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An improved Altman type generalization of the

Brézis–Browder ordering principle
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Abstract. By using a modified argument, we prove an improve-
ment of our former Altman type generalization of the Brézis–Browder
ordering principle which yields a stronger maximum principle.
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Introduction

In 1976, to unify a number of diverse results in nonlinear functional analysis,
H. Brézis and F. E. Browder [ 3 ] proved the following general ordering principle.

Theorem 1. Let X be an ordered set; for x ∈ X denote S (x) = { y ∈
X ; y ≥ x } . Let φ : X → R be a function satisfying

(1) x ≤ y implies φ (x) ≤ φ (y) ;

(2) for any increasing sequence { xn} in X such that φ (xn) ≤ C < ∞ for
all n, there exists some y ∈ X such that xn ≤ y for all n ;

(3) for every x ∈ X there exists u ∈ X such that x ≤ u and φ (x) < φ (u) .

Then, for each x ∈ X , φ
(
S (x)

)
is unbounded.

As a direct consequence of this theorem, the above authors derived the following
maximum principle.

Corollary 1. Let φ X → R be a function, bounded above, and satisfying

(1’) x ≤ y and x �= y imply φ (x) < φ (y) ;

(4) for any increasing sequence { xn} in X , there exists some y ∈ X such
that xn ≤ y for all n .

Then, for each a ∈ X , there exists some ā ∈ X such that a ≤ ā and ā is
maximal ( i. e. , S (ā) = { ā) } ) .
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The importance of this corollary lies mainly in the fact that it easily yields a
simplified version of Ekeland’s variational principle and hence also of Caristi’s fixed
point theorem. Moreover, it can also be used to prove Danes’ drop theorem [ 3 ] .

In 1982, having in mind the function Φ , defined by Φ (x , y ) = φ (x) − φ (y)
for all x , y ∈ X , M. Altman [ 1 ] generalized the above theorem in the following
less satisfactory form.

Theorem 2. Let (X ≤ ) be an ordered set such that every totally ordered
sequence { xn} ⊂ X such that xn+1 ≤ xn for n = 1 , 2 , . . . has a minorant,
i. e. , there exists an element y ∈ X such that

(i) y ≤ xn for n = 1 , 2 , . . . .

Let w = Φ (x , y ) be a real-valued function defined for all x , y ∈ X such that
for each given y , Φ ( · , y ) is bounded from below on S (y) = [ z ∈ X | z ≤ y ] ;

(ii) Φ (x , y ) ≤ 0 if x ≤ y for all x , y ∈ X ;

(iii) Φ is non-increasing in the second variable, i. e. , for any given x ∈ X ,
Φ (x , y2) ≤ Φ (x , y1) if y1 ≤ y2 for all y1 , y2 ∈ X ;

(iv) lim inf Φ (xn+1 , xn) = 0 .

Then for each x ∈ X there exists a y ∈ X such that y ≤ x and z ≤ y
implies Φ ( z , y ) = 0 .

As a direct consequence of this Theorem 2, the above author derived the follow-
ing

Corollary 2. Suppose that the hypotheses of Theorem 2 are satisfied with the
assumption (ii) replaced by the stronger one

(iib) x ≤ y and x �= y imply Φ (x , y ) < 0 .

Then for each x ∈ X there exists x̄ ∈ X such that x̄ ≤ x and x̄ is minimal,
i. e. , z ≤ x̄ implies z = x̄ .

In 1984, M. Turinici [ 19 ] gave a better formulation and a metric generalization
of the above theorem which also yields a maximum principle. Altman’s theorem,
in a somewhat improved form, has also been included in Zeidler [ 23 , p. 515 ] .

In 2001, not being aware of the works of M. Turinici, the present author also
proved a generalization of Altman’s theorem and derived a maximum principle.
However, it has turned out that this theorem also contained several superfluous
hypotheses.

Therefore, in the present paper we shall show that, by using a somewhat modified
argument, we can actually prove a stronger result which may have a wider range of
applications. For this, it is convenient to introduce some particular terminology.

1. Some general definitions

Definition 1. If X is a set, then a function Φ of X 2 into R will be called an
écart on X .



A generalized ordering principle 157

Example 1. If ϕ and ψ are functions of X into R , then the function Φ ,
defined by Φ (x , y ) = ϕ (y)− ψ (x) for all x , y ∈ X , is a natural écart on X .

Definition 2. A set X equipped with a relation ≤ will be called a goset
(generalized ordered set).

Remark 1. A goset X will be called reflexive, symmetric and transitive, if the
relation in it has the corresponding property.

Definition 3. If Φ is an écart on a goset X , then the function γΦ , defined
by

γΦ(x) = sup
y≥x

Φ (x , y )

for all x ∈ X , will be called the gauge of Φ .
Remark 2. Note that if X is a reflexive goset and Φ is as in Example 1,

then −∞ < γΦ(x) for all x ∈ X . Moreover, if a ∈ X is such that ϕ is bounded
above on [ a , +∞ [ = { x ∈ X : a ≤ x } , then γΦ(a) < +∞ .

Concerning the function γΦ , it is also worth noticing the following
Proposition 1. If Φ is an écart on a goset X such that for any x1 , x2 , y ∈

X , with x1 ≤ x2 and x2 ≤ y , there exists z ∈ X , with x1 ≤ z , such that
Φ (x2 , y ) ≤ Φ (x1 , z ) , then γΦ is decreasing.

Proof. Suppose that x1 , x2 ∈ X such that x1 ≤ x2 . If x2 �≤ y for all
y ∈ X , then because of sup ( ∅ ) = −∞ we have γΦ(x2) = −∞ . Therefore,
γΦ(x2) ≤ γΦ(x1) automatically holds.

If y ∈ X such that x2 ≤ y , then by the assumption of the theorem there exists
z ∈ X , with x1 ≤ z such that Φ (x2 , y ) ≤ Φ (x1 , z ) . Hence, by the definition
of the supremum, it is clear that

Φ (x2 , y ) ≤ Φ (x1 , z ) ≤ sup
w≥x1

Φ (x1 , w ) = γΦ(x1) .

Therefore, by the definition of the supremum, γΦ(x2

)
= sup

y≥x2

Φ (x2 , y ) ≤ γΦ(x1)

also holds. ✷

Now, as an immediate consequence of the above proposition, we can also state
Corollary 3. If Φ is an écart on a transitive goset X such that for any

x1 , x2 , y ∈ X , with x1 ≤ x2 and x2 ≤ y , we have Φ (x2 , y ) ≤ Φ (x1 , y ) ,
then γΦ is decreasing.

Remark 3. Note that if X is a transitive goset and Φ is as in Example 1
such that ψ is increasing, then γΦ is already decreasing by the above corollary.

2. A generalized ordering principle

The importance of the above observations on γΦ lies mainly in the following
Lemma 1. If Φ is an écart on a goset X such that

(1) γΦ is decreasing ;

(2) −∞ < γΦ(x) for all x ∈ X ;
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(3) γΦ(a) < +∞ for some a ∈ X ;

then there exists an increasing sequence (xn)∞n=1 in X , with x1 = a , such that

lim
n→∞ γΦ(xn) = lim

n→∞ Φ (xn , xn+1) .

Proof. Define x1 = a . Then, by (2) and (3) , we have −∞ < γΦ(x1) < +∞ .
Therefore,

γΦ(x1) − 1 < γΦ(x1) = sup
y≥x1

Φ (x1 , y ) .

Hence, by the definition of the supremum, it is clear that there exists x2 ∈ X ,
with x1 ≤ x2 , such that

γΦ(x1) − 1 < Φ (x1 , x2) .

Moreover, by using (2) and (1), we can also note that −∞ < γΦ(x2) ≤ γΦ(x1) <
+∞ . Therefore,

γΦ(x2) − 2−1 < γΦ(x2) = sup
y≥x2

Φ (x2 , y ) .

Hence, by the definition of the supremum, it is clear that there exists x3 ∈ X ,
with x2 ≤ x3 , such that

γΦ(x2) − 2−1 < Φ (x2 , x3) .

Moreover, by using (2) and (1), we can note that −∞ < γΦ(x3) ≤ γΦ(x2) < +∞ .
Now, by induction, it is clear that there exists an increasing sequence (xn)∞n=1

in X , with x1 = a , such that

γΦ(xn) − n−1 < Φ (xn , xn+1)

for all n ∈ N . Moreover, we can also note that

Φ (xn , xn+1) ≤ sup
y≥xn

Φ (xn , y ) = γΦ(xn)

for all n ∈ N . Therefore, we actually have

γΦ(xn) − n−1 < Φ (xn , xn+1) ≤ γΦ(xn)

for all n ∈ N . Hence, by using the monotonicity of the sequence
(
γΦ(xn)

)∞
n=1

and some basic theorems on the limits of sequences in R , we can infer that

lim
n→∞ γΦ(xn) = lim

n→∞ Φ (xn , xn+1) .

✷

Now, by using the above lemma, we can easily prove the following generalized
ordering principle.
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Theorem 3. If Φ is as in Lemma 1 and α ∈ R such that

(4) each increasing sequence (xn)∞n=1 in X , with x1 = a is bounded above
and satisfies

lim n→∞ Φ (xn , xn+1) ≤ α ;

then there exists b ∈ X , with a ≤ b, such that γΦ(b) ≤ α .

Proof. If (xn)∞n=1 is as Lemma 1, then by (4) we have

lim
n→∞ γΦ(xn) = lim

n→∞ Φ (xn , xn+1) = lim n→∞ Φ (xn , xn+1) ≤ α .

Moreover, by (4), there exists b ∈ X such that xn ≤ b for all n ∈ N . Thus, in
particular a = x1 ≤ b . Moreover, by (1) it is clear that γΦ(b) ≤ γΦ(xn) for all
n ∈ N , and thus

γΦ(b) ≤ lim
n→∞ γΦ(xn) ≤ α .

✷

3. Applications of the generalized ordering principle

Theorem 3 easily yields the following extension of the main ordering principle of
our former paper [ 13 ] .

Theorem 4. Assume that Φ is an écart on a goset X such that γΦ is
decreasing. Moreover, assume that there exists α ∈ R such that

(a) α < γΦ(x) for all x ∈ X ;

(b) each increasing sequence (xn)∞n=1 in X , with sup
xn≥x1

Φ (x1 , xn) < +∞ ,

is bounded above and satisfies lim n→∞ Φ (xn , xn+1) ≤ α .

Then, we have γΦ(x) = +∞ for all x ∈ X .
Proof. If the required assertion is not true, then there exists a ∈ X such

that γΦ(a) < +∞ . Hence, it is clear that for any sequence (xn)∞n=1 in X , with
x1 = a , we have

sup
xn≥x1

Φ (x1 , xn) ≤ sup
y≥x1

Φ (x1 , y ) = γΦ(x1) = γΦ(a) < +∞ .

Therefore, by condition (b) and Theorem 3, there exists b ∈ X such that
γΦ(b) ≤ α . Moreover, by condition (a), we have α < γΦ(b) . This contradic-
tion proves the required assertion. ✷

By using Theorem 3, we can also easily establish an extension of the main
maximum principle of our former paper [ 13 ] . For this, it seems convenient to
introduce the following

Definition 4. An écart Φ on a goset X , satisfying (1) – (3), will be called
admissible at the point a if there exists α ∈ R such that, in addition to (4), we
also have
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(5) α < Φ (x , y ) for all x , y ∈ X with x < y .

Now, by calling an element x of a goset X maximal if x ≤ y implies x = y
for all y ∈ X , we can easily state and prove the following generalized maximum
principle.

Theorem 5. If X is a goset and a ∈ X such that there exists an écart Φ
on X which is admissible at a , then there exists a maximal element b of X with
a ≤ b .

Proof. By Definition 4, there exists α ∈ R such that, in addition to (1) – (3) ,
we also have (4) and (5). Thus, in particular by Theorem 3 there exists b ∈ X ,
with a ≤ b , such that γΦ(b) ≤ α , and thus Φ ( b , y ) ≤ α for all y ∈ X with
b ≤ y .

Now, it remains only to show that b is maximal. For this, note that if this not
the case, then there exists y ∈ X , with b ≤ y , such that b �= y , and thus b < y .
Then, by the above property of b , we have Φ ( b , y ) ≤ α . Moreover, by condition
(5), we also have α < Φ ( b , y ) . This contradiction proves the maximality of b . ✷

Remark 4. By making some obvious modifications in conditions (4) and (5),
we can also easily establish the existence of an element b of X , with a ≤ b , which
is quasi-maximal in the sense that b ≤ y implies y ≤ b for all y ∈ X .

Note that if the goset X is reflexive, then every maximal element of X is quasi-
maximal. While, if the goset X is antisymmetric, then the converse statement
holds. Therefore, in a reflexive and antisymmetric goset the two notions coincide.
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