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Micropolar fluid flow with rapidly variable initial
conditions

Nermina Mujaković∗

Abstract. In this paper we consider nonstationary 1D-flow of a mi-
cropolar viscous compressible fluid, which is in a thermodynamic sense
perfect and polytropic. Assuming that the initial data for the specific vol-
ume, velocity, microvorticity and temperature are rapidly variable func-
tions and making use of the method of two-scale asymptotic expansion,
we find out the homogenized model of the considered flow.
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Sažetak. Homogenizacija 1D-toka mikropolarnog kompresi-
bilnog fluida. U ovom radu razmatramo nestacionarni 1D-tok mikropo-
larnog viskoznog kompresibilnog fluida, koji je u termodinamičkom smislu
perfektan i politropan. Pretpostavljajući da su početni podaci za specifični
volumen, brzinu, mikrovrtložnost i temperaturu brzo varijabilne funkcije
i koristeći metodu dvoskalnog asimptotičkog razvoja, nalazimo homoge-
nizirani model razmatranog toka.
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1. Introduction

In this paper we consider nonstationary 1D-flow of a micropolar viscous com-
pressible fluid, which is in a thermodynamic sense perfect and polytropic. Initial-
boundary value problem for such flow is well posed ([9]). Assuming that the initial
data for the specific volume, velocity, microvorticity and temperature are locally
ε - periodic functions, where ε > 0 is a small parameter, and making use of the
method of two-scale asymptotic expansion ([5], [10]), we find out the homogenized
model of the considered flow. It turns out that the homogenized model has the
same structure as the original one. The analogous problem for the classical viscous
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compressible fluid was considered in [7]. Homogenization problems for incompress-
ible flows were treated in [1]-[3] (see also [4] and [6], where lubrication problems
close to homogenization were considered).

Let
ρ, ν, ω, θ :]0, 1[×R+ → R (1)

denote the mass density, velocity, microvorticity and temperature of the fluid in
the Lagrangean description, respectively. Governing equations of the flow under
consideration are as follows ([8]):

∂ρ

∂t
+ ρ2 ∂ν

∂x
= 0, (2)

∂ν

∂t
=

∂

∂x

(
ρ
∂ν

∂x

)
−K

∂

∂x
(ρθ), (3)

ρ
∂ω

∂t
= A

[
ρ

∂

∂x

(
ρ
∂ω

∂x

)
− ω

]
, (4)

ρ
∂θ

∂t
= −Kρ2θ

∂ν

∂x
+ ρ2

(
∂ν

∂x

)2

+ ρ2

(
∂ω

∂x

)2

+ ω2 + Dρ
∂

∂x

(
ρ

∂θ

∂x

)
, (5)

where K, A and D are positive constants. It is convenient to introduce (instead of
the mass density ρ) the specific volume V = 1

ρ . Then we obtain the system

∂V

∂t
− ∂ν

∂x
= 0, (6)

∂ν

∂t
− ∂

∂x

(
1
V

(
∂ν

∂x
−Kθ

))
= 0, (7)

1
V

∂ω

∂t
−A

(
1
V

∂

∂x

(
1
V

∂ω

∂x

)
− ω

)
= 0, (8)

1
V

∂θ

∂t
+ K

θ

V 2

∂ν

∂x
− 1

V 2

(
∂ν

∂x

)2

− 1
V 2

(
∂ω

∂x

)2

− ω2 −D
1
V

∂

∂x

(
1
V

∂θ

∂x

)
= 0 (9)

in Q =]0, 1[×R+. We take the following homogeneous boundary conditions:

ν(0, t) = ν(1, t) = 0, (10)

ω(0, t) = ω(1, t) = 0, (11)

∂θ

∂x
(0, t) =

∂θ

∂x
(1, t) = 0 (12)

for t > 0. Let the functions

V0, ν0, ω0, θ0 : [0, 1]× R → R (13)

be 1-periodic in the second, so-called fast variable y. Then, for sufficiently small
ε > 0 the functions

V ε
0 (x) = V0(x, y), (14)
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νε
0(x) = ν0(x, y), (15)

ωε
0(x) = ω0(x, y), (16)

θε
0(x) = θ0(x, y), (17)

where
y =

x

ε
, (18)

are locally ε-periodic on ]0, 1[. For the system (6)–(9) we take the initial conditions

V (x, 0) = V ε
0 (x), (19)

ν(x, 0) = νε
0(x), (20)

ω(x, 0) = ωε
0(x), (21)

θ(x, 0) = θε
0(x) (22)

for x ∈]0, 1[.
Let the functions (13) be sufficiently smooth and let the compatibility conditions

ν0(0, .) = ν0(1, .) = 0, (23)

ω0(0, .) = ω0(1, .) = 0 (24)

on ]0, 1[ and the conditions

V0 > 0, θ0 > 0 on [0, 1]2 (25)

hold true. Then for each ε > 0 the initial-boundary value problem (6)–(12), (19)–
(22) has a unique strong solution

(V ε, νε, ωε, θε) (26)

in Q, having the properties

V ε > 0, θε > 0, on [0, 1]× [0,∞) (27)

([9]). In order to describe a propagation of the initial rapidly variable heterogenities
(19)–(22), we have to identify a limit of solutions (26), as ε tends to zero.

2. Two-scale asymptotic expansion

According to the homogenization method ([5], [10]), we shall look for a solution to
the problem (6)–(12), (19)–(22) in the form of two-scale asymptotic expansion:

(V ε, νε, ωε, θε)(x, t) = (V 0, ν0, ω0, θ0)(x, y, t) + ε(V 1, ν1, ω1, θ1)(x, y, t) + · · · , (28)

y =
x

ε
,

where functions

(V k, νk, ωk, θk) : ]0, 1[×R× R+ → R, k = 0, 1, ... (29)
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are 1-periodic in the fast variable y ∈ R. The idea of the method is to insert the
expansion (28) into the system (6)–(9) and to identify the powers of ε. In this
way we obtain a sequence of equations for the functions (29). Our purpose is to
identify the function (V 0, ν0, ω0, θ0) that is, at least in a formal sense, a limit of the
solutions (26), as ε tends to zero.

In order to present computations in a simple form, it is useful to consider first x
and y as independent variables and next to replace y by x

ε . Note that the operator
∂
∂x , applied to the function ϕ(x, x

ε ) becomes

∂

∂x
+

1
ε

∂

∂y
. (30)

In that what follows we use the notation

ϕ̄(x) =

1∫

0

ϕ(x, y)dy. (31)

For simplicity we shall assume that the functions ν0, ω0 and θ0 do not depend on
the fast variable:

ν0 = ν0(x, t), ω0 = ω0(x, t), θ0 = θ0(x, t); (32)

in fact one can easily see that (32) holds true.
The equation (6). Identifying the terms of the order ε0, we get

∂V 0

∂t
− ∂ν0

∂x
− ∂ν1

∂y
= 0. (33)

Integrating this equation over ]0, 1[ with respect to variable y and taking into ac-
count (32) and the periodicity of the function ν1, we obtain

∂V̄ 0

∂t
− ∂ν0

∂x
= 0. (34)

The equation (7). Identifying the terms of the order ε−1, one gets

∂

∂y

(
1

V 0

(
∂ν0

∂x
+

∂ν1

∂y
−Kθ0

))
= 0. (35)

Therefore, there exists a function α(x, t), such that

∂ν0

∂x
+

∂ν1

∂y
−Kθ0 = αV 0. (36)

After integration with respect to y we have

∂ν0

∂x
−Kθ0 = αV̄ 0, (37)
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or

α =
1

V̄ 0

(
∂ν0

∂x
−Kθ0

)
. (38)

From (36) and (38), it follows

∂ν1

∂y
=

V 0 − V̄ 0

V̄ 0

(
∂ν0

∂x
−Kθ0

)
. (39)

Identifying the terms of the order ε0 and taking into account (39), we obtain

∂ν0

∂t
− ∂

∂x

(
1

V̄ 0

(
∂ν0

∂x
−Kθ0

))
− ∂

∂y

(
1

V 0

(
∂ν1

∂x
+

∂ν2

∂y
−Kθ1

))
+

+
∂

∂y

(
V 1

V 0V̄ 0

(
∂ν0

∂x
−Kθ0

))
= 0. (40)

Integrating with respect to y, we get

∂ν0

∂t
− ∂

∂x

(
1

V̄ 0

(
∂ν0

∂x
−Kθ0

))
= 0. (41)

The equation (8). Identifying the terms of the order ε−1, we have

∂

∂y

(
1

V 0

(
∂ω0

∂x
+

∂ω1

∂y

))
= 0. (42)

Therefore, ther exists a function β(x, t), such that

∂ω0

∂x
+

∂ω1

∂y
= βV 0. (43)

Integrating with respect to y, we obtain

∂ω0

∂x
= βV̄ 0, (44)

or

β =
1

V̄ 0

∂ω0

∂x
. (45)

From (43) and (45), it follows

∂ω1

∂y
=

V 0 − V̄ 0

V̄ 0

∂ω0

∂x
. (46)

The terms of the order ε0 (together with (46)) lead to the equation

1
A

∂ω0

∂t
=

∂

∂x

(
1

V̄ 0

∂ω0

∂x

)
− ω0V 0 +

∂

∂y

(
1

V 0

(
∂ω1

∂x
+

∂ω2

∂y
− V 1

V̄ 0

∂ω0

∂x

))
. (47)

After integration with respect to y, we obtain

1
V̄ 0

∂ω0

∂t
−A

(
1

V̄ 0

∂

∂x

(
1

V̄ 0

∂ω0

∂x

)
− ω0

)
= 0. (48)
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The equation (9). The terms of the order ε−1 give

∂

∂y

(
1

V 0

(
∂θ0

∂x
+

∂θ1

∂y

))
= 0. (49)

Therefore, ther exists a function γ(x, t), such that

∂θ0

∂x
+

∂θ1

∂y
= γV 0. (50)

Integrating with respect to y, we have

∂θ0

∂x
= γV̄ 0, (51)

or

γ =
1

V̄ 0

∂θ0

∂x
. (52)

Inserting it in (50), we obtain

∂θ1

∂y
=

V 0 − V̄ 0

V̄ 0

∂θ0

∂x
. (53)

The terms of the order ε0 together with (53) give

∂θ0

∂t = −K θ0

V̄ 0
∂ν0

∂x − K2

V̄ 0 (θ0)2 + V 0

(V̄ 0)2

(
∂ν0

∂x

)2

− 2KV 0

(V̄ 0)2
∂ν0

∂x θ0

+K2V 0

(V̄ 0)2
(θ0)2 + V 0

(V̄ 0)2

(
∂ω0

∂x

)2

+ V 0(ω0)2 + D ∂
∂x

(
1

V̄ 0
∂θ0

∂x

)

+D ∂
∂y

(
1

V 0

(
∂θ1

∂x + ∂θ2

∂y − V 1

V̄ 0
∂θ0

∂x

))
.

(54)

After integration with respect to y, we have

1
V̄ 0

∂θ0

∂t
+ K

θ0

(V̄ 0)2
∂ν0

∂x
− 1

(V̄ 0)2

(
∂ν0

∂x

)2

− 1
(V̄ 0)2

(
∂ω0

∂x

)2

−

−(ω0)2 − D

V̄ 0

∂

∂x

(
1

V̄ 0

∂θ0

∂x

)
= 0. (55)

3. The homogenized problem

For the functions V 0, ν0, ω0 and θ0, describing a macroscopic behaviour of the flow,
we get the system (34), (41), (48), (55). From (10)–(12) it follows

ν0(0, t) = ν0(1, t) = 0, (56)

ω0(0, t) = ω0(1, t) = 0, (57)

∂θ0

∂x
(0, t) =

∂θ0

∂x
(1, t) = 0 (58)
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for t > 0. Taking into account that the functions V ε
0 , νε

0, ωε
0 and θε

0 tend in some
sense to the functions V̄0, ν̄0, ω̄0 and θ̄0, respectively ([5]), from (19)–(22) we con-
clude that the following initial conditions hold true:

V̄ 0(x, 0) = V̄0(x), (59)

v0(x, 0) = ν̄0(x), (60)

ω0(x, 0) = ω̄0(x), (61)

θ0(x, 0) = θ̄0(x) (62)

for x ∈]0, 1[. Because of (23)–(25) the conditions

ν̄0(0) = ν̄0(1) = 0, (63)

ω̄0(0) = ω̄0(1) = 0, (64)

V̄0 > 0, θ̄0 > 0 on [0, 1] (65)

are satisfied. Therefore, we have the following result:
Theorem 1. The homogenized initial-boundary value problem (34), (41), (48),

(55), (56)–(62) has a unique strong solution , having the properties

V 0 > 0, θ0 > 0 on [0, 1]× [0,∞). (66)

Remark 1. If the functions (13) do not depend on the first variable x, then
the functions (14)–(17) are ε-periodic and, consequently, V̄0, ν̄0, ω̄0 and θ̄0 are
constants; it means that the initial state of the macroscopic flow in this case is a
homogeneous one.

Remark 2. A rigorous proof of a convergence
(V ε, νε, ωε, θε) → (V 0, ν0, ω0, θ0) as ε → 0 is an open problem.
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[1] I. Aganović, Z. Tutek, Homogenization of micropolar fluid flow through a
porous medium, in: Mathematical Modelling of Flow through Porous Media,
(A.Bourgeot et al, Eds.), World Sci., 1995., 3–13.
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