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On absolute matrix summability methods
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Abstract. In this paper a theorem on | A, pn |k summability meth-
ods, which generalizes a theorem of Bor [2] on | N̄ , pn |k summability
methods, has been proved.
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1. Introduction

Let
∑

an be a given infinite series with the partial sums (sn), and let A = (anv) be
a normal matrix, i.e., a lower triangular matrix of non-zero diagonal entries. Then
A defines the sequence-to-sequence transformation, mapping the sequence s = (sn)
to As = (An(s)), where

An(s) =
n∑

v=0

anvsv, n = 0, 1, . . . (1)

The series
∑

an is said to be summable | A |k, k ≥ 1, if (see [5])

∞∑
n=1

nk−1 | ∆An(s) |k< ∞, (2)

where
∆An(s) = An(s)− An−1(s).

Let (pn) be a sequence of positive numbers such that

Pn =
n∑

v=0

pv → ∞ as n → ∞, (P−i = p−i = 0, i ≥ 1). (3)
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The sequence-to-sequence transformation

tn =
1

Pn

n∑
v=0

pvsv (4)

defines the sequence (tn) of the (N̄ , pn) mean of the sequence (sn), generated by
the sequence of coefficients (pn) (see [3]). The series

∑
an is said to be summable

| N̄ , pn |k, k ≥ 1, if (see [1])

∞∑
n=1

(
Pn

pn

)k−1

| tn − tn−1 |k< ∞, (5)

and it is said to be summable | A, pn |k, k ≥ 1, if (see [4])

∞∑
n=1

(
Pn

pn

)k−1

| ∆An(s) |k< ∞. (6)

In the special case when pn = 1 for all n, | A, pn |k summability is the same as
| A |k summability. Also if we take anv = pv

Pn
, then | A, pn |k summability is the

same as | N̄ , pn |k summability.
Bor [2] has proved the following theorem for | N̄ , pn |k summability of infinite

series.
Theorem A. Let (pn) be a sequence of positive numbers such that

Pn = O(npn) as n → ∞. (7)

If (Xn) is a positive monotonic non-decreasing sequence such that

| λn | Xn = O(1) as n → ∞, (8)

∞∑
n=1

nXn | ∆2λn |= O(1), (9)

∞∑
n=1

pn

Pn
| tn |k= O(Xm), (10)

where

tn =
1

n + 1

n∑
v=1

vav,

then the series
∑

anλn is summable | N̄ , pn |k, k ≥ 1.
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2. The main result

The aim of this paper is to generalize Theorem A for absolute matrix summability.
Before stating the main theorem we must first introduce some further notations.
Given a normal matrix A = (anv), we associate two lower semimatrices A = (anv)
and Â = (ânv) as follows:

anv =
n∑

i=v

ani, n, v = 0, 1, . . . (11)

and

â00 = a00 = a00, ânv = anv − an−1,v, n = 1, 2, . . . (12)

It may be noted that A and Â are the well-known matrices of series-to-sequence
and series-to-series transformations, respectively. Then, we have

An(s) =
n∑

v=0

anvsv =
n∑

v=0

anv

v∑
i=0

ai

=
n∑

i=0

ai

n∑
v=i

anv

n∑
i=0

aniai (13)

and

∆An(s) =
n∑

i=0

aniai −
n−1∑
i=0

an−1,iai

= ann +
n−1∑
i=0

(ani − an−1,i)ai

= ânn +
n−1∑
i=0

âniai =
n∑

i=0

âniai. (14)

Now we shall prove the following theorem.
Theorem. Let A = (anv) is a positive normal matrix such that

ano = 1, n = 0, 1, . . . , (15)

an−1,v ≥ anv, for n ≥ v + 1, (16)

ann = O

(
pn

Pn

)
, (17)

ân,v+1 = O(v | ∆v ânv |). (18)
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If (Xn) is a positive monotonic non-decreasing sequence such that conditions (8)-
(10) of Theorem A are satisfied, then the series

∑
anλn is summable | A, pn |k,

k ≥ 1.
It should be noted that if we take anv = pv

Pn
, then we get Theorem A. Further-

more, in this case condition (18) reduces to condition (7).
We need the following lemma for the proof of our theorem.
Lemma ([2]).Under the conditions of Theorem A, we have that

∞∑
n=1

Xn | ∆λn |< ∞, (19)

nXn | ∆λn |= O(1) as n → ∞. (20)

3. Proof of the Theorem

Let (Tn) denotes an A-transform of the series
∑

anλn. By (13) and (14) then we
have

∆Tn =
n∑

v=0

ânvavλv.

Applying Abel’s transformation, we get that

∆Tn =
n∑

v=1

ânvλv

v
vav

=
n−1∑
v=1

∆v

(
ânvλv

v

)
(v + 1)tv +

n + 1
n

ânnλntn

=
n−1∑
v=1

v + 1
v

∆v(ânv)λvtv +
n−1∑
v=1

v + 1
v

ân,v+1∆λvtv

+
n−1∑
v=1

ân,v+1λv+1tv
v

+
n + 1

n
annλntn

= Tn(1) + Tn(2) + Tn(3) + Tn(4), say.

Since

| Tn(1)+ Tn(2)+ Tn(3)+ Tn(4) |k≤ 4k
(| Tn(1) |k+ |Tn(2) |k+ |Tn(3) |k+ |Tn(4) |k

)
,

to complete the proof of the Theorem, it is sufficient to show that

∞∑
n=1

(
Pn

pn

)k−1

| Tn(r) |k < ∞, for r = 1, 2, 3, 4.
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Applying Hölder’s inequality with indices k and k
′
, where k > 1 and 1

k + 1
k′ = 1,

we have that

m+1∑
n=2

(
Pn

pn

)k−1

| Tn(1) |k ≤
m+1∑
n=2

(
Pn

pn

)k−1
(

n−1∑
v=1

| ∆v(ânv) || λv || tv |
)k

= O(1)
m+1∑
n=2

(
Pn

pn

)k−1
(

n−1∑
v=1

| ∆v(ânv) || λv |k| tv |k
)

×
(

n−1∑
v=0

| ∆v(ânv) |
)k−1

Since

∆v(ânv) = ânv − ân,v+1

= anv − an−1,v − an,v+1 + an−1,v+1

= anv − an−1,v, (21)

by using (15) and (16), we get that

n−1∑
v=0

| ∆v(ânv) |=
n−1∑
v=0

(an−1,v − anv) = 1− 1 + ann = ann. (22)

Hence we get

m+1∑
n=2

(
Pn

pn

)k−1

| Tn(1) |k = O(1)
m∑

v=1

| λv |k−1| λv || tv |k

·
m+1∑

n=v+1

(
Pn

pn

)k−1

ak−1
nn | ∆v(ânv) |

= O(1)
m∑

v=1

| λv || tv |k
m+1∑

n=v+1

| ∆v ânv | .

By (21), we have that

m+1∑
n=v+1

| ∆v ânv |
m+1∑

n=v+1

(an−1,v − anv)
m∑

n=v

anv −
m+1∑

n=v+1

anvavv − am+1,v ≤ avv.

Thus, we obtain

m+1∑
n=2

(
Pn

pn

)k−1

| Tn(1) |k = O(1)
m∑

v=1

| λv || tv |k avv

= O(1)
m∑

v=1

pv

Pv
| λv || tv |k
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= O(1)
m−1∑
v=1

∆(| λv |)
v∑

r=1

pr

Pr
| tr |k+O(1) |λm |

m∑
v=1

pv

Pv
| tv |k

= O(1)
m−1∑
v=1

|∆λv |Xv + O(1) | λm | Xm = O(1) as m → ∞,

by virtue of the hypothesis of the Theorem and Lemma. By using (18) and (22),
we have that

m+1∑
n=2

(
Pn

pn

)k−1

| Tn(2) |k = O(1)
m+1∑
n=2

(
Pn

pn

)k−1
(

n−1∑
v=1

ân,v+1 | ∆λv || tv |
)k

= O(1)
m+1∑
n=2

(
Pn

pn

)k−1
(

n−1∑
v=1

v | ∆v ânv || ∆λv || tv |
)k

= O(1)
m+1∑
n=2

(
Pn

pn

)k−1
(

n−1∑
v=1

(v | ∆λv |)k | tv |k| ∆vânv |
)

×
(

n−1∑
v=1

| ∆v ânv |
)k−1

= O(1)
m∑

v=1

(v | ∆λv |)k−1(v | ∆λv |) | tv |k
m+1∑

n=v+1

| ∆v ânv |

= O(1)
m∑

v=1

v | ∆λv || tv |k avv

= O(1)
m∑
1

v | ∆λv || tv |k pv

Pv

= O(1)
m−1∑
v=1

∆(v | ∆λv |)
v∑

r=1

pr

Pr
| tr |k

+O(1)m | ∆λm |
m∑

v=1

pv

Pv
| tv |k

= O(1)
m−1∑
v=1

| ∆(v | ∆λv |) | Xv + O(1)m | ∆λm | Xm

= O(1)
m−1∑
v=1

vXv | ∆2λv | +O(1)
m−1∑
v=1

| ∆λv+1 | Xv

+O(1)m | ∆λv | Xm

= O(1) as m → ∞,

by virtue of the hypothesis of the Theorem and Lemma.
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Again using Hölder’s inequality, as in Tn(1), we have that

m+1∑
n=2

(
Pn

pn

)k−1

| Tn(3) |k = O(1)
m+1∑
n=2

(
Pn

pn

)k−1
(

n−1∑
v=1

ân,v+1
| λv+1 |

v
| tv |

)k

= O(1)
m+1∑
n=2

(
Pn

pn

)k−1
(

n−1∑
v=1

| ∆v ânv || λv+1 || tv |
)k

= O(1)
m+1∑
n=2

(
Pn

pn

)k−1
(

n−1∑
v=1

| ∆v ânv || λv+1 |k| tv |k
)

×
(

n−1∑
v=1

| ∆vânv |
)k−1

= O(1)
m+1∑
n=2

(
Pn

pn

)k−1

ak−1
nn

n−1∑
v=1

| ∆v ânv || λv+1 |k| tv |k

= O(1)
m∑

v=1

| λv+1 |k| tv |k
m+1∑

n=v+1

| ∆vânv |

= O(1)
m∑

v=1

avv | λv+1 |k−1| λv+1 || tv |k

= O(1)
m∑

v=1

pv

Pv
| λv+1 || tv |k= O(1) as m → ∞.

Finally, again as in Tn(1), we get

m∑
n=1

(
Pn

pn

)k−1

| Tn(4) |k = O(1)
m∑

n=1

(
Pn

pn

)k−1

ak−1
nn | λn |k| tn |k

= O(1)
m∑

n=1

pn

Pn
| λn || tn |k= O(1) as m → ∞,

by virtue of the hypothesis of the Theorem and Lemma. Therefore, we have that

m∑
n=1

(
Pn

pn

)k−1

| Tn(r)
k = O(1), as m → ∞, for r = 1, 2, 3, 4.

This completes the proof of the Theorem.
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