Statistical convergence and rate of convergence of a sequence of positive linear operators

FADIME DIRIK*

Abstract. In the present paper, a modification of positive linear operators which was proposed by O. Agratini is introduced. This modification which preserves function $e_2(x) = x^2$ provides a better estimation than operators given by Agratini. Also, using the concept of statistical convergence, we give the Korovkin type approximation theorem for this modification.

Key words: operators given by Agratini, statistical convergence, the Korovkin type approximation theorem, modulus of contiunity

AMS subject classifications: 41A25, 41A36, 47B38

Received December 27, 2006 Accepted May 4, 2007

1. Introduction

A. Lupaş defined the following operators [7]. Let $\alpha = nx$, $x \ge 0$ and consider the linear operators

$$L_{n}(f;x) = (1-a)^{nx} \sum_{k=0}^{\infty} \frac{(nx)_{k}}{k!} a^{k} f\left(\frac{k}{n}\right)$$
(1.1)

with $f:[0,\infty)\to\mathbb{R}$ where

$$\frac{1}{(1-a)^{\alpha}} = \sum_{k=0}^{\infty} \frac{(\alpha)_k}{k!} a^k, \ |a| < 1$$

and

$$(\alpha)_0=1, \ (\alpha)_k=\alpha\,(\alpha+1)\ldots(\alpha+k-1)\,,\ k\geq 1.$$

Agratini [1] found $a = \frac{1}{2}$ for $L_n(e_1; x) = e_1(x)$ where $e_i(x) = x^i$, i = 0, 1, 2, using operators L_n which defined by (1.1). Then, Agratini gave the following operators:

$$L_n(f;x) = 2^{-nx} \sum_{k=0}^{\infty} \frac{(nx)_k}{2^k k!} f\left(\frac{k}{n}\right), \quad x \ge 0.$$
 (1.2)

^{*}Department of Mathematics, Faculty of Sciences and Arts, Sinop University, 57000 Sinop, Turkey, e-mail: fgezer@omu.edu.tr

F. Dirik

It is known [1] that for the operators given by (1.2),

$$L_n(e_0; x) = e_0(x), \ L_n(e_1; x) = e_1(x) \text{ and } L_n(e_2; x) = e_2(x) + \frac{2e_1(x)}{n}.$$

We fix b > 0 and the lattice homomorphism H_b maps $C[0,\infty)$ into C[0,b] defined by $H_b(f) = f|_{[0,b]}$. For the operators L_n defined by (1.2), it is known [1] that, $H_b(L_ne_i) \to H_b(e_i)$ uniformly on [0,b], where i = 0, 1, 2. Also, in [1], for the L_n operators given by (1.2), Agratini proved the classical Korovkin theorem:

If L_n is defined by (1.2), then

$$\lim_{n \to \infty} L_n(f; x) = f(x) \text{ uniformly on } [0, b]$$

for any b > 0.

Most of approximating operators, L_n , preserve e_0 and e_1 , i.e., $L_n(e_0; x) = e_0(x)$ and $L_n(e_1; x) = e_1(x)$, $n \in \mathbb{N}$. These conditions hold for Bernstein polynomials and the Szász-Mirakjan operators (see, e.g. [6]). For each of these operators, $L_n(e_2; x) \neq e_2(x)$. Recently, King [5] presented a non-trivial sequence $\{V_n\}$ of positive linear operators which approximate each continuous function on [0, 1] while preserving the functions e_0 and e_2 .

In this paper we give a modification of positive linear operators which L_n is defined by (1.2) and show that this modification which preserve $e_0(x)$ and $e_2(x)$ is a better estimation than operators given by (1.2). Finally, we study statistical convergence of this modification.

2. Construction of the operators

Let $\{r_n(x)\}, [0,\infty)$ into itself, be a sequence of continuous functions. Let

$$R_n(f;x) = 2^{-nr_n(x)} \sum_{k=0}^{\infty} \frac{(nr_n(x))_k}{2^k k!} f\left(\frac{k}{n}\right)$$
(2.1)

for $f \in C[0,\infty)$. Hence, in the special case $r_n(x) = x$, n = 1, 2, ..., reduce to operators given by (1.2).

It is clear that R_n are positive and linear. Also, we have

$$R_n(e_0; x) = e_0(x), R_n(e_1; x) = r_n(x) \text{ and } R_n(e_2; x) = r_n^2(x) + \frac{2r_n(x)}{n}.$$
 (2.2)

Theorem 1. Let R_n denote the sequence of the positive linear operators given by (2.1). If

$$\lim_{n \to \infty} r_n\left(x\right) = x_s$$

then

$$\lim_{n \to \infty} R_n(f; x) = f(x) \text{ uniformly on } [0, b]$$

for any b > 0.

Furthermore, we present the sequence $\{R_n\}$ of positive linear operators defined on $C[0,\infty)$ that preserve $e_0(x)$ and $e_2(x)$.

It is obvious that the choice $r_n(x) = r_n^*(x)$:

$$r_n^*(x) = -\frac{1}{n} + \sqrt{x^2 + \frac{1}{n^2}}, \quad n = 1, 2, \dots$$
 (2.3)

gives

$$R_n(e_2; x) = e_2(x) = x^2, \quad n = 1, 2, \dots$$
(2.4)

Simple calculations show that, for $r_n^*(x)$ given by (2.3),

$$r_n^*(x) \ge 0, \quad n = 1, 2, ..., \quad x \in [0, \infty).$$
 (2.5)

It is clear that

$$\lim_{n \to \infty} r_n^* \left(x \right) = x, \quad x \in [0, \infty) \,. \tag{2.6}$$

Thus, using (2.3), (2.4), (2.5), (2.6), we have the following Korovkin theorem for the operators R_n given by (2.1).

Theorem 2. Let the sequence $\{R_n\}$ of positive linear operators given by (2.1) and the sequence $\{r_n^*(x)\}$ defined by (2.3). Then,

(i) R_n is a positive linear operators on $C[0,\infty), n = 1, 2, ...$ (ii) $R_n(e_2; x) = e_2(x) = x^2, n = 1, 2, ..., x \in [0,\infty)$ (iii) $\lim_{n \to \infty} R_n(f; x) = f(x)$, on [0, b].

3. Rate of convergence

In this section we compute the rates of convergence of the operators $R_n(f;x)$ to f(x) by means of the modulus of continuity. Thus, we show that our estimations are more powerful than the operators given by (1.2) on the interval $[0, \infty)$.

For $f \in C[0, b]$, the modulus of continuity of f, denoted by $\omega(f; \delta)$, is defined to be

$$\omega\left(f;\delta\right) = \sup_{|y-x|<\delta, \ x,y\in[0,b]}\left|f\left(y\right) - f\left(x\right)\right|.$$

Then, it is clear that for any $\delta > 0$ and each $x, y \in [0, b]$

$$|f(y) - f(x)| \le \omega(f; \delta) \left(\frac{|y - x|}{\delta} + 1\right).$$

Now we have the following:

Theorem 3. If R_n is defined by (2.1), then for $x \in [0, b]$ and any $\delta > 0$, we have

$$|R_n(f;x) - f(x)| \le \omega(f,\delta) \left[1 + \frac{1}{\delta}\sqrt{2x(x - R_n(e_1;x))}\right]$$

where $R_n(e_1; x) = r_n^*(x)$ is given by (2.3). **Proof.** It is known [2] that for $x \in [0, b]$ and any $\delta > 0$

$$|R_{n}(f;x) - f(x)| \leq \omega(f,\delta) \left[R_{n}(e_{0};x) + \frac{1}{\delta} (R_{n}(e_{0};x))^{\frac{1}{2}} (\mu_{n,2}(x))^{\frac{1}{2}} \right] + |f(x)| \cdot |R_{n}(e_{0};x) - e_{0}(x)|$$
(3.1)

where

$$\mu_{n,2}(x) = R_n(\Psi_{x,2};x) \text{ with } \Psi_{x,2}(t) = (t-x)^2.$$

Then, it is clear that

$$\mu_{n,2}(x) = R_n(\Psi_{x,2}; x)$$

= $R_n((t-x)^2; x)$
= $R_n(e_2; x) - 2xR_n(e_1; x) + x^2R_n(e_0; x)$.

For the operators R_n satisfying

$$R_{n}(e_{0};x) = e_{0}(x), R_{n}(e_{2};x) = e_{2}(x), n = 1, 2, ... \text{ and } x \in [0,b],$$

inequality (3.1) becomes

$$|R_{n}(f;x) - f(x)| \leq \omega(f,\delta) \left[1 + \frac{1}{\delta} \sqrt{x^{2} - 2xR_{n}(e_{1};x) + x^{2}} \right]$$
(3.2)
= $\omega(f,\delta) \left[1 + \frac{1}{\delta} \sqrt{2x(x - R_{n}(e_{1};x))} \right], x \in [0,b].$

Furthermore, when (3.2) holds,

 $2x(x - R_n(e_1; x)) \ge 0$ for $x \in [0, b]$.

For the special case $R_n = L_n$, we get the following inequality:

$$L_n(e_0; x) = e_0(x), L_n(e_1; x) = e_1(x) \text{ and } L_n(e_2; x) = e_2(x) + \frac{2e_1(x)}{n}.$$

Hence,

$$|L_n(f;x) - f(x)| \le \omega(f,\delta) \left[1 + \frac{1}{\delta}\sqrt{\frac{2x}{n}}\right].$$
(3.3)

The estimate (3.2) is better than the estimate (3.3) if and only if

$$2x (x - R_n (e_1; x)) \le \frac{2x}{n}, x \in [0, b].$$
(3.4)

Namely, this is equivalent to

$$R_n(e_1; x) \ge x - \frac{1}{n}, x \in [0, b].$$
 (3.5)

Since $R_n(e_1; x) = r_n^*(x) = -\frac{1}{n} + \sqrt{x^2 + \frac{1}{n^2}},$

$$x^2 + \frac{1}{n^2} \ge x^2$$
, for $x \ge 0$

i.e.

$$\sqrt{x^2 + \frac{1}{n^2}} \ge x.$$

(3.5) holds for every $x \ge 0$ and $n \in \mathbb{N}$. Therefore, our estimations are more powerful than the operators given by (1.2) on the interval $[0, \infty)$.

4. Statistical convergence

Gadjiev and Orhan [4] have investigated the Korovkin type approximation theory via statistical convergence. In this section, using the concept of statistical convergence, we give the Korovkin type approximation theorem for the R_n operators given by (2.1). Before we present the new results, we shall recall some notation on the statistical convergence.

Let K be a subset of N, the set of all natural numbers. The density of K, denoted by $\delta(K)$, is defined by

$$\delta\left(K\right) := \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \chi_{K}\left(j\right)$$

provided the limit exists where χ_K is the characteristic function of K. A sequence $x = (x_k)$ is said to be statistical convergence to the number L,

$$\delta\left\{k\in\mathbb{N}:|x_k-L|\geq\varepsilon\right\}=0$$

for every $\varepsilon > 0$ or equivalently there exists a subset $K \subseteq \mathbb{N}$ with $\delta(K) = 1$ and $n_0(\varepsilon)$ such that $k > n_0$ and $k \in K$ imply that $|x_k - L| < \varepsilon$ ([3]). In this case we write $st - \lim x_k = L$. It is known that any convergent sequence is statistically convergent, but not conversely. For example, for the sequence $x = (x_k)$ is defined as

$$x_k = \begin{cases} 1, & \text{if } k \text{ is square} \\ 0, & \text{otherwise.} \end{cases}$$

It is easy to see that $st - \lim x_k = 0$.

The Korovkin type approximation theorem is given as follows:

F. DIRIK

Theorem 4. Let R_n denote the sequence of the positive linear operators given by (2.1). If

$$st - \lim_{n \to \infty} r_n\left(x\right) = x,$$

then

$$st - \lim_{n \to \infty} R_n(f; x) = f(x) \text{ on } [0, b]$$

for any b > 0.

Now, we choose a subset K of $\mathbb N$ such that $\delta\left(K\right)=1.$ Define the function sequence $\{p_n^*\}$ by

$$p_n^*(x) = \begin{cases} 0 & , & n \notin K \\ r_n^*(x) & , & n \in K \end{cases}$$
(4.1)

where $r_n^*(x)$ is given by (2.3).

It is clear that p_n^* is continuous on $[0,\infty)$ and

$$st - \lim_{n \to \infty} p_n^* \left(x \right) = x, \, x \in [0, \infty) \,. \tag{4.2}$$

We turn to $\{R_n\}$ given by (2.1) with $\{r_n(x)\}$ replaced by $\{p_n^*(x)\}$ where $p_n^*(x)$ is defined by (4.1). Show that $\{R_n\}$ is a positive linear operator and

$$R_{n}(e_{1};x) = p_{n}^{*}(x)$$
(4.3)

and

$$R_n(e_2; x) = \begin{cases} e_2(x) &, n \in K \\ 0 &, otherwise \end{cases}$$
(4.4)

where K is any subset of \mathbb{N} such that $\delta(K) = 1$.

Since $\delta(K) = 1$, it is clear that

$$st - \lim_{n \to \infty} R_n (e_2; x) = e_2 (x) = x^2, x \in [0, \infty).$$
 (4.5)

Relations (2.2), (4.2), (4.3), (4.4) and Theorem 4 yield the following:

Theorem 5. $\{R_n\}$ denote the sequence of positive linear operators given by (2.1) with $\{r_n(x)\}$ replaced by $\{p_n^*(x)\}$ where $p_n^*(x)$ is defined by (4.1). Then

$$st - \lim_{n \to \infty} R_n(f; x) = f(x) \text{ on } [0, b]$$

for any b > 0.

We denote that $\{R_n\}$ is the sequence of positive linear operators given by (2.1) with $\{r_n(x)\}$ replaced by $\{p_n^*(x)\}$ where $p_n^*(x)$ is defined by (4.1) does not satisfy the condition of the classical Korovkin theorem.

References

- O. AGRATINI, On a sequence of linear and positive operators, Facta Universitatis (Niš), Ser. Mat. Inform. 14(1999), 41–48.
- [2] R. A. DEVORE, The Approximation of Continuous Functions by Positive Linear Operators, Lecture Notes in Mathematics 293, Spinger-Verlag, New York, 1972.
- [3] J. A. FRIDY, On statistical convergence, Analysis 5(1985), 301–313.
- [4] A. D. GADJIEV, C. ORHAN, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32(2002), 129–138.
- [5] J. P. KING, Positive linear operators which preserve x^2 , Acta Math. Hungar. **99**(2003), 203–208.
- [6] P. P. KOROVKIN, *Linear operators and approximation theory*, Hindustan Publ. Co., Delhi, 1960.
- [7] A. LUPAŞ, The approximation by some positive linear operators, in: Proceedings of the International Dortmund Meeting on Approximation Theory (M.W. Müller et. al., Eds.), Academie Verlag, Berlin, 1995, 201–229.