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On numbers and classes ∗†

Zvonimir Šikić ‡

Abstract. The concept of class is analyzed and it is concluded that
a number is the number of a pure founded class. Some well-known def-
initions of numbers are analyzed and it is concluded that this analysis
supports the thesis that numbers are conventional. Nevertheless, an ar-
gument is offered supporting the thesis that von Neumann’s numbers are
the numbers.
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Sažetak. O brojevima i klasama. Analizom pojma klase za-
ključeno je da je broj uvijek broj čiste utemeljene klase. Analizirane su
neke dobro poznate definicije broja, i zaključeno je da analiza podupire
tezu da su brojevi konvencije. Ipak, ponud̄en je dodatni argument koji
podupire tezu da su von Neumannovi brojevi pravi brojevi.

Ključne riječi: klasa, čista utemeljena klasa, broj, von Neumannov
broj

1. On numbers and classes

What are numbers? A number is the number of something. Hence, we could start
answering our question, as Frege did, by asking another one. What is a number the
number of? Frege’s answer is that number is the number of a concept. Namely, we
can say with equal truth both ”Here are four books” and ”Here are 500 book leafs”.
Now what changes here from one judgement to the other is neither any individual
object, nor the whole, the agglomeration of them, but rather our terminology. But
that is itself only a sign that one concept has been substituted for another (Frege,
1978, p. 59).

But a concept is not something subjective like an idea. It is as objective as
any object is. We assert something of a concept as truly or as falsely as we assert
something of any object. If, for example, we bring the concept of whale under that
of mammal, we are asserting something objective; but if the concepts themselves
were subjective, then the subordination of one to the other, being a relation between
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them, would be subjective too, just as a relation between ideas is (Frege, 1978, p.
60).

The objectivity of concepts does not imply their actuality (i.e. their spatio-
temporal causal efficiency). We distinguish what we call objective from what is
actual. The axis of the earth is objective, so is the centre of mass of the solar
system, but we should not call them actual in the way the earth itself is (Frege,
1978, p. 35). If something is objective but not actual it is called an abstract object.
Hence, a concept is an abstract object. A number is the number of an abstract
object.

Now, what counts in ascribing a number to a concept is the extension of the
concept. We could say, a step further from Frege, that a number is the number of
the extension of a concept. A number is the number of a class.

Classes are abstract objects too. Whatever we asserted about objectivity and
nonactuality of concepts could be asserted, equally true, about classes. But what
are classes and what classes are there? The best answer to this question is the
standard first-order theory of classes (i.e. sets and proper classes).1 Of course we
may restrict ourselves to pure founded classes (see [3]), because to every unfounded
class there corresponds a founded one of the same size and to every founded class
there corresponds a pure one of the same size. As far as numbers are concerned and,
as far as mathematics is concerned, individuals (i.e. objects which are not classes)
are completely unnecessary. Mathematics does not need them. It is founded on the
empty set of individuals. Numbers are the numbers of pure founded classes.

Now that we have learned what the objects are, of which numbers are the
numbers of, we may get back to the main question. What are numbers? A tempting
strategy is to explain numbers away. The meaningfulness of a statement containing
a singular term does not necessarily presuppose an object named by it. For example,
we could say that:

(S) 2 + 3 = 5

is just a manner of speaking. The real meaning of the statement is given by:

(MS) If X and Y are any two disjoint classes, and if the number 2 belongs to the
class X and the number 3 belongs to the class Y , then the number 5 belongs
to their union X ∪ Y .

Of course, the real meaning of the statements ”the number 2 belongs to the class
X”, ”the number 3 belongs to the class Y ” and ”the number 5 belongs to the class
X ∪ Y ” is given by:

(M2) ”There is a member z of the class X and such that there is a member y of
the class X − {z} such that there is no member of the class X − {z} − {y}.”

and by analogous (M3) and (M5). Nevertheless, there are many other mathemat-
ical contexts from which it is quite impossible to explain numbers away. The most

1Mathematicians struggled for it for more than seventy years. Those who were logically in-
clined wanted to base everything on the presupposedly logical principles of comprehension and
extensionality and that was not possible. Those who were more mathematically minded did not
care for that. But they were not successful in explaining (with no use of the independent notion
of ordinal number) that the universe of all classes is just the cumulative hierarchy. Von Neumann
was the first one to succeed.
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common contexts are those which mention classes of numbers. Such contexts are in
constant use: integers are defined as classes of pairs of natural numbers; rationals
as classes of pairs of integers; real numbers as classes of rationals, etc. But, if a
number is to be the member of a class, then it has to be an object and there is
no way to explain it away. There is a possibilitiy of explaining classes away, but
mathematics, i.e. the standard classical mathematics, is founded on classes and
does not explain them away. (After all, we are interested in what numbers are, and
not interested in what numbers could be in a could-be-reconstructed-mathematics.)

If numbers are not to be explained away, then what are they? We know that
they belong to pure founded classes. If a and b are numbers, then they are numbers
of some pure founded classes A and B: a = num(A), b = num(B). Hence, to specify
what numbers are, is to define the function num on the universe of all pure founded
classes. Numbers are to be the values of this function. Of course, this should be
done in accordance with the criterion of number identity: num(A) = num(B) iff
A and B are of the same size. ”A and B are of the same size” is to be defined as
”there is a one-to-one correspondence between A and B; i.e. A ≈ B”. Hence the
function num is to be defined in accordance with the following:

(NI) Number identity num(A) = num(B) ↔ A ≈ B

The difficulty is that there is no unique function num, defined on the universe of
pure founded classes, which satisfies the criterion of number identity (NI). In one
word, there is no unique solution of (NI).

The uniqueness of the num function could be forced by imposing further condi-
tions on the function. Needless to say the conditions should be appropriate, just as
(NI) is. The Fregean condition:

(FC) x ∈ num(x),

which postulates that each set is a member of the number ascribed to it, is one such
condition.2 There is exactly one function num which satisfies (NI) and (FC). This
is a Fregean number function:

(FN) num(x) = [x], where [x] = {y : x ≈ y}.
The difficulty of Fregean definition (FN) is that, according to the definition, num-
bers are proper classes. It means that numbers could not be members of further
classes. It renders the definition mathematically useless and, therefore, inadmissible
(cf. above).

Scott’s definition of numbers (see [2]):

(SN) num(x) = [x]min,

where [x]min, is the subset of [x] consisting of elements of the least rank, also satisfies
(NI). It dispenses with Frege’s difficulty, because [x]min is a set contained in [x].
Nevertheless, it has to be abandoned, because the further condition it satisfies (that
num(x) should consist of elements of [x] of the least rank) is an ad hoc condition.
The only motivation for using Scott’s condition is to eliminate Frege’s difficulty.

2Incidentally, (FC) precludes the proper classes to have a number, because a proper class could
not be a member of any class.
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Another, rather natural condition is that mutually equinumerous members of
[x] are represented by one of them. It means that num associates to any given x its
representative from [x]:

(RC) num(x) ∈ [x].

The problem is that there are many num-functions which satisfy (NI) and the
representative condition (RC). A further condition is needed to separate the unique
num-function from all of them. Without such condition num(x) is as conventional
as the Paris metre is. (The Paris metre represents all lengths of its span, just
as num(x) represents all sets of its numerosity.) Hence, we could not talk about
numbers, but rather about conventional numbers. Nevertheless, to whatever use
numbers may be put, conventional numbers may be put equally well. For example,
using von Neumann’s conventional numbers ∅, {∅}, {∅, {∅}}, etc. we could interpret:

0) ”0 belongs to x”, 1) ”1 belongs to y”, 2) ”2 belongs to z”, etc.

into the following way:

c0) ”x ≈ ∅”, c1) ”y ≈ {∅}”, c2) ”z ≈ {∅, {∅}}”, etc.

Any other conventional numbers would do just as well. Similarly, conventional
integers are easily defined as classes of pairs of conventional natural numbers; con-
ventional rationals as classes of pairs of conventional integers; conventional real
numbers as classes of conventional rationals, etc. In a sense, conventional numbers
explain numbers away. But conventional numbers are objects, which are elements
of further classes, and the main problem of explaining numbers away is not present
now. To whatever use numbers may be put, conventional numbers may be put
equally well. Mathematics has no need of numbers. Conventional numbers suffice.

Nevertheless, we think that von Neumann’s conventional numbers are not as
conventional as they seem to be. First of all, von Neumann’s conventional numbers
are conventional ordinal numbers. As far as natural numbers are concerned there
is no difference. Natural numbers are cardinal numbers of finite sets and there is
always unique well-ordering of a finite set. On the other hand, there are many
well-orderings of an infinite set. Hence, to the cardinal number of an infinite set
there correspond many ordinal numbers. The first of them is unique and it is quite
appropriate to identify the cardinal number with this unique ordinal number. A
cardinal number is the first ordinal number of its cardinality. Cardinal numbers,
defined in this way, are as conventional as their corresponding ordinal numbers are.
We will show that von Neumann’s ordinal numbers are not as conventional as they
seem to be.

We should start with the question: What is an ordinal number the ordinal
number of? We have seen that a cardinal number is the cardinal number of a pure
founded class. In the same way we could show that an ordinal number is the ordinal
number of a pure founded well-ordered class. If α and β are ordinal numbers, then
they are ordinal numbers of some pure founded well ordered classes (A,<A) and
(B,<B):

α = Ord(A,<A), β = Ord(B, <B).

Hence, to specify what ordinal numbers are is to define the function Ord on the
universe of all pure founded well-ordered classes. Ordinal numbers are to be the
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values of this function. This should be done in accordance with the criterion of
ordinal number identity:

(ONI) Ordinal number identity Ord(A, <A)=Ord(B, <B) ↔ (A,<A) ∼ (B, <B).

Equiorderedness relation ∼ holds between (A,<A) and (B, <B), if there is a one-
one correspondence between A and B which is order preserving. In this case it is
also said that A and B are of the same length. The difficulty is that there is no
unique function Ord which satisfies (ONI), even if we agree that values of Ord
should be pure founded well-ordered classes. The uniqueness of the Ord-function
could be forced by imposing further conditions on the function. A rather natural
one is that mutually equiordered sets3 are represented by one of them:

(ORC) Ord(A,<A) ∈ [(A,<A)].

The problem is that there are still many Ord-functions which satisfy (ONI) and
(ORC). Further conditions are needed to separate the unique Ord-function from
all of them. Without such conditions Ord(A, <A) is completely conventional.

There are such conditions which are quite appropriate. An ordinal number
Ord(A) is the ordinal number of a well-ordered class A, i.e. Ord(A) is the length of
A4. But, the primary meaning of ordinal numbers is that they are ordinal numbers
of the members of a well-ordered class. The well-ordered class A has its 5th member,
its 157th member and, perhaps, its ωth member and its ε0th member. The ordinal
number of a in A is denoted by ord(a)5 and it is the distance of a in A. The
connection between ”small” ord and ”big” Ord is straightforward. The distance of
a in A is the length of {x : x < a}, i.e.

(oO) ord(a) = Ord{x : x < a}.
On the other hand, the length of {x : x < a} is completely determined by the set
of distances {ord x : x < a}, i.e.

(Oo) Ord{x : x < a} = {ord(x) : x < a}
is an appropriate condition. From (oO) and (Oo) it follows:

ord(a) = Ord{x : x < a} = {ord(x) : x < a}.
From the principle of transfinite recursion on well-ordered classes it follows that
for any well-ordered class (A,<) there is a unique function ord which satisfies
ord(a) = {ord(x) : x < a} and values of this function are von Neumann’s numbers.
Therefore, there is a unique function Ord which satisfies (ONI), (ORC), (oO)
and (Oo).

We may conclude that Ord is not conventional and, therefore, von Neumann’s
numbers are not just conventional numbers. They are the numbers.

3We may restrict ourselves to well-ordered sets, because all proper well-ordered classes are of
the same ordinal type. Hence, one and the same ordinal number belongs to all of them and it
could be dealt with separately.

4”Well-ordered class A” is short for ”well-ordered class (A, <A)”.
5The function ord is always associated with some well-ordered class A, on which it is defined.

Strictly, we should write ordA(a). If it is clear which A it is, we usually omit A.
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