Six concyclic points

R. Kolar-Super* and Z. Kolar-Begović†

Abstract. The theorem about six concyclic points, some of them obtained by means of the symmedians and a median of a triangle, is proved in [1] applying two auxiliary theorems and some complex studies. In this paper the statement of that theorem is a result of some simple considerations.

Key words: median, symmedian, triangle

AMS subject classifications: 51M04

Received December 12, 2006 Accepted October 2, 2007

Let \overline{AM} be a median and \overline{AN} a symmedian through the vertex A of a triangle ABC. The circle AMN meets \overline{AB} and \overline{AC} at the points E, F again and the line through A parallel to \overline{BC} meets this circle at the point P again. Let L be the intersection of \overline{AM} and \overline{EF} (Figure 1).

Since $\angle EAN = \angle MAF$, it follows that $|EN| = |MF|$ which implies $EF || MN$ and since M is the midpoint of BC, we conclude that L is the midpoint of EF.

Since the parallel chords \overline{AP}, \overline{EF}, \overline{MN} have common bisector through the point L and because the points A, L, M are collinear points, it follows that P, L, N are collinear points too.

*Faculty of Teacher Education, University of Osijek, L. Jägera 9, HR-31 000 Osijek, Croatia, e-mail: rkolar@ufos.hr
†Department of Mathematics, University of Osijek, Trg Lj. Gaja 6, HR-31 000 Osijek, Croatia, e-mail: zkolar@mathos.hr
The fact that D is the midpoint of AC results in $DM \parallel AB$. Since the angles $\angle AMF$ and $\angle AEF$ are inscribed in the same arc of the circle and owing to the previously obtained parallelism, we get $\angle AMF = \angle AEF = \angle ABC = \angle DMC$ wherefrom MF is a symmedian of the triangle ACM through the vertex M. Similarly, it can be proved that ME is a symmedian through the point M of the triangle ABM.

Since the considered circle is uniquely determined by its points A, M, N and because of the unique determination of the intersections of this circle with the sides AC and AB of the triangle ABC, we have proved the following theorem which is stated in [1] in the following form.

Theorem 1. Let AM be a median and AN a symmedian, through the vertex A, of the triangle ABC, and ME and MF symmedians through the vertex M of the triangles ABM and ACM. Let P be the intersection of the line parallel to the line BC through the point A and line NL, where the point L is the intersection of AM and EF. Then the points A, E, F, M, N, P lie on one circle.

Since $EF \parallel BC$, the circles AEF and ABC are homothetic with respect to the center A, so they touch each other at the point A it means the following statement is valid.

Corollary 1. Oprea’s circle from Theorem 1 touches the circumscribed circle of the triangle ABC at the point A.

References