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Fitting data in space by surfaces in parametric

representation with polynomial components

Helmuth Späth∗

Abstract. We consider fitting measured data points in space in
the total least squares sense by surfaces in parametric representation
with polynomial components in two variables. A well-known descent
algorithm is suitably modified. Numerical examples are given.
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1. The problem

Let data points (xi, yi, zi), i = 1, . . . , m be given in 3-space. We will try to find
some special type of surface such that the sum of squared orthogonal distances from
the given points onto the surface will become minimal. This surface should be given
by some parametric representation

x = x(u, v),
y = y(u, v), (1)
z = z(u, v),

−∞ ≤ α ≤ u ≤ β ≤ ∞,

−∞ ≤ γ ≤ v ≤ δ ≤ ∞ .

One example for such a surface is the ellipsoid (see e.g. [2])

x = p+ a cosu cos v,

y = q + b cosu sin v, (2)
z = r + c sinu

in normal position with center (p, q, r) and half axes a, b, and c. The method
considered for (2) in [2] and elsewhere will be transcribed here for the case that
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x(u, v), y(u, v), and z(u, v) are polynomials of u and v. If we do no consider planes,
the easiest case is

x = a1 + a2u + a3v + a4uv,

y = b1 + b2u + b3v + b4uv,

z = c1 + c2u + c3v + c4uv,

−∞ ≤ u, v ≤ ∞,

(3)

i.e. the case of bilinear functions. Here we will develop the method in full length
and give numerical examples. For the biquadratic case

x = a1 + a2u + a3v + a4uv + a5u
2 + a6v

2,

y = b1 + b2u + b3v + b4uv + b5u
2 + b6v

2,

z = c1 + c2u + c3v + c4uv + c5u
2 + c6v

2

(4)

it is indicated how to extend the method for higher degree polynomials. Denoting

a = (a1, . . . , a4)T , b = (b1, . . . , b4)T , c = (c1, . . . , c4)T

u = (u1, . . . , um)T , v = (v1, . . . , vm)T
(5)

the objective function S to be minimized is

S(a, b, c, u, v) =
m∑

i=1

min
u,v

[
(x(u, v)− xi)2 + (y(u, v)− yi)2 + (z(u, v)− zi)2

]
. (6)

There are infinite many equivalent solutions. E.g. with (a1, a2, a3, a4, u, v) also
(a1,−a2,−a3, a4,−u,−v), (a1,−a2, a3,−a4,−u, v),
(a1, a2,−a3,−a4, u,−v), and (a1, a3, a2, a4, v, u) are parts of the same solution.
Similarly to fitting by parametric algebraic curves [3] in the plane, there will be
other minima, too, depending on the parametrization as we will also see in examples.
Some transformation u −→ αu + β, v −→ γv + δ will change a, b, and c without
affecting the minimal value for S.

2. The method for bilinear functions

The necessary conditions for (6) using (3) to become minimal are that altogether
2m+ 12 partial derivatives

∂S

∂u
,

∂S

∂v
,

∂S

∂a
,

∂S

∂b
,

∂S

∂c

will vanish. Let us consider
1
2

∂S

∂a
= 0 .

(The equation for 1
2

∂S
∂b = 0 and

1
2

∂S
∂c = 0 will be similar.)



Fitting data in space by surfaces 241

If we denote by (ui, vi) the minimum of the i-th term in (6) with respect to
(u, v) we have

1
2

∂S

∂a1
=

m∑
i=1

(a1 + a2ui + a3vi + a4uivi − xi) = 0,

1
2

∂S

∂a2
=

m∑
i=1

ui(a1 + a2ui + a3vi + a4uivi − xi) = 0,

(7)
1
2

∂S

∂a3
=

m∑
i=1

vi(a1 + a2ui + a3vi + a4uivi − xi) = 0,

1
2

∂S

∂a4
=

m∑
i=1

uivi(u1 + a2ui + a3vi − a4uivi − xi) = 0.

Defining the m × 4 matrix A by

A =




1 u1 v1 u1v1

1 u2 v2 u2v2

1 u2 v3 u3v3

...
1 um vm umvm




(8)

the coefficient matrix of (a1, a2, a3, a4) in (7) is AT A and the right-hand side is AT x
where x = (x1, . . . , xm)T , i.e. (7) can be written as

AT Aa = AT x . (9)

These are the normal equations for the problem

‖Aa − x‖2
2 −→ min . (10)

Similarly, for a und c we get

‖Ab − y‖2
2 −→ min, (11)

‖Ac − z‖2
2 −→ min (12)

where y = (y1, . . . , ym)T and z = (z1, . . . , zm)T . That means that equations (7)
can be solved by solving (10) for a and similarly (11) for b and (12) for c where u
and v are given. Note that the coefficient matrix in (10), (11) and (12) is always
the same. Thus you just need one orthogonalization (subroutine MGS [3]) of the
columns of A.
Now consider the minimization of the i-th term in (6) with respect to (u, v).

The equations
1
2

∂S

∂u
= 0,

1
2

∂S

∂v
= 0
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give

(a2 + a4v)(a1 + a2u+ a3v + a4uv − xi) = 0,
(b2 + b4v)(a1 + a2u+ a3v + a4uv − yi) = 0, (13)
(c2 + c4v)(a1 + a2u+ a3v + a4uv − zi) = 0,

and

(a3 + a4u)(a1 + a2u+ a3v + a4uv − xi) = 0,
(b3 + b4u)(a1 + a2u+ a3v + a4uv − yi) = 0, (14)
(c3 + c4u)(a1 + a2u+ a3v + a4uv − zi) = 0.

Given a, b, c and v = vi (13) can be solved for ui = u giving

u = −[
(a2 + a4v)(a1 + a3v − xi) + (b2 + b4v)(b1 + b3v − yi) (15)

+ (c2 + c4v)(c1 + c3v − zi)
] / [

(a2 + a4v)2 + (b2 + b4v)2 + (c2 + c4v)2
]

and given a, b, c and u = ui (14) can be solved for vi = v giving

v = −[
(a3 + a4u)(a1 + a2u − xi) + (b3 + b4u)(b1 + b2u − yi) (16)

+ (c3 + c4u)(c1 + c2u − zi)
] / [

(a3 + a4u)2 + (b3 + b4u)2 + (c3 + c4u)2
]
.

The formulas (10), (11), (12), (15), (16) suggest the following alternating descent
algorithm:

Step 1: Choose some suitable starting values for (u(0)
i , v

(0)
i ), i = 1, . . . , m. They

must be such that rank(A) = 4 for the matrix (8). (E.g. ui, vi = ui + ϕ
(ϕ constant) is not suitable.) Otherwise problems (10) to (12) would not
have unique solutions. Set iteration index t = 0.

Step 2: Put (u(t)
i , v

(t))
i , 1, . . . , m into (8) and solve (10) to (12) for a(t) = a,

b(t) = b, c(t) = c. S decreases.

Step 3: Put v
(t)
i into (15) and solve for u

(t+1)
i = u; put u

(t+1)
i for u into (16) and

solve for v
(t+1)
i = v. S decreases.

Step 4: If S still decreases and a maximal number of iterations is not yet per-
formed, then set t = t+ 1 and go back to Step 2, otherwise STOP.

3. A numerical example for bilinear functions

Using
a = (1,−2, 3, 1)T , b = (−1, 4, 1,−1)T , c = (3, 1,−1,−.5)T (17)

and parameter values

ui = (i+ 2) ∗ .1, vi = ((i − 4) ∗ .2)2, i = 1, . . . , 16 (18)



Fitting data in space by surfaces 243

and considering (3) we produced points (xi, yi, zi), i = 1, . . . , 16 lying on the cor-
responding surface. This gives the first data set and is for control purposes. The
second data set was derived by deleting all but one decimal digit after the decimal
point and the third one was received by rounding xi, yi and zi to integers. In both
cases the points do no longer lie on the defined surface above. The third set is

x 2 1 0 0 0 0 1 2 3 5 7 9 13 16 20 25
y 0 1 1 1 2 2 3 3 3 4 4 4 3 3 2 2
z 3 3 3 4 4 4 3 3 3 2 1 0 -1 -3 -4 -6

Using the above values (18) for (ui, vi), i = 1, . . . , 16 as starting values we got (as
expected) after one iteration S = 0 and (17) back. For the second data set we got
after 500 iterations S = .0108 and

a = (.9859,−2.0022, 3.0389, .9759)T,

b = (−1.0847, 4.1792, .8122,−.9223)T ,

c = (3.0039, 1.015,−.9994,−.5009)T .

Because of small pertubations of the data we got (as expected) a small value for S
and only slightly changed values for a, b, c as against (18).
In the third case after 500 iterations we had S = 1.1056 and

a = (1.0451,−1.9181, 4.5886,−.1234)T,

b = (−.7100, 3.5654, .2807,−.4858)T,

c = (2.9602, 1.9090,−1.1177,−.4729)T .

Then we used

ui = (i − 7) ∗ .25, vi = ((i+ 1) ∗ .25)2, i = 1, . . . , 16 (19)

instead of (18) as starting values for the same three data sets as before. In case 1
we had again after one iteration S = 0, but different values for the coefficients of
(3), namely

a = (−6.8200,−5.3600, 1.8560, .2560)T,

b = (−.1800,−.2480, .7040,−.2560)T ,

c = (5.8100, 1.8800,−.6080,−.1280)T .

For the second and the third case we received after about five hundred iterations
S = .0142 and S = .9115 and again similar values for the coefficients as before. The
slightly different values of S for (18) as against (19) ought to be due to the fact of
not being a sufficient number of iterations or due to different minima.
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4. The method for biquadratic and higher degree functions

In the case of (4) the objective function is

S(a, b, c, u, v) =
m∑

i=1

min
u,v

[
(a1 + a2u+ a3v + a4uv + a5u

2 + a6v
2 − xi)2

+ (b1 + b2u+ b3v + b4uv + b5u
2 + b6v

2 − yi)2 (20)

+(c1 + c2u+ c3v + c4uv + c5u
2 + c6v

2 − z)2
]

where a = (a1, . . . , a6)T , b = (b1, . . . , b6)T , c = (c1, . . . , c6)T . The problems (10)
to (12) are the same as before but with A changed into

A =




1 u1 v1 u1v1 u2
1 v2

1

1 u2 v2 u2v2 u2
2 v2

2

1 u3 v3 u3v3 u2
3 v2

3
...
...

1 um vm umvm u2
m u2

m




(21)

Thus Steps 1 and 2 are as before if A, a, b, c are modified. Step 4 is indentical. For
Step 3 we need the equations

1
2

∂S

∂u
=
1
2

∂S

∂v
= 0

for (u, v) = (ui, vi), i = 1, . . . , m. These are

(a2 + a4v + 2a5u) (a1 + a2u+ a3v + a4uv + a5u
2 + a6v

2 − xi)
+ (b2 + b4v + 2b5u) (b1 + b2u + b3v + b4uv + b5u

2 + b6v
2 − yi)

+ (c2 + c4v + 2c5u) (c1 + c2u + c3v + c4uv + c5u
2 + c6v

2 − zi) = 0 .

(22)

and

(a3 + a4v + 2a6u) (a1 + a2u+ a3v + a4uv + a5u
2 + a6v

2 − xi)
+ (b3 + b4v + 2b6u) (b1 + b2u + b3v + b4uv + b5u

2 + b6v
2 − yi)

+ (c3 + c4v + 2c6u) (c1 + c2u + c3v + c4uv + c5u
2 + c6v

2 − zi) = 0 .

(23)

Both equations (22) and (23) have maximal degree three for both variables u and
v. Thus fixing u and v in one of these equations results in getting a polynomial
equation of degree three in v and u, respectively. There will be always one or
three real roots to be inserted in the other equations. From the altogether maximal
sixteen possible combinations we have to select that one with the minimal value of
the i-th term in (20). Thus Step 3 reads:

Step 3′: Put v
(t)
i into (22) and solve for one or three real solutions

u
(t+1)
i = u; put those u

(t+1)
i for u into (23) and solve for one or three

real solutions v
(t+1)
i = v. If the right combination is selected, S will again

decrease.
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For higher degree functions the procedure is similar. But the degree of the poly-
nomial equations will become higher and also the number of combinations to be
checked.
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