k

n

)
, x � 0. (1.2)
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It is known [1] that for the operators given by (1.2),

Ln (e0;x) = e0 (x) , Ln (e1;x) = e1 (x) and Ln (e2;x) = e2 (x) +
2e1 (x)

n
.

We fix b > 0 and the lattice homomorphism Hb maps C [0,∞) into C [0, b]
defined by Hb (f) = f |[0,b]. For the operators Ln defined by (1.2), it is known [1]
that, Hb (Lnei) → Hb (ei) uniformly on [0, b], where i = 0, 1, 2. Also, in [1], for the
Ln operators given by (1.2), Agratini proved the classical Korovkin theorem:

If Ln is defined by (1.2), then

lim
n→∞Ln (f ;x) = f (x) uniformly on [0, b]

for any b > 0.
Most of approximating operators, Ln, preserve e0 and e1, i.e., Ln (e0;x) = e0 (x)

and Ln (e1;x) = e1 (x), n ∈ N. These conditions hold for Bernstein polynomials
and the Szász-Mirakjan operators (see, e.g. [6]). For each of these operators,
Ln (e2;x) �= e2 (x). Recently, King [5] presented a non-trivial sequence {Vn} of
positive linear operators which approximate each continuous function on [0, 1] while
preserving the functions e0 and e2.

In this paper we give a modification of positive linear operators which Ln is
defined by (1.2) and show that this modification which preserve e0 (x) and e2 (x)
is a better estimation than operators given by (1.2) . Finally, we study statistical
convergence of this modification.

2. Construction of the operators

Let {rn (x)}, [0,∞) into itself, be a sequence of continuous functions. Let

Rn (f ;x) = 2−nrn(x)
∞∑

k=0

(nrn (x))k
2kk!

f

(
k

n

)
(2.1)

for f ∈ C [0,∞). Hence, in the special case rn (x) = x, n = 1, 2, . . . , reduce to
operators given by (1.2).

It is clear that Rn are positive and linear. Also, we have

Rn (e0;x) = e0 (x) , Rn (e1;x) = rn (x) and Rn (e2;x) = r2
n (x) +

2rn (x)
n

. (2.2)

Theorem 1. Let Rn denote the sequence of the positive linear operators given
by (2.1). If

lim
n→∞rn (x) = x,

then

lim
n→∞Rn (f ;x) = f (x) uniformly on [0, b]

for any b > 0.
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Furthermore, we present the sequence {Rn} of positive linear operators defined
on C [0,∞) that preserve e0 (x) and e2 (x).

It is obvious that the choice rn (x) = r∗n (x):

r∗n (x) = − 1
n
+

√
x2 +

1
n2
, n = 1, 2, ... (2.3)

gives

Rn (e2;x) = e2 (x) = x2, n = 1, 2, .... (2.4)

Simple calculations show that, for r∗n (x) given by (2.3),

r∗n (x) ≥ 0, n = 1, 2, ..., x ∈ [0,∞) . (2.5)

It is clear that

lim
n→∞r∗n (x) = x, x ∈ [0,∞) . (2.6)

Thus, using (2.3), (2.4), (2.5), (2.6), we have the following Korovkin theorem
for the operators Rn given by (2.1).

Theorem 2. Let the sequence {Rn} of positive linear operators given by (2.1)
and the sequence {r∗n (x)} defined by (2.3). Then,

(i) Rn is a positive linear operators on C [0,∞), n = 1, 2, ...
(ii) Rn (e2;x) = e2 (x) = x2, n = 1, 2, ..., x ∈ [0,∞)
(iii) lim

n→∞Rn (f ;x) = f (x), on [0, b].

3. Rate of convergence

In this section we compute the rates of convergence of the operators Rn (f ;x) to
f (x) by means of the modulus of continuity. Thus, we show that our estimations
are more powerful than the operators given by (1.2) on the interval [0,∞).

For f ∈ C [0, b], the modulus of continuity of f , denoted by ω (f ; δ), is defined
to be

ω (f ; δ) = sup
|y−x|<δ, x,y∈[0,b]

|f (y)− f (x)| .

Then, it is clear that for any δ > 0 and each x, y ∈ [0, b]

|f (y)− f (x)| ≤ ω (f ; δ)
( |y − x|

δ
+ 1

)
.

Now we have the following:
Theorem 3. If Rn is defined by (2.1), then for x ∈ [0, b] and any δ > 0, we

have

|Rn (f ;x)− f (x)| ≤ ω (f, δ)
[
1 +

1
δ

√
2x (x−Rn (e1;x))

]
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where Rn (e1;x) = r∗n (x) is given by (2.3).
Proof. It is known [2] that for x ∈ [0, b] and any δ > 0

|Rn (f ;x)− f (x)| ≤ ω (f, δ)
[
Rn (e0;x) +

1
δ
(Rn (e0;x))

1
2 (µn,2 (x))

1
2

]

+ |f (x)| . |Rn (e0;x)− e0 (x)| (3.1)

where

µn,2 (x) = Rn (Ψx,2;x) with Ψx,2 (t) = (t− x)2 .

Then, it is clear that

µn,2 (x) = Rn (Ψx,2;x)

= Rn

(
(t− x)2 ;x

)
= Rn (e2;x)− 2xRn (e1;x) + x2Rn (e0;x) .

For the operators Rn satisfying

Rn (e0;x) = e0 (x) , Rn (e2;x) = e2 (x) , n = 1, 2, ... and x ∈ [0, b] ,

inequality (3.1) becomes

|Rn (f ;x)− f (x)| ≤ ω (f, δ)
[
1 +

1
δ

√
x2 − 2xRn (e1;x) + x2

]
(3.2)

= ω (f, δ)
[
1 +

1
δ

√
2x (x−Rn (e1;x))

]
, x ∈ [0, b] .

✷

Furthermore, when (3.2) holds,

2x (x−Rn (e1;x)) ≥ 0 for x ∈ [0, b] .

For the special case Rn = Ln, we get the following inequality:

Ln (e0;x) = e0 (x) , Ln (e1;x) = e1 (x) and Ln (e2;x) = e2 (x) +
2e1 (x)

n
.

Hence,

|Ln (f ;x)− f (x)| ≤ ω (f, δ)

[
1 +

1
δ

√
2x
n

]
. (3.3)

The estimate (3.2) is better than the estimate (3.3) if and only if

2x (x−Rn (e1;x)) ≤ 2x
n
, x ∈ [0, b] . (3.4)
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Namely, this is equivalent to

Rn (e1;x) ≥ x− 1
n
, x ∈ [0, b] . (3.5)

Since Rn (e1;x) = r∗n (x) = − 1
n +

√
x2 + 1

n2 ,

x2 +
1
n2

≥ x2, for x ≥ 0

i.e. √
x2 +

1
n2

≥ x.

(3.5) holds for every x ≥ 0 and n ∈ N. Therefore, our estimations are more
powerful than the operators given by (1.2) on the interval [0,∞).

4. Statistical convergence

Gadjiev and Orhan [4] have investigated the Korovkin type approximation theory
via statistical convergence. In this section, using the concept of statistical conver-
gence, we give the Korovkin type approximation theorem for the Rn operators given
by (2.1). Before we present the new results, we shall recall some notation on the
statistical convergence.

Let K be a subset of N, the set of all natural numbers. The density of K,
denoted by δ (K), is defined by

δ (K) := lim
n

1
n

n∑
j=1

χK (j)

provided the limit exists where χK is the characteristic function of K. A sequence
x = (xk) is said to be statistical convergence to the number L,

δ {k ∈ N : |xk − L| ≥ ε} = 0

for every ε > 0 or equivalently there exists a subset K ⊆ N with δ (K) = 1 and
n0 (ε) such that k > n0 and k ∈ K imply that |xk − L| < ε ([3]). In this case we
write st − lim xk = L. It is known that any convergent sequence is statistically
convergent, but not conversely. For example, for the sequence x = (xk) is defined
as

xk =
{

1, if k is square
0, otherwise.

It is easy to see that st− limxk = 0.
The Korovkin type approximation theorem is given as follows:
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Theorem 4. Let Rn denote the sequence of the positive linear operators given
by (2.1). If

st− lim
n→∞rn (x) = x,

then

st− lim
n→∞Rn (f ;x) = f (x) on [0, b]

for any b > 0.
Now, we choose a subset K of N such that δ (K) = 1. Define the function

sequence {p∗n} by

p∗n (x) =
{

0 , n /∈ K
r∗n (x) , n ∈ K

(4.1)

where r∗n (x) is given by (2.3).
It is clear that p∗n is continuous on [0,∞) and

st− lim
n→∞p∗n (x) = x, x ∈ [0,∞) . (4.2)

We turn to {Rn} given by (2.1) with {rn (x)} replaced by {p∗n (x)} where p∗n (x)
is defined by (4.1). Show that {Rn} is a positive linear operator and

Rn (e1;x) = p∗n (x) (4.3)

and

Rn (e2;x) =
{

e2 (x) , n ∈ K
0 , otherwise

(4.4)

where K is any subset of N such that δ (K) = 1.
Since δ (K) = 1, it is clear that

st− lim
n→∞Rn (e2;x) = e2 (x) = x2, x ∈ [0,∞) . (4.5)

Relations (2.2), (4.2), (4.3), (4.4) and Theorem 4 yield the following:
Theorem 5. {Rn} denote the sequence of positive linear operators given by

(2.1) with {rn (x)} replaced by {p∗n (x)} where p∗n (x) is defined by (4.1). Then

st− lim
n→∞Rn (f ;x) = f (x) on [0, b]

for any b > 0.
We denote that {Rn} is the sequence of positive linear operators given by (2.1)

with {rn (x)} replaced by {p∗n (x)} where p∗n (x) is defined by (4.1) does not satisfy
the condition of the classical Korovkin theorem.
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