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Parameter estimation of diffusion models from
discrete observations ∗

Miljenko Huzak †

Abstract. A short review of diffusion parameter estimations meth-
ods from discrete observations is presented. The applicability of a new
estimation method on inferences about a diffusion growth model is dis-
cussed.
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Sažetak. Procjena parametara difuzijskih modela iz diskre-
tnih opservacija. Prikazan je kratak pregled metoda procjene parame-
tara difuzija iz diskretnih opservacija. Ujedno je razmatrana upotreba
nove metode procjene na izvod̄enje zaključaka o jednom difuzijskom mod-
elu rasta.

Ključne riječi: difuzijski proces, stohastička diferencijalna jednadžba,
diskretne opservacije, procjena parametara, difuzijski model rasta

1. Introduction

Diffusion processes have been used in modeling various phenomena, for example,
noisy electrical signal, tumor growth (see e.g. [1, 7]) and interest rates (see e.g. [3]).
Although paths of diffusion processes are continuous, in almost all cases (e.g. tumor
size and interest rates) they could be only observed at discrete moments of time.
This explains a large number of papers dealing with the problems of parameter
estimation of diffusion models from discrete observations in the last twelve years.

This paper starts with the definition of the problem in §2. It continues with a
review of the known method of estimation in §3. Finally, in §4 a new estimation
method described in [8] is applied to the problems of parameter estimation of the
diffusion growth models (see [8] and also the example in [9]) based on discretely
observed paths of the growth process.
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2. The problem

Let X = (Xt, t ≥ 0) be a one-dimensional diffusion which satisfies stochastic differ-
ential equation (SDE) (see [14]) of the form

dXt = µ(Xt, θ) dt + ν(Xt, θ) dWt, X0 = x0. (1)

Here, W = (Wt, t ≥ 0) is a one-dimensional standard Brownian motion, µ and ν are
R-valued functions, µ(·, θ) is the drift function and ν(·, θ) is the diffusion coefficient
function, θ is a parameter (or a vector of parameters) of the model, and x0 is a
number, a deterministic initial value of the process X.

The problem is to estimate the unknown parameter θ of X given a discrete
observation (Xti

, 0 ≤ i ≤ n) of the trajectory (Xt, t ≥ 0) (0 =: t0 < t1 < · · · <
tn < +∞, n ∈ N). We assume that θ belongs to the parameter space Θ which is
an open space in the Euclidean space Rd. Mostly, θ = (ϑ, σ) when µ(·, θ) ≡ µ(·, ϑ)
and ν(·, θ) ≡ ν(·, σ). In that case, ϑ is called a drift parameter and σ is called a
diffusion parameter.

Let ∆n = max1≤i≤n(ti − ti−1). If ∆n = ti − ti−1 = tn/n for all i, 1 ≤ i ≤ n,
and n ∈ N, we simply use ∆ instead of ∆n.

3. The methods of estimation

Probably the most natural approach to estimation is the method of maximum like-
lihood (ML). For ergodic diffusions satisfying some additional conditions Dacunha-
Castelle and Florens-Zmirnou [4] proved the consistency and asymptotic efficiency
of the maximum likelihood estimator (MLE) of θ = (ϑ, σ) when n∆ → ∞. The
results are quite different for ϑ and σ. The necessary condition for the existence of
a consistent estimator of the drift parameter ϑ is that n∆n →∞. In ergodic case,
it is asymptotic efficient with the speed

√
n∆n. For σ, the condition n∆n = O(1)

is needed.
Although MLE has the usual good properties, the transition density of the

process X and so the likelihood function (LF) of the discretized process are explicitly
known only in few special cases. Hence, other methods of estimations have had to
be considered. It turns out that there exist roughly three classes of estimation
methods.

One class consists of methods based on maximization of a discretized continuous-
time log-likelihood function (LLF), obtained by replacing Lebesgue and Itô inte-
grals with Riemman-Itô sums. The Euler type of approximation of integrals is
used and discussed in [12, 6, 16]. Le Breton in [12] considered multidimensional
diffusions with known diffusion coefficient function ν and drift function µ linear
in unknown drift parameter ϑ. He proved that the sequence of random variables
( 1√

∆n
‖ϑ̂n − ϑ̂‖, n ∈ N) is bounded in probability when ∆n → 0 with tn = T being

constant. Here, ϑ̂n is a point of maximum of discretized LLF and ϑ̂ is a MLE of
ϑ based on continuous observations of paths along time-interval [0, T ]. Florens-
Zmirnou [6] considered one-dimensional positive recurrent diffusions with diffusion
coefficient functions of the form ν(x, σ) = σ and drift function of the general form
µ(x, ϑ). Under some additional assumptions on µ, he proved that both estimators,
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the estimators of drift and diffusion parameters, are consistent and asymptotic nor-
mal if n∆n →∞ and n∆3

n → 0. In case of multidimensional ergodic diffusion with
ν(x, σ) = σb(x), Yoshida [16] has got the same result. Moreover, Florens-Zmirnou
[6] showed that the drift estimator has an asymptotic bias in case of ∆n = ∆ being
constant. More complex approaches in approximations of the integrals in LLF and
score functions based on continuous observations are proposed in e.g. [11, 13]. In
these papers the proposed estimators have been investigated by simulations.

Another class of estimation methods consists of methods based on martin-
gale estimating functions that are usually obtained by compensating approximate
continuous-time score function (see [2]). Bibby and Soerensen [2] showed that un-
der some general conditions on SDE and for ∆n = ∆ being constant, there exists
a consistent and asymptotically efficient estimator of θ which solves martingale
estimating equation.

Finally, the last class consists of methods based on a Gaussian approximation
of the transition density of X. Namely, let mi(Xti

, θ) be an approximation of
the conditional expectation E[Xti+1 |Xti ] and let vi(Xti , θ) be an approximation of
E[(Xti+1 − mi(Xti

, θ))2|Xti
] (0 ≤ i < n). Then Gaussian approximation of the

transition density leads to the contrast function

−1
2

n−1∑

i=0

(
(Xti+1 −mi(Xti , θ))

2

vi(Xti , θ)
+ log vi(Xti , θ)

)
. (2)

Kessler [10] proposed a method of this kind that gives an estimator of θ = (ϑ, σ)
which is consistent when ∆n → 0 and n∆n → ∞. If in addition n∆p

n → 0 for an
integer p ≥ 2 then the estimators are asymptotically efficient. These hold for an
ergodic diffusion X.

Two or all of these three approaches could lead to the same estimators (e.g. see
[12, 6, 16]).

In [8] a new method of estimation has been proposed. It belongs to the last above
mentioned class of methods and it is applied to the SDEs with ν(x, σ) = σb(x) and
µ(x, ϑ) being an analytic function in ϑ. An estimator θ̂n = (ϑ̂n, σ̂n) is obtained by
maximization of the contrast function (2) with

mi(Xti , θ) = Xti + µ(Xti , τϑ(hi, θ)hi and vi(Xti , θ) = τ2
σ(hi, θ)b2(Xti)hi (3)

where hi = ti−ti−1, 1 ≤ i ≤ n. Here, τ = (τϑ, τσ) is a function such that for any h >
0, τ(h, ·) is a transformation of the parameter space Θ̄ := Θ×R+. Θ is a connected
open set in Euclidean space Rd. It is assumed that ϑ ∈ Θ and σ ∈ R+. This method
is a generalization of some of above mentioned methods. Primarily it is designed for
the cases when all observations could be taken only up to some maximal observation
time T . Under the assumptions that MLE ϑ̂ based on continuous observations along
[0, T ] is the unique point of maximization of LLF and the transformation τ has some
regular properties as well as some additional assumptions on SDE are satisfied (see
[8]), it turns out that σ̂n is consistent and asymptotically normal and ϑ̂n converges
to ϑ̂ in such way that the sequence ( 1√

∆n
‖ϑ̂n− ϑ̂‖, n ∈ N) is bounded in probability

when ∆n → 0 (again see [8]).
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4. Estimation of a diffusion growth process

Let us consider the same diffusion growth model that has been discussed in [9] §3,
i.e. we assume that X satisfies SDE

dXt = (α− βh(γ, Xt))Xt dt + σXt dWt, X0 = x0 > 0. (4)

Here, h(γ, x) = (xγ − 1)/γ if γ 6= 0 and h(γ, x) = log x if γ = 0 (γ ∈ R, x > 0).
Drift parameter is ϑ = (α, β, γ) and diffusion parameter is σ. The parameter space
is

Θ̄ = {(α, β, γ, σ) ∈ R3 × 〈0, +∞〉 : β > 0, γ(α− σ2

2
) + β > 0}. (5)

Process X is ergodic (see [8]) and let p0 be its stationary density function (again
see [8]). Let

`∞(ϑ) =
1
σ2

0

∫ +∞

0

(α− βh(γ, x))((α0 − β0h(γ0, x))− 1
2
(α− βh(γ, x)))p0(x) dx,

where (ϑ0, σ0) = (α0, β0, γ0, σ0) is the true value of the unknown parameter which
should be estimated. Let Θ0 be a connected relatively compact set such that ϑ0 ∈
Θ0 and

Θ0 ⊂ C`(Θ0) ⊂ {ϑ ∈ Θ : (γ0 6= 0 ⇒ |γ − γ0| < |γ0|) & D2`∞(ϑ) < 0},
and let I be a bounded open interval in R+ such that C`(I) ⊂ R+ and Θ̄0 :=
Θ0 × I ⊂ Θ̄.

The following theorems are proved in [8].
Let (ϑ̂T , T ≥ 0) be a progressively measurable process from Theorem1 in [9]

and let `T be LLF given by (7) in [9].

Theorem 1. Almost surely there exists T0 > 0 such that for all T ≥ T0, ϑ̂T ∈ Θ0

and ϑ̂T is the unique point of the global maximum of the function ϑ 7→ `T (ϑ) on
C`(Θ0). Moreover, Hessian of `T at ϑ = ϑ̂T is strictly negatively definite.

From this theorem we can conclude that the method of estimation given by (3)
could be applied. Namely, on an event of positive probability the growth model (4)
satisfies conditions which are necessary for the estimation method (3) to be applied
(see [8]) on this model and parameter space Θ̄0.

Let θ̂Tn = (ϑ̂Tn, σ̂Tn) be an estimator obtained by the method (3) given a
discrete observation of X along time interval [0, T ]. Let FTn(x), x ∈ Rd, denote the
distribution function of the random vector

√
T (ϑ̂Tn − ϑ0) and let ΦI0(x), x ∈ Rd,

denote the distribution function of normal distribution N (0, I−1
0 ) where I0 is the

matrix from Theorem1 in [9]. We will assume that for fixed T , ∆n = ∆Tn → 0
when n → +∞.

Theorem 2.

lim
T→+∞

lim
n
|FTn(x)− ΦI0(x)| = 0, x ∈ Rd.

This theorem and Theorem2 in [9] imply that a variant of Theorem2 [9] based
on discrete observations could be proved (see [8]).
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