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A class of Siamese twin Menon designs

Dean Crnković
∗

Abstract. A {0,±1}-matrix S is called a Siamese twin design
sharing the entries of I, if S = I +K − L, where I,K,L are non-zero
{0, 1}-matrices and both I + K and I + L are incidence matrices of
symmetric designs with the same parameters. Let p and 2p−1 be prime
powers and p ≡ 3 (mod 4). We describe a construction of a Siamese twin
Menon design with parameters (4p2, 2p2 − p, p2 − p), yielding a Siamese
twin Hadamard design with parameters (4p2 − 1, 2p2 − 1, p2 − 1).
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1. Introduction

A symmetric (v, k, λ) design is a finite incidence structure (P ,B, I), where P and
B are disjoint sets and I ⊆ P × B, with the following properties:

1. |P| = |B| = v;
2. every element of B is incident with exactly k elements of P ;

3. every pair of distinct elements of P is incident with exactly λ elements of B.

The elements of the set P are called points and the elements of the set B are called
blocks.

A Hadamard matrix of order m is an (m×m) matrix H = (hi,j), hi,j ∈ {−1, 1},
satisfying HHT = HTH = mIm, where Im is an (m × m) identity matrix. A
Hadamard matrix is regular if the row and column sums are constant. It is well
known that the existence of a symmetric (4u2, 2u2 − u, u2 − u) design is equivalent
to the existence of a regular Hadamard matrix of order 4u2 (see [10, Theorem 1.4]).
Such symmetric designs are called Menon designs.

A {0,±1}-matrix S is called a Siamese twin design sharing the entries of I, if
S = I+K−L, where I,K,L are non-zero {0, 1}-matrices and both I+K and I+L
are incidence matrices of symmetric designs with the same parameters. If I + K
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and I +L are incidence matrices of Menon designs, then S is called a Siamese twin
Menon design. Some infinite classes of Siamese twin Menon designs obtained from
Bush-type Hadamard matrices are described in [3], [4], [5] and [6]. These Siamese
twin Menon designs have parameters

v = 36(49m + 49m−1 + · · ·+ 49 + 1), k = 21(49)m, λ = 12(49)m,
v = 100(121m + 121m−1 + · · ·+ 121 + 1), k = 55(121)m, λ = 30(121)m,
v = 324(361m + 361m−1 + · · ·+ 361 + 1), k = 171(361)m, λ = 90(361)m,

where m is a positive integer. Construction of a series of Siamese twin designs with
parameters

v = 4p2(qm+1 + · · ·+ q + 1), k = (2p2 + p)qm+1, λ = (p2 + p)qm+1,

where p = 53208, q = 106417, and m is any positive integer, is described in [7].
In [2] the author describes a construction of Siamese twin designs with parameters
(4(p + 1)2, 2p2 + 3p + 1, p2 + p), whenever p and 2p + 3 are prime powers and
p ≡ 3 (mod 4).

Recently, the notion of Siamese twin designs have been generalized, and the
concept of Siamese combinatorial objects have been introduced (see [8]). Beside
Siamese twin designs, other Siamese combinatorial structures have been studied,
such as Siamese colour graphs, Siamese association schemes, and Siamese Steiner
designs.

Let p and 2p − 1 be prime powers and p ≡ 3 (mod 4). Then there exists a
symmetric design with parameters (4p2, 2p2 − p, p2 − p) (see [1]). In this article
twins of Menon designs of the designs described in [1] are constructed, which leads
us to a series of Siamese twin Menon designs. Parameters of the Siamese twin
designs constructed in this article do not belong to any of the known series of
Siamese twin designs.

In order to make this article self-contained, in the next section we state some
facts about developments of Paley difference sets and Paley partial difference sets
which can be found in [1] and [2].

2. Nonzero squares in finite fields

Let p be a prime power, p ≡ 3 (mod 4) and Fp a field with p elements. Then a
(p× p) matrix D = (dij), such that

dij =
{

1, if (i− j) is a nonzero square in Fp,
0, otherwise.

is an incidence matrix of a symmetric (p, p−1
2 ,

p−3
4 ) design. Such a symmetric design

is called a Paley design (see [9]). Let D be an incidence matrix of a complementary
symmetric design with parameters (p, p+1

2 ,
p+1
4 ). Since −1 is not a square in Fp,

D is a skew-symmetric matrix. Further, D has zero diagonal, so D + Ip and D −
Ip are incidence matrices of symmetric designs with parameters (p, p+1

2 ,
p+1
4 ) and
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(p, p−1
2 ,

p−3
4 ), respectively. Matrices D and D have the following properties:

D ·DT
= (D − Ip)(D + Ip)T =

p+ 1
4
Jp − p+ 1

4
Ip,

[ D | D − Ip ] · [ D − Ip | D ]T =
p− 1

2
Jp − p− 1

2
Ip,

[ D | D ] · [ D + Ip | D − Ip ]T =
p− 1

2
Jp,

[ D | D ] · [ D − Ip | D − Ip ]T =
p− 1

2
Jp,

where Jp is the all-one matrix of dimension (p× p).
Let Σ(p) denote the group of all permutations of Fp given by

x 
→ aσ(x) + b,

where a is a nonzero square in Fp, b is any element of Fp, and σ is an automorphism
of the field Fp. Σ(p) is an automorphism group of symmetric designs with incidence
matrices D, D+ Ip, D and D− Ip (see [9, p. 9]). If p is a prime, Σ(p) is isomorphic
to a semidirect product Zp : Z p−1

2
.

Let q be a prime power, q ≡ 1 (mod 4), and C = (cij) be a (q×q) matrix defined
as follows:

cij =
{

1, if (i− j) is a nonzero square in Fq,
0, otherwise.

C is a symmetric matrix, since −1 is a square in Fq. There are as many nonzero
squares as nonsquares in Fq, so each row of C has q−1

2 ones and q+1
2 zeros. Let

i �= j and Ci = [ci1 . . . ciq], Cj = [cj1 . . . cjq ] be the ith and the jth row of the matrix
C, respectively. Then

Ci · CT
j =

{
q−1
4 , if cij = cji = 0,

q−1
4 − 1, if cij = cji = 1.

The matrix C − Iq has the same property. Let i �= j and Ci = [ci1 . . . ciq], Cj =
[cj1 . . . cjq ] be the ith and the jth row of the matrix C, respectively. Then

Ci · CT

j =
{

q−1
4 , if cij = cji = 0,

q−1
4 + 1, if cij = cji = 1.

The matrix C + Iq has the same property. Further,

C · (C + Iq)T = C · (C − Iq)T =
q − 1

4
Jq +

q − 1
4
Iq,

C · (C − Iq)T =
q − 1

4
Jq − q − 1

4
Iq,

(C + Iq) · CT
=
q + 3

4
Jq − q − 1

4
Iq,
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[ C | C + Iq ] · [ C | C + Iq ]T =
q − 1

2
Jq +

q + 1
2
Iq,

[ C | C − Iq ] · [ C | C − Iq ]T =
q − 1

2
Jq +

q + 1
2
Iq,

[ C | C + Iq ] · [ C | C − Iq ]T =
q + 1

2
Jq − q + 1

2
Iq.

Σ(q) acts as an automorphism group of incidence structures with incidence ma-
trices C, C + Iq, C and C − Iq.

For the proof of the properties of the matrices C and D listed in this section we
refer the reader to [2].

3. Siamese twin Menon designs

Let H = (hij) and K be m×n and m1×n1 matrices, respectively. Their Kronecker
product is an mm1 × nn1 matrix

H ⊗K =



h11K h12K . . . h1nK
h21K h22K . . . h2nK

...
...

...
hm1K hm2K . . . hmnK




Following the notation used in [1], for v ∈ N we denote by jv the all-one vector
of dimension v, by 0v the zero-vector of dimension v, and by 0v×v the zero-matrix
of dimension v × v.

Let p and 2p − 1 be prime powers and p ≡ 3 (mod 4). Put q = 2p − 1. Then
q ≡ 1 (mod 4). Let D, D, C and C be defined as above. Define a (4p2×4p2) matrix
M1 in the following way:

M1 =




0 0T
q jTp·q 0T

p·q
0q 0q×q (C − Iq) ⊗ jTp C ⊗ jTp

(C + Iq)⊗D C ⊗D
jp·q C ⊗ jp + +

C ⊗ (D − Ip) (C − Iq) ⊗D
C ⊗ (D + Ip) (C + Iq)⊗ (D − Ip)

0p·q (C + Iq) ⊗ jp + +
(C − Iq) ⊗ (D − Ip) C ⊗D




The author proved in [1], using the properties of the matrices D, D, C and C
listed in Section 2., that the matrixM1 is the incidence matrix of a symmetric design
with parameters (4p2, 2p2 − p, p2 − p) having an automorphism group isomorphic
to Σ(p) × Σ(2p− 1). In a similar way one proves that the matrix
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M2 =




0 0T
q jTp·q 0T

p·q
0q 0q×q (C − Iq) ⊗ jTp C ⊗ jTp

(C + Iq) ⊗D C ⊗ (D − Ip)
jp·q C ⊗ jp + +

C ⊗ (D − Ip) (C − Iq) ⊗ (D + Ip)
C ⊗D (C + Iq) ⊗ (D − Ip)

0p·q (C + Iq) ⊗ jp + +
(C − Iq) ⊗D C ⊗D




is also the incidence matrix of a symmetric (4p2, 2p2 − p, p2 − p) design. It is
easy to see that M2 · J4p2 = (2p2 − p)J4p2 . We have to prove that M2 ·MT

2 =
(p2 − p)J4p2 + p2I4p2 . Using properties of the matrices D, D, C and C which we
have menitioned before, one computes that the product of block matrices M2 and
MT

2 is:

M2 ·MT
2 =




pq (p2 − p)jTq (p2 − p)jTpq (p2 − p)jTpq

(p2 − p)Jq

(p2 − p)jq + (p2 − p)Jq×pq (p2 − p)Jq×pq

p2Iq
(p2 − p)Jpq

(p2 − p)jpq (p2 − p)Jpq×q + (p2 − p)Jpq×pq

p2Ipq

(p2 − p)Jpq

(p2 − p)jpq (p2 − p)Jpq×q (p2 − p)Jpq×pq +
p2Ipq




where Jm×n is the all-one matrix of dimension m× n. Thus,

M2 ·MT
2 = (p2 − p)J4p2 + p2I4p2

which means thatM2 is an incidence matrix of a symmetric design with parameters
(4p2, 2p2−p, p2−p) having an automorphism group isomorphic to Σ(p)×Σ(2p−1).
Incidence matrices M1 and M2 share the entries of

I =




0 0T
q jTp·q 0T

p·q
0q 0q×q (C − Iq) ⊗ jTp C ⊗ jTp

(C + Iq) ⊗D
jp·q C ⊗ jp + (C − Iq) ⊗ Ip

C ⊗ (D − Ip)
(C + Iq)⊗ (D − Ip)

0p·q (C + Iq) ⊗ jp C ⊗ Ip +
C ⊗D




Thus, the following theorem holds
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Theorem 1. Let p and q = 2p−1 be prime powers and p ≡ 3 (mod 4). Further,
let the matrices D, D, C, C and I be defined as above. Then the matrix

S =




0 0T
q jTp·q 0T

p·q
0q 0q×q (C − Iq) ⊗ jTp C ⊗ jTp

(C + Iq) ⊗D C ⊗ (D −D + Ip)
jp·q C ⊗ jp + +

C ⊗ (D − Ip) (C − Iq)⊗ (D −D)
C ⊗ (D + 2Ip −D) (C + Iq) ⊗ (D − Ip)

0p·q (C + Iq)⊗ jp + +
(C − Iq) ⊗ (D − Ip −D) C ⊗D




is a Siamese twin design with parameters (4p2, 2p2 − p, p2 − p) sharing the entries
of I.

4. Siamese twin Hadamard designs

From each Hadamard matrix of order m with m ≡ 0 (mod 4), one can obtain a
symmetric (m−1, 12m−1, 14m−1) design, by normalizing and deleting the first row
and column and changing all entries −1 to 0 (see [9]). Also, from any symmetric
(m − 1, 12m − 1, 14m − 1) design one can recover a Hadamard matrix. Symmetric
designs with parameters (m− 1, 12m− 1, 14m− 1) are called Hadamard designs.

Let M1 and M2 be the matrices from the previous section. Further, let H1

and H2 be regular Hadamard matrices corresponding to the incidence matrices M1

and M2, respectively. By normalizing and deleting the first row and column, these
Hadamard matrices lead to the following incidence matrices of Hadamard designs:

N1 =




Jq×q (C − Iq) ⊗ jTp C ⊗ jTp
C ⊗D C ⊗D

C ⊗ jp + Ip·q + +
(C − Iq) ⊗ (D + Ip) (C − Iq) ⊗D
C ⊗ (D + Ip) C ⊗ (D + Ip)

(C − Iq)⊗ jp + + Ip·q +
(C − Iq) ⊗ (D − Ip) (C − Iq) ⊗D




N2 =




Jq×q (C − Iq)⊗ jTp C ⊗ jTp
C ⊗D C ⊗ (D − Ip)

C ⊗ jp + Ip·q + +
(C − Iq) ⊗ (D + Ip) (C − Iq) ⊗ (D + Ip)

C ⊗D C ⊗ (D + Ip)
(C − Iq) ⊗ jp + + Ip·q +

(C − Iq)⊗D (C − Iq) ⊗D




Hadamard designs with the incidence matrices N1 and N2 admit an automorphism
group isomorphic to Σ(p) × Σ(2p− 1). Further, N1 and N2 share the entries of
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I1 =




Jq×q (C − Iq) ⊗ jTp C ⊗ jTp
C ⊗D

C ⊗ jp + Ip·q + (C − Iq) ⊗ Ip
(C − Iq)⊗ (D + Ip)

C ⊗ (D + Ip)
(C − Iq) ⊗ jp C ⊗ Ip + Ip·q +

(C − Iq) ⊗D




which proves the following theorem
Theorem 2. Let p and q = 2p−1 be prime powers and p ≡ 3 (mod 4). Further,

let the matrices D, D, C, C and I1 be defined as above. Then the matrix

S1 =




Jq×q (C − Iq)⊗ jTp C ⊗ jTp
C ⊗D C ⊗ (D −D + Ip)

C ⊗ jp + Ip·q + +
(C − Iq) ⊗ (D + Ip) (C − Iq) ⊗ (D −D)
C ⊗ (D + 2Ip −D) C ⊗ (D + Ip)

(C − Iq) ⊗ jp + + Ip·q +
(C − Iq) ⊗ (D − Ip −D) (C − Iq)⊗D




is a Siamese twin design with parameters (4p2−1, 2p2−1, p2−1) sharing the entries
of I1.

Parameters of Siamese twin designs belonging to the classes described in this
paper, for p ≤ 100, are given below.

Siamese twin Siamese twin
p 2p− 1 4p2 Menon designs Hadamard designs
3 5 36 (36,15,6) (35,17,8)
7 13 196 (196,91,42) (195,97,48)
19 37 1444 (1444,703,342) (1443,721,360)
27 53 2916 (2916,1431,702) (2915,1457,728)
31 61 3844 (3844,1891,930) (3843,1921,960)
79 157 24964 (24964,12403,6162) (24963,12481,6240)

Table 1. Table of parameters for p ≤ 100
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