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Abstract—Distributed algorithms for an aggregate 

function estimation are an important complement of many 

real-life applications based on wireless sensor networks. 

Achieving a high precision of an estimation in a shorter 

time can optimize the overall energy consumption. 

Therefore, the choice of a proper distributed algorithm is 

an important part of an application design. In this study, 

we focus our attention on the average consensus algorithm 

and evaluate six weight models appropriate for the 

implementation into real-life applications. Our aim is to 

find the most suitable model in terms of the estimation 

precision in various phases of the algorithm. We examine 

the deviation of the least precise estimate over iterations 

for a Gaussian, a Uniform and a Bernoulli distribution of 

the initial states in strongly and weakly connected 

networks with a randomly generated topology. We 

examine which model is the most and the least precise in 

various phases. Based on these findings, we determine the 

most suitable model for real-life applications.  

Index Terms—Distributed computing, wireless sensor 

networks, average consensus algorithm, estimation precision 

I. INTRODUCTION

A. Estimation techniques in wireless sensor networks 

N general, the estimation techniques in wireless sensor

networks (WSNs) can be classified as centralized or 

decentralized. The first category requires the presence of the 

fusion center, whose goal is to gather the information from the 

other nodes in the network and process it subsequently [1]. 

This architecture is based on either a massive communication 

in an extensive geographical area or the implementation of a  
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mechanism for a multi-hop routing (including establishing and 

maintaining a routing table), which results in a decreased 

scalability [1, 2]. This solution is not preferred for real-life 

applications due to several constraints such as low suitability, 

low natural robustness, the necessity of the fusion center 

awareness about the measurement models etc. [3]. Thus, the 

modern solutions usually utilize the decentralized estimation 

techniques without the presence of the central fusion center in 

a network [4]. Their advantages are that the nodes do not have 

to be aware of network parameters and that it is not necessary 

to implement any routing protocol. This architecture optimizes 

the energy consumption (its optimization is a crucial aspect 

[5]), the natural robustness, the scalability etc. due to a 

neighbor-to-neighbor communication, on which it is based. 

Thus, these are the main reasons of why the decentralized 

estimation techniques are significantly preferred for real-life 

applications. Decentralized estimation consists of two 

categories. The first one is based on a sequential transmission 

of information from one node to another one. The other 

category is characterized by the diffusion of information into 

the network [4, 6], which ensures a higher robustness 

compared with the first category. This is achieved at the cost 

of a more complicated communication overhead. This other 

category includes the distributed algorithms [7, 8]. The 

applications of WSNs based on the presence of the fusion 

center can also utilize the decentralized estimation techniques. 

However, this approach results in several constraints such as 

an increase of transmission power due to the necessity to 

transmit data to the fusion center, lack of the robustness in a 

case when the fusion center fails etc [9]. Distributed 

estimation is a key technology for a wider range of event 

classification and object tracking in WSNs [10, 11]. A 

literature review provides many distributed estimation 

algorithms that find a wide usage in WSNs. In [12], 

cooperative information aggregation (CIA) schemes used for 

addressing the distributed estimation problem in WSNs are 

presented. This approach exploits multi-bit quantizer to 

quantize the observed signal. Subsequently, the nodes forward 

only one bit to the fusion center in order to prolong the 

lifetime of a network. The paper [13] presents an 

asynchronous distributed estimation technique that is based on 

a Bayesian model with an unknown hyperparameter. Its 

principle lays in a distributed computation of MMSE 
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(minimum mean square error) estimator of the local arrival 

rate. In [14], an optimal energy-constrained distributed 

estimation algorithm and a quasi-optimal energy-constrained 

distributed estimation algorithm based on a concept of

 equivalent unit-energy MSE function are proposed. The 

authors of [15] propose likelihood consensus method based on 

iterative consensus algorithms to compute JLF. This function 

has a key role as it poses the measurements of all the nodes in 

a network. Distributed estimation techniques get a widespread 

attention, especially as an application of linear consensus 

algorithms, which are characterized by minimal 

communication, computation and synchronization 

requirements. This fact makes these algorithms suitable for 

WSNs [13, 16, 17, 18, 19, 20, 21]. The roots of these 

algorithms are in the analysis of the Markov chains and except 

for the distributed estimation, they find the usage in load 

balancing, asynchronous solutions for linear systems, 

cooperative coordination of multi-agent systems etc. [22]. 

Their principle is based on an interaction of adjacent nodes by 

means of a diffusion-like process, i.e. the nodes update their 

local estimates by suitably combining its state with the states 

collected from the adjacent area [13].  

B. Average consensus algorithm 

 In this paper, we focus our attention on the average 

consensus algorithm for an average value estimation. It is a 

distributed flexible multifunctional consensus algorithm that 

finds a wide usage in WSNs due to its low computational and 

energy requirements [23]. Its flexibility is ensured by the 

possibility to apply various weight models [24]. Each weight 

model is characterized by a different weight matrix, which 

affects the aspects such as the convergence rate, the natural 

robustness, the initial configuration, the required knowledge 

for the proper functionality etc. The algorithm is based on a 

mutual exchange of the current inner states between adjacent 

nodes and updating their inner states according to the collected 

data from the adjacent area and the value of the inner state 

from the previous iteration [25]. This procedure is repeated at 

each iteration until the nodes reach the consensus on the inner 

states. As mentioned earlier, several weight models have been 

proposed for the average consensus algorithm. In this paper, 

we focus our attention on six various models (we assume such 

weight models that require the information assessable in a 

distributed manner). We choose the Constant (abbreviated as 

CW), the Maximum Degree (abbreviated as MD), the 

Metropolis-Hastings (abbreviated as MH), the Local Degree 

(abbreviated as LD), the Best Constant (abbreviated as BC) 

and the Biphasically configured Metropolis-Hastings weight 

model (abbreviated as BM). We verify the precision of these 

weight models, i.e. the deviation of the least precise estimate 

from the real value of the average in various phases of the 

algorithm in order to show which one is the most precise and 

how the precision differs over the algorithm execution. 

C. Motivation 

The overall energy consumption may be significantly 

optimized by selecting a model that can estimate the average 

with a high precision in a shorter time. Many of recent papers 

discuss the problem as the energy consumption optimization 

and put a great emphasis on this aspect [26, 27]. Thus, this 

motivates us to examine the precision of the chosen weight 

models in various phases of the algorithm and in different 

randomly generated networks in order to show which model is 

the most suitable in terms of the precision in various phases of 

the algorithm – a higher precision in a shorter time results in a 

decrease of the number of the transmitted messages, the time 

necessary for the execution of the estimation process etc. and 

as the results, it optimizes the estimation process in terms of 

the energy consumption.  

D. Paper organization 

In the second section, we introduce mathematical tools used 

to model the average consensus algorithm in WSNs and 

introduce the weight models of our interest. In the third one, 

we pay attention to a presentation of the achieved results from 

our numerical experiments. Furthermore, we examine the 

highest and the lowest precision of the chosen weight models 

in various phases of the algorithm and conclude which model 

is the most suitable for the real-life applications.  

II. MODELING OF AVERAGE CONSENSUS

A. Average consensus in WSNs 

WSNs are usually described as an indirect finite graph 

G = (V, E) formed by the sets V and E [23]. The set V 

consists of all the vertices, which are representatives of the 

particular nodes. The vertices are identified by the unique 

identity number vi. The size of this set is determined by the 

number of the nodes in the network (this parameter is labeled 

as N). The set E⊂VxV contains all the edges, which represent 

the direct connection between two nodes (vi, vj). Sometimes, 

the label eij can be found in the literature.  

 The mutual connectivity among the nodes can be 

described by the Laplacian matrix L. It is a diagonally 

symmetric matrix of a square shape defined as [28]:  
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Here, di labels the degree (i.e. the number of the neighbors) 

corresponding to the node vi. Except for the description of the 

mutual connectivity, the Laplacian matrix provides also 

additional information about the network topology. If λ2(L) 

(the second smallest eigenvalue of the corresponding 

Laplacian matrix)  is equaled to 0, then the network is 

connected [29]. So, only the networks described by the 

Laplacian matrices with λ2(L) not equaled to 0 are connected. 

In disconnected networks, the nodes estimate the average from 

the connected subparts and therefore, the algorithm is unable 

to fulfill its functionality. Thus, our attention is focused only 

on networks whose λ2(L)  ≠ 0. Furthermore, the knowledge 
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about λ2(L) and λN(L) is necessary for the optimized variant of 

the Best Constant weight model.  

 As previously mentioned, the average consensus 

algorithm is based on mutual exchanges of the inner states 

and the asymptotic convergence to the value of an 

aggregate function. Mathematically, it can be modeled as 

follows [30]:  

 )()1( kk Wxx   (2) 

 Here, W is the weight matrix, whose elements are 

determined by the chosen weight model. The column vector 

x(k) ∈ RNx1 is variant over the iterations and consists of the 

inner states of all the nodes at each iteration. We assume 

that the initial iteration is labelled as k = 1 and so, 

x(1) = xin. The elements of the weight matrix affect the 

convergence rate of the algorithm as well as whether the 

algorithm converges or diverges. The convergence 

conditions, which the weight matrix W has to hold, are 

discussed in [31]. 

Since the average consensus algorithm is an iterative 

algorithm asymptotically converging to the average, the 

following statement is valid [14]:  
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The vector 1 has a column shape and all its elements are 

equal to 1. 

B. Examined weight models of average consensus algorithm 

 In the following section, we introduce the weight models 

chosen for our examination. The first one is the Constant 

weight model defined as follows [31]:  
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 This model is characterized by the mixing parameter ε, 

whose value determines the convergence rate of the 

algorithm and whether the algorithm convergences or 

diverges [32]. According to [31], its value has to be chosen 

from the following interval so that the convergence is 

achieved:   
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Here, dmax  is the number of the neighbors of the best-

connected node in a network. Due to the limited size of the 

paper, we choose the value of ε equaled to 0.5*1/dmax  as a 

representative of this weight model. As analyzed in [33], 

higher values of  ε ensure a higher convergence rate of the 

algorithm. On the other hand, the algorithm is less robust to 

several types of failures. Therefore, it makes a sense to use a 

more conservative initial setup, especially in systems with a 

high error rate. We choose 0.5*1/dmax as a compromise 

between the convergence rate and the failure tolerance.  

The next model of the interest is the Maximum Degree 

weight model. Based on the Constant weight model, the value 

of ε is set to the maximal possible value ensuring the 

convergence and therefore, to 1/dmax. Thus its weight model is 

defined as follows [34]: 
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Two other models are the Metropolis-Hastings and the 

Local degree weight model, which both do not have uniform 

weights. These two models are very appropriate for real-life 

applications because they need only locally available 

information for the initial configuration. Their weight matrices 

can be defined as follows [35, 36]: 
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The next model is the Best Constant weight model, which 

requires the knowledge about the largest and the second 

smallest eigenvalue of the corresponding Laplacian matrix and 

therefore, its optimized variant posses a significant challenge 

to be implemented. Nevertheless, in the experimental part, we 

assume its optimized variant defined as [35]:   
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   Here, λ2(L) and λN(L) are the second smallest and the largest 

eigenvalue of the corresponding Laplacian matrix.  

The last examined model is the Biphasically configured 

Metropolis-Hastings weight model, which is derived from the 

Metropolis-Hastings weight model [36].  Its principle is based 

on a decrease of the weights allocated to the inner states by 

increasing the weights of the nodes from the adjacent area.  As 

adduced in [36], the convergence rate is affected by the 

position of the initial identity numbers. Therefore, we repeat 

each experiment 100 times and choose the average as a 

representative of this set. 

III.  EXPERIMENTAL PART AND DISCUSSION 

In the experimental part, we examine how the precision of 

the weight models differs in various phases of the algorithm 

execution using numerical experiments executed in Matlab. 

We examine the value of the relative deviation of the least 

precise estimate from the real value of the average at ten 

iterations {100th it., 200th it., 300th it., …. 1000th it.}. We 

demonstrate our intention on ten strongly and ten weakly 

connected networks with a topology randomly generated as 

described in [16] (see Fig. 1 and Fig. 2 for representatives).  
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Within our analysis, we assume that the initial states are 

allocated randomly generated values of a Gaussian, a Uniform 

and a Bernoulli distribution with the following parameters: 

 Gaussian distribution: μ = 100, δ = 1

 Uniform distribution: a = 0, b = 200

 Bernoulli distribution: the initial state is 1 with the

probability equaled to 0,5, the initial state is 0 with 

the probability equaled to 0,5. 

Here, µ represents the value of the mean and δ is the 

standard deviation. The parameters a and b are the lower and 

the upper bound, respectively.  

A. Examination of most and least precise weight models 

In the first part of the experimental section, we focus on 

figuring out which model is the most and the least precise at 

the chosen iterations for each distribution of the initial states. 

The results containing the extremes for each phase (i.e. the 

information about which weight model has the lowest and the 

highest estimation precision at an adduced iteration) are shown 

in Table 2 in the Appendix (for each distribution in the 

strongly connected networks). The columns B and W contain 

the information about the weight models with the highest or 

respectively the lowest precision for the examined weight 

models in the corresponding phase and network (i.e. the 

number of the networks in which they achieve the extreme). In 

the following part, we analyze the achieved results depicted in 

Table 2. At first, let us focus on the precision in the strongly 

connected networks. The first part is focused on an 

examination of the precision of the weight models with the 

initial states having the Gaussian distribution. Here, CW 

reaches the lowest precision in all ten networks and in each 

phase of the algorithm. Regarding the highest precision, BC 

achieves the highest precision in 47 cases (one case means the 

highest or the lowest precision in one network and in one 

phase) and BM in 53 cases. We can see that BM is the most 

precise in earlier phases of the algorithm, then, these two 

models achieve the highest precision in the same number of 

networks in five phases and in later phases, BC is the most 

precise in more networks than BM. In the scenario when the 

nodes are initiated with randomly generated inner states of the 

Uniform distribution, we can see that CW is again the least 

precise in all networks and in all the phases. As for the weight 

models with the highest precision, the character of BC (46 

cases) and BM (51 cases) is similar to the previous analysis, 

i.e. BM is the most precise in earlier phases in more networks 

than BC, then, both of them achieve the highest precision 

equally in five networks and in later phases, BC is the most 

precise in more networks than BM. In contrast to the previous 

analysis, also LD achieves the highest precision – it is 

observed in three networks in earlier phases of the algorithm. 

Regarding the Bernoulli distribution, here, we can see that CW 

is the least precise in 98 cases. In two other cases, it is BC 

(although it achieves a very high precision in previous two 

experiments), which reaches the lowest precisions – it happens 

in earlier phases of the algorithm. Paradoxically, this weight 

model also achieves the highest precision in four networks 

when the Bernoulli distribution is used – now, this can be seen 

in later phases. Another model that achieves the highest 

precision at least in one case is BM, which achieves the best 

result in 96 cases.  

In the overall evaluation (see Fig. 3 and Fig. 4), BM 

achieves the highest precision in the most number of the cases 

(67%). It is the most precise model especially in earlier phases 

of the algorithm. The second best is BC (32%) even though it 

reaches the worst precision in two networks in earlier phases. 

Nevertheless, this weight model achieves a very high precision 

especially in later phases, where it achieves the highest 

precision in more networks than BM except for the cases when 

the initial states are of the Bernoulli distribution. Furthermore, 

we can see that also LD (in 1% of the cases) has the highest 

precision in three networks in earlier phases. Regarding the 

least precise weight models, CW (in 99%) achieves the 

smallest precision in all the networks and in all the phases 

except for two cases when BC (<1%) achieves less precision 

than this model.  

In the next part, we analyze the precision in the weakly 

Fig. 1. Representative of strongly connected networks Fig. 2. Representative of weakly connected networks 
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connected networks (Table 2). At first, we again focus on the 

scenario when the initial states are of the Gaussian 

distribution. Here, CW reaches the lowest precision in all 

cases just like in the strongly connected networks. The highest 

precision is reached by BM in all the cases except for six when 

BC is more precise. However, in contrast to the experiments 

executed in the strongly connected networks, BC does not 

achieve the highest precision in later phases of the algorithm. 

Regarding the experiment with the Uniform distribution, the 

lowest precision is achieved by CW in 70 cases and BC in 30 

cases. BC achieves the lowest precision more frequently in 

earlier phases of the algorithm. Regarding the highest 

precision, BM achieves the best results in 91 cases and LD in 

9 cases (the distribution is almost uniform within all the 

phases of the algorithm). For the Bernoulli distribution, CW 

achieves the lowest precision in 56 cases and BC in 44 cases. 

BC achieves the lowest precision in the most networks only at 

the 100th iteration, then at the 200th iteration, both weight 

models have the lowest precision in the same number of the 

networks and from the 300th iteration, CW is the least precise 

in more networks than BC. BM achieves the highest precision 

in all 100 cases. 

Overall (see Fig. 5 and Fig. 6), we can see that BM achieves 

the highest precision in 95 % of the cases and so, is a 

significantly more precise than the other examined weight 

models in weakly connected networks. LD is the second most 

precise weight model and achieves the highest precision in 3 

% of the cases. The third most precise model is BC, which is 

the most precise in 3 cases in earlier phases of the algorithm (2 

%). Regarding the least precise weight models, the worst one 

is CW, which achieves the lowest precision in 75 % of the 

cases. The other model that has the lowest precision at least in 

one case is BC (in 25 %).  

The complete comparison (the extremes in the strongly and 

the weakly connected networks are shown together in one 

graph depicted in Fig. 7). 

B. Estimation precision by examined weight models 

In the next section, our attention is turned to the average 

values of the estimation precision by the examined weight 

models. We depict the relative average deviation calculated 

from the least precise estimates in all ten networks for both the 

strongly and the weakly connected ones, the maximal and the 

minimal deviation of the least precise estimate within ten 

networks for each iteration and for each distribution of the 

initial values.  

Initially, we focus on an analysis of the average relative 

deviations of the least precise estimates in each examined 

phase of the algorithm. We depict the values calculated as the 

average from the relative deviations in all ten networks 

separately for each phase and each distribution of the initial 

values. The results are shown in Fig. 8 – Fig. 13 and in Table 

1. The average deviation in the strongly connected networks

initiated with states of the Gaussian distribution decreases as 

the number of the iterations grows for each examined model.  

For the Gaussian distribution, the least precise model is CW, 

whose deviations are from the interval <8,3E-01%, 1,1E-

02%>. MD is the second lowest precise weight model and its 

average deviations take the values from <3,8E-01%, 4,1E-

04%>. The third model in terms of the average precision is BC 

with <2,3E-01, 1,2E-06>.  The fourth and the fifth models are 

MH with <9,6E-02%, 5,7E-09%>, and LD with <8,2E-02%, 

1,2E-09%>. The most precise at all the iterations is BM 

<7,3E-02%, 1,4E-10>.  

The performance of the weight models regarding the 

Fig. 3.  Weight models with highest precision in strongly connected networks 

(percentage ratio) 

Fig. 4.  Weight models with lowest precision in strongly connected networks 

(percentage ratio) 

Fig. 5.  Weight models with highest precision in weakly connected networks 

(percentage ratio) 

Fig. 6.  Weight models with lowest precision in weakly connected networks 

(percentage ratio) 
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estimation precision for the Uniform distribution and the 

Bernoulli distribution does not vary from the previous 

scenario, i.e. CW has the smallest average precision in each 

phase, MD is the second least precise etc.. However, the 

values of the deviations are significantly higher for the 

Uniform distribution of the initial values compared with the 

Gaussian one. CW takes the values from <8,5E+01%, 

1,8E+00%>, MD from <4,5E+01%, 6,8E-02%>, BC 

<3,1E+01%, 3,0E-04%> , MH <10.71%, 7.900937e-07%>, 

LD <9,0E+00%, 1,7E-07%>, and BM <7,8E+00%, 1,7E-

08%>.  For the Bernoulli distribution, the deviation of CW 

takes the values from <1,4E+02%, 6,4E-01%>, MD 

<6,1E+01%, 1,5E-02%>, BC <5,4E+01%, 5,4E-04%>, MH 

<1,3E+01%, 3,1E-07%>, LD <1,0E+01%, 7,1E-08%> and 

BM <3,7E-02%, 4,1E-11%>. The precision is smaller 

compared with the Gaussian distribution except for BM, 

which achieves a higher precision in all the phases for the 

Bernoulli distribution in (<3,7E-02%, 4,1E-11%>).  A 

comparison of the results for the Uniform and the Bernoulli 

distribution shows that MD, MH, and LD achieves a higher 

precision for the Bernoulli distribution except for the 100th 

iteration. CW also achieves a higher precision for the 

Bernoulli distribution excluding the 100th, the 200th, and the 

300th iteration. BC is extremely imprecise for the Bernoulli 

distribution and so, the precision is lower at each iteration 

compared with the Uniform distribution. Unlike BC, BM 

achieves a very high precision, i.e. it is more precise at each 

iteration compared with the Uniform distribution.  

In the following paragraphs, we turn our attention to the 

results achieved in the weakly connected networks. Like in the 

previous analysis, the deviation of the least precise estimates 

decreases as the number of the iteration grows regardless of 

the underlying weight model and the distribution of the initial 

states. For the Gaussian distribution, CW has the lowest 

average precision at each iteration, taking values from 

<3,7E+00%, 3,7E-01%>. The second lowest precise is MD 

<2,1E+00%, 1,6E-01%>, BC is the third imprecise 

<1,5E+00%, 6,5E-02%>, then, MH <9,2E-01%, 4,3E-0%2>, 

LD <8,1E-01%, 2,9E-02%> and BM is the most precise and 

takes <6,7E-01%, 1,7E-02%>. 

For the initial states with the Uniform distribution, an 

interesting phenomenon unobserved in the previous analyses 

appears – the order of the weight models sorted according to 

the precision changes over the iterations. Specifically, BC is 

the second least precise at the 100th – the 400th iteration, 

however, achieves the third lowest precision at the 500th – the 

1000th. The deviation of least precise estimates of BC take the 

values from <1,3E+02%, 6,9E+00%>. CW, whose 

deviations are from <1,6E+02%, 2,8E+01%>, is the least 

precise at each examined iteration. MD is the third least 

precise at the 100th – the 400th iteration, and the second least 

precise at the 500th – the 1000th iteration. Its deviations take 

the values from the interval <1,1E+02%, 9,0E+00%>. The 

next most imprecise model is MH with <6,2E+01%, 

2,0E+00%> closely followed by LD <5,4E+01%, 1,3E+00%>. 

The most precise is BM, whose deviations are from  

<4,2E+01%, 7,2E-01%>. The models achieve a significantly 

lower precision compared with the scenario when the 

Gaussian distribution is used like in the strongly connected 

networks. Regarding the Bernoulli distribution, we can see 

again that the order of the weight models sorted according to 

the estimation precision changes like for the Uniform 

distribution. However, in this case, BC is the least precise at 

the 100th – the 700th iteration. For the rest of the iterations, this 

weight model is the second least precise. Its average 

deviations of the least precise estimates are from <4,8E+02%, 

4,3E+01%>. CW is the second least precise at the 100th – the 

700th iteration and the most imprecise at the 800th – the 

1000th iteration. Then, the next models are MD <2,1E+02%, 

2,2E+01%>, MH <1,3E+02%, 5,5E+00%> and LD 

<1,1E+02%, 3,6E+00%>. BM reaches the highest average 

precision <3,9E-01%, 1,2E-02%>.  Compared with the 

Gaussian distribution of the initial values, the precision for the 

Bernoulli distribution is lower for each weight models at each 

iteration except for BM, whose precision is higher at each 

iteration.  The same character (for both BM and the rest 

weight models) is observed also in a comparison with the 

Uniform distribution.  

A comparison of the achieved precisions in the strongly and 

the weakly connected networks shows that the algorithm is 

more precise in the strongly connected networks at the 

examined iterations regardless of the underlying weight 

model. This difference is more significantly observable at later 

iterations.  The deviation of the least precise estimates has a 

declining character in both types of the networks, however, in 

the strongly connected ones, the decrease is more intensive. 

Consequently, we focus our attention on the maximal and 

the minimal deviation, i.e. we depict two values - the relative 

deviation in the networks where it achieves the smallest and 

the largest value, respectively (for each iteration and for each 

distribution of the initial values separately). From the results 

(see Fig. 14 – Fig. 19), we can see that in the strongly 

connected networks, the weight models are sorted in the 

descending order according to the maximal deviation as 

Fig. 7.  Overall evaluation of examined weight models - weight models with highest (left) and lowest (right) precision 
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follows: CW, MD, BC, MH, LD, and BM. This order is the 

same for all the examined iterations and the used distributions 

of the initial values – the same as for the average deviations. 

CW achieves also the worst result in terms of the minimal 

deviation of the least precise estimates at all the examined 

iterations and for all the distributions of the initial values. For 

the Gaussian distribution, MD has the second largest minimal 

deviations at nine iterations and the fourth largest one at one 

iteration. 

For the Uniform distribution, it achieves the second largest 

minimal deviations at nine iterations and the third highest one 

at one iteration. In the scenario when the Bernoulli distribution 

is used, MD has the second largest minimal deviation at all ten 

examined iterations. MH has the third largest minimal 

deviation at nine iterations for the Gaussian distribution, at 

nine iterations for the Uniform distribution, and at ten 

iterations for the Bernoulli distribution. Furthermore, this 

weight model has the second largest minimal deviation at one 

iteration for the Gaussian and the Uniform distribution. 

Regarding LD: for the Gaussian distribution, its largest 

deviation is the fourth largest at eight iteration, the fifth largest 

(or the second smallest) at two iterations, and the third largest 

at one iteration. For the Uniform distribution, it has the fourth 

largest minimal deviation at seven iterations, the fifth largest 

one at two iterations, and the smallest one at one iteration. For 

the Bernoulli distribution, it has the fourth largest minimal 

deviation at each iteration. BC has the smallest minimal 

deviation at the most number of the iterations (eight iterations 

for the Gaussian distribution, nine iterations for the Uniform 

distribution). At one iteration for the Gaussian distribution, it 

has the fourth and fifth largest minimal deviation. Except 

these, the minimal deviation of BC achieves the fourth largest 

 

  
Fig. 8. Comparison of estimation precision reached for examined weight 

models in strongly connected networks with Gaussian distribution of initial 

values in various phases of algorithm 

Fig. 11. Comparison of estimation precision reached for examined weight 

models in weakly connected networks with Gaussian distribution of initial 

values in various phases of algorithm 

  
Fig. 9. Comparison of estimation precision reached for examined weight 

models in strongly connected networks with Uniform distribution of initial 

values in various phases of algorithm 

Fig. 12. Comparison of estimation precision reached for examined weight 

models in weakly connected networks with Uniform distribution of initial 

values in various phases of algorithm 

  
Fig. 10. Comparison of estimation precision reached for examined weight 

models in strongly connected networks with Bernoulli distribution of initial 

values in various phases of algorithm 

Fig. 13. Comparison of estimation precision reached for examined weight 

models in weakly connected networks with Bernoulli distribution of initial 

values in various phases of algorithm 
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value at one iteration for the Uniform distribution. For the 

Bernoulli distribution, its minimal deviation is the fifth largest 

at each iteration. BM has the fifth largest deviation at seven 

iterations, the smallest one at two iterations, and the fourth 

largest one at one iteration for the Gaussian distribution. For 

the Uniform distribution, the fifth largest deviation is achieved 

at eight iterations and the fourth largest one at two iterations. 

For the Bernoulli distribution, BM has the smallest minimal 

deviation at all ten iterations.  

In the weakly connected networks, CW has the largest 

maximal deviation at each iteration for the Gaussian and the 

Uniform distribution and the second largest one at each 

iteration for the Bernoulli distribution. MD achieves the 

second largest maximal deviation at seven iterations and the 

third largest one at three iterations for the Gaussian 

distribution. For the Uniform distribution, this weight has the 

second largest maximal deviation at nine iterations and the 

third largest one at one iteration. For the Bernoulli 

distribution, MD has the third maximal deviation at each 

iterations. MH has the fourth largest maximal deviation at 

each iteration for each distribution. LD achieves the fifth 

largest maximal deviation at eight iterations and the smallest 

one at two iterations for the Gaussian distribution.  For the 

Uniform and the Bernoulli distribution, it has the fifth largest 

maximal deviation at ten iterations. BC achieves the second 

largest maximal deviation at three iterations and the third 

largest one at seven iterations, both for the Gaussian 

distribution. For the Uniform distribution, this weight model 

has the second largest deviation at one iteration and the third 

largest deviation at nine iterations. For the Bernoulli 

distribution, it achieves the largest maximal deviation at each 

iterations. BM has the fifth largest maximal deviation at two 

iterations and the smallest one at eight iterations. For the 

Uniform and the Bernoulli distribution, this weight has the 

 

  
Fig. 14. Comparison of ranges of estimation precision reached for examined 

weight models in strongly connected networks with Gaussian distribution of 

initial values in various phases of algorithm 

Fig. 17. Comparison of ranges of estimation precision reached for examined 

weight models in weakly connected networks with Gaussian distribution of 

initial values in various phases of algorithm 

  
Fig. 15. Comparison of ranges of estimation precision reached for examined 

weight models in strongly connected networks with Uniform distribution of 

initial values in various phases of algorithm 

Fig. 18. Comparison of ranges of estimation precision reached for examined 

weight models in weakly connected networks with Uniform distribution of 

initial values in various phases of algorithm 

  
Fig. 16. Comparison of ranges of estimation precision reached for examined 

weight models in strongly connected networks with Bernoulli distribution of 

initial values in various phases of algorithm 

Fig. 19. Comparison of ranges of estimation precision reached for examined 

weight models in weakly connected networks with Bernoulli distribution of 

initial values in various phases of algorithm 
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smallest deviation at each iteration.  

Overall for the Gaussian distribution, the maximal deviation 

is the smallest for each iteration and weight model except for 

BM, which achieves the smallest values at each iteration for 

the Bernoulli distribution. A comparison of the Uniform and 

the Bernoulli distribution shows that CW achieves a smaller 

maximal deviation only at the 100th – the 300th iteration for the 

Uniform distribution, MD only at the 100th, MH achieves 

better results at each iteration for the Bernoulli distribution, 

just like LD. Vice versa, BC has a smaller maximal deviation 

at each iteration for Uniform distribution and BM, as 

mentioned above, is the best in this aspect for the Bernoulli 

distribution. Regarding the smallest minimal deviation: the 

character of the results is the same as in the previous analysis, 

i.e. for the Gaussian distribution, the maximal deviation is the 

smallest for each iteration and weight model except for BM, 

which achieves the best results for the Bernoulli distribution. 

The smallest minimal deviations for the Uniform distribution 

are smaller than for the Bernoulli distribution except for LD at 

the 1000th iteration, BC at the 800th – the 1000th iteration and 

for BM at each iteration. So, a comparison between the 

Uniform and the Gaussian distribution shows that the largest 

maximal deviations reach smaller values for the Bernoulli 

distribution, while, the smallest ones for the Uniform one.  

Regarding the minimal deviation in the weakly connected 

networks, CW reaches the largest minimal deviation at each 

iteration and for each distribution. MD reaches the second 

largest minimal deviation at each iteration for the Gaussian 

and the Bernoulli distribution. For the Uniform distribution, 

the second largest minimal deviation is observed at eight 

iterations and the third largest one at two iterations. MH has 

the third largest minimal deviation at nine iterations and the 

fourth one at one iteration for the Gaussian distribution. For 

the Uniform and the Bernoulli distribution, it has the fourth 

largest minimal deviation at each iteration. BC has the third 

largest minimal deviation at one iteration and the fourth 

largest one at nine iterations for the Gaussian distribution. For 

the Uniform distribution, BC achieves the second largest 

minimal deviation at two iterations and the third largest one at 

eight iterations. For the Bernoulli distribution, this weight 

model has the third largest minimal deviation at each iteration. 

BM has the largest minimal deviation at each iteration and for 

each distribution of the initial values. 

Overall for the Gaussian distribution, the maximal deviation 

has the same character as for in the strongly connected 

networks. Regarding the Uniform distribution, all the models 

achieve a smaller maximal deviation at each iteration 

compared with the Bernoulli distribution except for BM. The 

smallest minimal deviations take the lowest value for the 

Gaussian distribution for each iteration and each weight model 

except for BM, whose smallest deviations take the smallest 

values at the 100th – the 300th and the 500th – the 1000th 

iterations for the Bernoulli distribution. The difference 

between the Uniform and the Bernoulli distribution is as 

follows: CW, MD, and MH have a smaller minimal deviation 

at each iteration for the Uniform distribution. LD also achieves 

better results for the Uniform distribution except for the 100th 

iteration. BC is paradoxically better for the Bernoulli 

distribution except for the 100th iteration. BM have a smaller 

minimal deviation at each iteration for the Bernoulli 

distribution. 

Comparing the results in the strongly and the weakly 

connected networks, we can see that the maximal and the 

minimal deviations are smaller at each iteration, for each 

distribution of the initial values, and for each examined model 

in the strongly connected networks. 

From the results, we can also see an interesting 

phenomenon related to BC. In the strongly connected 

networks, it achieves the largest maximal precision at eight 

iterations for the Gaussian distribution and at nine iterations 

for the Uniform distribution. So, this weight model achieves 

the largest maximal precision at the most iterations in the 

strongly connected networks. Paradoxically, in the weakly 

connected networks, this weight achieves the largest minimal 

deviations at all the iterations when the initial states are of the 

Bernoulli distribution. 

IV.  CONCLUSION 

We examined the precision of the chosen weight models in 

various phases of the average consensus algorithm. We 

focused our attention on the Constant, the Maximum Degree, 

the Metropolis-Hastings, the Local Degree, the Best Constant 

and the Biphasically configured Metropolis-Hastings weight 

model. We examined the deviation of the least precise 

estimate from the real value of the average in ten strongly and 

ten weakly connected networks for the initial states of a 

Gaussian, a Uniform and a Bernoulli distribution. The first 

experiment was focused on finding the most and the least 

precise weight model for each iteration and for each 

distribution of the initial values. We can see that the 

Biphasically configured Metropolis-Hastings weight model 

achieved the highest precision in the most cases (in 80.83 %). 

The second most precise model is the Best Constant weight 

model with 17.17% of the cases. However, this weight model 

achieves also the lowest precision in 12.67% of the cases. In 

the strongly connected networks, this model achieved the 

highest precision more often in later phases of the algorithm, 

while, in the weakly connected ones, it achieved the highest 

precision in later phases. The third most precise model (and 

the last one that achieves the highest precision at least in one 

case) is the Local Degree weight model, which achieves the 

highest precision in 2% of the cases. Regarding the models 

with the lowest precision, the Constant weight model was the 

least precise in 87.33% cases. The second and also the last 

model that achieves the lowest precision at least once is the 

Best Constant weight model – as mentioned earlier, it 

achieved the lowest precision in 12.67% of all the cases. This 

model was especially imprecise for the Bernoulli distribution. 
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The next experiment dealt with the average, the maximal 

and the minimal precision for each examined iteration and 

each distribution of the initial values. The results confirmed 

the previous experiment and so, a very high precision of the 

Biphasically configured Metropolis-Hastings weight model 

was proved (especially, for the Bernoulli distribution of the 

initial values). However, we can see the interesting 

phenomenon that the Best Constant weight model achieves the 

highest maximal precision at many examined iterations in the 

strongly connected networks. 

 

 

 

 

 

 

APPENDIX 

TABLE I 

AVERAGE DEVIATION OF LEAST PRECISE ESTIMATES 

 

Average deviation of least precise estimates in strongly connected networks 

d m Label of iteration 

  100 it. 200 it. 300 it. 400 it. 500 it. 600 it. 700 it. 800 it. 900 it. 1000 it. 

G
au

ss
ia

n
 

CW 8,3E-01 3,8E-01 2,0E-01 1,2E-01 7,4E-02 4,8E-02 3,2E-02 2,2E-02 1,6E-02 1,1E-02 

MD 3,8E-01 1,2E-01 4,8E-02 2,2E-02 1,1E-02 5,5E-03 2,9E-03 1,5E-03 7,9E-04 4,1E-04 

MH 9,6E-02 1,0E-02 1,5E-03 2,5E-04 4,0E-05 6,8E-06 1,2E-06 2,0E-07 3,3E-08 5,7E-09 

LD 8,2E-02 7,7E-03 9,6E-04 1,3E-04 1,9E-05 2,8E-06 4,0E-07 5,8E-08 8,5E-09 1,2E-09 

BC 2,3E-01 3,0E-02 7,1E-03 2,0E-03 5,7E-04 1,6E-04 4,9E-05 1,4E-05 4,2E-06 1,2E-06 

BM 7,3E-02 5,5E-03 5,3E-04 5,7E-05 6,3E-06 7,2E-07 8,2E-08 9,5E-09 1,1E-09 1,4E-10 

U
n

if
o

rm
 

CW 8,5E+01 4,5E+01 2,8E+01 1,7E+01 1,1E+01 7,5E+00 5,1E+00 3,6E+00 2,5E+00 1,8E+00 

MD 4,5E+01 1,7E+01 7,5E+00 3,6E+00 1,8E+00 9,1E-01 4,7E-01 2,4E-01 1,3E-01 6,8E-02 

MH 1,1E+01 1,3E+00 2,0E-01 3,4E-02 5,6E-03 9,5E-04 1,6E-04 2,7E-05 4,6E-06 7,9E-07 

LD 9,0E+00 9,8E-01 1,3E-01 1,8E-02 2,6E-03 3,8E-04 5,5E-05 8,0E-06 1,2E-06 1,7E-07 

BC 3,1E+01 6,2E+00 1,7E+00 4,7E-01 1,4E-01 4,0E-02 1,2E-02 3,5E-03 1,0E-03 3,0E-04 

BM 7,8E+00 6,8E-01 6,9E-02 7,7E-03 8,6E-04 9,8E-05 1,1E-05 1,3E-06 1,5E-07 1,7E-08 

B
er

n
o

u
ll

i 

CW 1,4E+02 6,1E+01 3,1E+01 1,6E+01 8,7E+00 4,9E+00 2,8E+00 1,7E+00 1,0E+00 6,4E-01 

MD 6,1E+01 1,6E+01 4,9E+00 1,7E+00 6,3E-01 2,6E-01 1,2E-01 5,7E-02 2,8E-02 1,5E-02 

MH 1,2E+01 8,9E-01 9,8E-02 1,4E-02 2,3E-03 3,7E-04 6,3E-05 1,1E-05 1,8E-06 3,1E-07 

LD 1,0E+01 6,4E-01 6,3E-02 8,0E-03 1,1E-03 1,6E-04 2,3E-05 3,3E-06 4,8E-07 7,1E-08 

BC 5,4E+01 1,1E+01 3,0E+00 8,3E-01 2,4E-01 7,1E-02 2,1E-02 6,2E-03 1,8E-03 5,4E-04 

BM 3,7E-02 2,2E-03 2,0E-04 2,0E-05 2,2E-06 2,4E-07 2,7E-08 3,1E-09 3,6E-10 4,1E-11 

Average deviation of least precise estimates in weakly connected networks 

G
au

ss
ia

n
 

CW 3,7E+00 2,1E+00 1,4E+00 1,0E+00 7,8E-01 6,2E-01 5,2E-01 4,6E-01 4,1E-01 3,7E-01 

MD 2,1E+00 1,0E+00 6,2E-01 4,6E-01 3,7E-01 3,0E-01 2,5E-01 2,1E-01 1,8E-01 1,6E-01 

MH 9,2E-01 4,6E-01 3,1E-01 2,2E-01 1,6E-01 1,2E-01 9,5E-02 7,4E-02 5,7E-02 4,3E-02 

LD 8,1E-01 4,0E-01 2,6E-01 1,8E-01 1,3E-01 9,6E-02 7,2E-02 5,3E-02 3,9E-02 2,9E-02 

BC 1,5E+00 7,5E-01 5,1E-01 3,5E-01 2,6E-01 1,9E-01 1,4E-01 1,1E-01 8,4E-02 6,5E-02 

BM 6,7E-01 3,7E-01 2,2E-01 1,4E-01 9,5E-02 6,6E-02 4,6E-02 3,3E-02 2,4E-02 1,7E-02 

U
n

if
o
rm

 

CW 1,6E+02 1,0E+02 8,4E+01 6,9E+01 5,7E+01 4,9E+01 4,2E+01 3,6E+01 3,2E+01 2,8E+01 

MD 1,1E+02 6,9E+01 4,9E+01 3,6E+01 2,8E+01 2,2E+01 1,7E+01 1,4E+01 1,1E+01 9,0E+00 

MH 6,2E+01 3,2E+01 1,9E+01 1,3E+01 8,8E+00 6,4E+00 4,7E+00 3,4E+00 2,6E+00 2,0E+00 

LD 5,4E+01 2,7E+01 1,6E+01 1,0E+01 6,8E+00 4,7E+00 3,4E+00 2,4E+00 1,8E+00 1,3E+00 

BC 1,3E+02 8,4E+01 5,5E+01 3,8E+01 2,7E+01 2,0E+01 1,5E+01 1,2E+01 9,0E+00 6,9E+00 

BM 4,2E+01 2,0E+01 1,1E+01 6,8E+00 4,5E+00 3,0E+00 2,0E+00 1,4E+00 1,0E+00 7,2E-01 

B
er

n
o
u

ll
i 

CW 3,0E+02 2,1E+02 1,6E+02 1,3E+02 1,1E+02 9,7E+01 8,6E+01 7,6E+01 6,6E+01 6,0E+01 

MD 2,1E+02 1,3E+02 9,8E+01 7,6E+01 6,0E+01 4,8E+01 3,9E+01 3,2E+01 2,7E+01 2,2E+01 

MH 1,3E+02 7,5E+01 5,0E+01 3,4E+01 2,4E+01 1,8E+01 1,3E+01 9,6E+00 7,3E+00 5,5E+00 

LD 1,1E+02 6,5E+01 4,2E+01 2,8E+01 1,9E+01 1,3E+01 9,5E+00 6,8E+00 5,0E+00 3,6E+00 

BC 4,8E+02 3,5E+02 2,5E+02 1,9E+02 1,5E+02 1,1E+02 8,6E+01 6,9E+01 5,4E+01 4,3E+01 

BM 3,9E-01 2,3E-01 1,5E-01 9,9E-02 6,8E-02 4,7E-02 3,3E-02 2,3E-02 1,6E-02 1,2E-02 
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TABLE II 

SUMMARIZATION OF WEIGHT MODELS WITH HIGHEST AND LOWEST PRECISION IN STRONGLY CONNECTED NETWORKS 

 

Highest and lowest precision of least precise estimates in strongly connected networks 

d m Label of iteration 

  100 it. 200 it. 300 it. 400 it. 500 it. 600 it. 700  800 it. 900 it. 1000 it. 

  B W B W B W B W B W B W B W B W B W B W 

G
au

ss
ia

n
 

CW - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 

MD - - - - - - - - - - - - - - - - - - - - 

MH - - - - - - - - - - - - - - - - - - - - 

LD - - - - - - - - - - - - - - - - - - - - 

BC 3 - 3 - 4 - 5 - 5 - 5 - 5 - 5 - 6 - 6 - 

BM 7 - 7 - 6 - 5 - 5 - 5 - 5 - 5 - 4 - 4 - 

U
n

if
o

rm
 

CW - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 

MD - - - - - - - - - - - - - - - - - - - - 

MH - - - - - - - - - - - - - - - - - - - - 

LD 2 - 1 - - - - - - - - - - - - - - - - - 

BC - - 3 - 5 - 5 - 5 - 5 - 5 - 6 - 6 - 6 - 

BM 8 - 6 - 5 - 5 - 5 - 5 - 5 - 4 - 4 - 4 - 

B
er

n
o

u
ll

i 

CW - 9 - 9 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 

MD - - - - - - - - - - - - - - - - - - - - 

MH - - - - - - - - - - - - - - - - - - - - 

LD - - - - - - - - - - - - - - - - - - - - 

BC - 1 - 1 - - - - - - - - 2 - 2 - - - - - 

BM 10 - 10 - 10 - 10 - 10 - 10 - 8 - 8 - 10 - 10 - 

O
v

er
al

l 

CW - 29 - 29 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 

MD - - - - - - - - - - - - - - - - - - - - 

MH - - - - - - - - - - - - - - - - - - - - 

LD 2 - 1 - - - - - - - - - - - - - - - - - 

BC 3 1 6 1 9 - 10 - 10 - 10 - 12 - 13 - 12 - 12 - 

BM 25 - 23 - 21 - 20 - 20 - 20 - 18 - 17 - 18 - 18 - 

Highest and lowest precision of least precise estimates in weakly connected networks 

G
au

ss
ia

n
 

CW - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 

MD - - - - - - - - - - - - - - - - - - - - 

MH - - - - - - - - - - - - - - - - - - - - 

LD - - - - - - - - - - - - - - - - - - - - 

BC 2 - 1 - 1 - 1 - 1 - - - - - - - - - - - 

BM 8 - 9 - 9 - 9 - 9 - 10 - 10 - 10 - 10 - 10 - 

U
n

if
o

rm
 

CW - 6 - 5 - 6 - 6 - 6 - 7 - 7 - 9 - 9 - 9 

MD - - - - - - - - - - - - - - - - - - - - 

MH - - - - - - - - - - - - - - - - - - - - 

LD 2 - - - 1 - - - 1 - 1 - 1 - 1 - 1 - 1 - 

BC - 4 - 5 - 4 - 4 - 4 - 3 - 3 - 1 - 1 - 1 

BM 8 - 10 - 9 - 10 - 9 - 9 - 9 - 9 - 9 - 9 - 

B
er

n
o
u

ll
i 

CW - 3 - 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 

MD - - - - - - - - - - - - - - - - - - - - 

MH - - - - - - - - - - - - - - - - - - - - 

LD - - - - - - - - - - - - - - - - - - - - 

BC - 7 - 5 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 

BM 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 

O
v

er
al

l 

CW - 19 - 20 - 22 - 22 - 22 - 23 - 23 - 25 - 25 - 25 

MD - - - - - - - - - - - - - - - - - - - - 

MH - - - - - - - - - - - - - - - - - - - - 

LD 2 - - - 1 - - - 1 - 1 - 1 - 1 - 1 - 1 - 

BC 2 11 1 10 1 8 1 8 1 8 - 7 - 7 - 5 - 5 - 5 

BM 26 - 29 - 28 - 29 - 28 - 29 - 29 - 29 - 29 - 29 - 
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