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Abstract— Fault localization is considered one of the most 

challenging activities in the software debugging process. It is vital 

to guarantee software reliability. Hence, there has been a great 

demand for automated methods that can pinpoint faults for 

software developers. Various fault localization techniques that 

are based on graph mining have been proposed in the literature. 

These techniques rely on detecting discriminative sub-graphs 

between failing and passing traces. However, these approaches 

may not be applicable when the fault does not appear in a 

discriminative pattern. On the other hand, many approaches 

focus on selecting potentially faulty program components 

(statements or predicates) and then ranking these components 

according to their degree of suspiciousness. One of the difficulties 

encountered by such approaches is to understand the context of 

fault occurrence. To address these issues, this paper introduces 

an approach that helps in analyzing the context of execution 

traces based on control flow graphs. The proposed approach uses 

the edge-ranking of basic blocks in software programs using 

Dstar that proved to be more effective than many fault 

localization techniques. The proposed method helps in detecting 

some types of faults that could not be previously detected by 

many other approaches.  Using Siemens benchmark, experiments 

show the effectiveness of the proposed technique compared to 

some well-known approaches such as Dstar, Tarantula, SOBER, 

Cause Transition and Liblit05. The percentage of localized faulty 

versions versus the percentage of code examined is taken as a 

measure. For instance, when the percentage of examined code is 

30%, the proposed technique can localize nearly 81% of the 

faulty versions, which outperforms the other four techniques.  

Index Terms—Bug localization, basic block, control flow 

graph, edge – ranking. 

I. INTRODUCTION 

anual software debugging is not only a time consuming, 

tedious and costly task but also error-prone [1]-[2]. This  
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process is crucial yet resource-intensive in software 

engineering [3], with 50% to 80% of software maintenance 

costs attributed to fix [4]. An intuitive way to localize faults2 

in software programs is to analyze the memory dump of the 

faulty program. Another way is to insert a "print" statement 

around a suspicious region. However, all these manual 

solutions proved to be inefficient in locating bugs. Various 

approaches have been introduced in literature to automate the 

process of locating faults in efficient ways. Slice-based 

methods have been introduced to reduce the domain of 

debugging search via slicing. If a test case fails due to an 

incorrect value of a variable at a statement, then as fault 

should be found in the slice associated with that variable-

statement pair [6]. Static slicing and all extended approaches 

based on slicing [7]-[8] do not make use of the input values 

that discover the fault. Moreover, dynamic slicing methods, 

which determine program slices to further reduce the 

debugging search domain for possible locations of a fault, may 

consume excessive time and space. Renieris et al [10] have 

proposed an approach based on nearest neighbour queries 

where the distance between program execution abstractions is 

determined. This approach assumes that there is one faulty run 

and a number of successful runs. The successful run that is 

most similar to the faulty run is determined based on a 

distance criterion, and then the difference between both runs is 

used to locate the fault. 

Amongst the most effective diagnostic techniques is Spectra 

Based Fault Localization (SBFL) [10]-[13], also known as 

code coverage techniques. SBFL, which has recently shown 

much popularity to be a very efficient and simple technique in 

software debugging, focuses on identifying, then assigning a 

suspicious value for each software component (statement, 

predicate, function, etc.) and finally ranking them according to 

how likely they are regarded as fault-relevant [15]. 

However, SBFL suffers from some drawbacks that cause 

incorrect results. One of these problems is that SBFL cannot 

provide enough information to understand the context of 

faults, because of assessing the suspiciousness of statements or 

predicates individually [16]. Furthermore, in some approaches 

as in [17]-[21] predicates are considered in isolation from each 

other, which may lead to reducing the ability to detect certain 

faults that are generated from a specific transition from one 
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point (predicate) to another[22]. Many approaches use graph 

mining for software bug localization. These approaches rely 

mostly on extracting discriminative sub-graphs as suspicious 

areas in programs [21] -[23]. In fact, these discriminative sub-

graphs do not provide information, which effectively helps in 

finding the difference between correct and incorrect 

executions paths. 

In this paper, a context-aware bug localization technique 

that uses control flow graphs is proposed. The execution 

behavior for failing and passing paths is represented by control 

flow graphs that are used later in analyzing the executed test 

cases. The proposed method provides the context of bug to 

facilitate identifying, understanding and fixing the bug.  

The main contributions of this paper include three aspects: 

1. Using a lightweight approach that is fully automatic and 

broadly applicable based on execution runs. 

2. Combining control flow edge coverage with block 

coverage and calculating their suspiciousness to rank the 

basic blocks in descending order of their suspiciousness 

value. 

3. The proposed method produces promising results 

especially with some type of faults that cannot be 

localized using some SBFL methods such as missing 

statements. 

This paper is organized as follows: Section 2 presents 

related work. Section 3 gives a detailed description of the 

proposed technique, followed by an illustrative example and 

experimental evaluation. Finally, Section 4 concludes this 

paper and presents the future work. 

II. RELATED WORK 

    Many approaches have been proposed for automating fault 

localization and improving the rate of identifying faults[24]. 

Graph mining based approaches as in [22], [24]-[25] use the 

graph structure to demonstrate the execution behavior of 

software programs. In these approaches, graph nodes represent 

code units such as predicates, functions or basic blocks and 

graph edges represent the relations among these code units. 

Recently, many studies have utilized graph-mining techniques 

in software fault localization. The behavior of a software 

program can be represented as a call graph or a subset of a 

control flow graph. These techniques may mine the dynamic 

execution graphs, which are labelled as correct or incorrect 

according to the termination state of each execution. The 

termination state is determined as correct or incorrect based on 

whether the expected results are met. 

Di Fatta et al. [25]and Liu et al. [26] propose approaches that 

rely on applying closed frequent pattern mining and using 

these patterns as features for training a classifier. However, in 

large-scale software programs, the number of frequent sub-

graphs becomes large therefore increasing mining complexity. 

Moreover, these approaches do not consider the weight of 

each transition in their analysis. Due to the expensive 

computation of applying closed frequent pattern mining to 

fault localization, discriminative pattern mining approaches 

have been proposed by many studies [27]-[29]. 

In [21], the proposed approach is based on LEAP algorithm 

[28] to extract program behavior graphs in two levels of 

granularity: basic blocks and function calls. The extracted 

discriminative sub-graphs can separate incorrect executions 

from correct ones, then, the informative signature of faults is 

determined. Top-K LEAP is an entropy-based algorithm, 

which identifies the top k ranked discriminate sub-graphs. For 

some non-deterministic faults, for which the corresponding 

signatures are not highly discriminative, discriminative pattern 

mining methods might be inefficient. These approaches may 

also have problems in scalability. 

Some approaches apply data mining algorithms on weighted 

call graphs[30]. According to these approaches, edge weight 

plays an important role in finding faulty method calls in faulty 

executions. However, the main problem is large granularity 

since using only method call graphs is insufficient to find all 

types of faults. Variants similarity coefficients are used in 

ranking program components. Tarantula[11]is one of the early 

techniques introduced for SBFL using statement-hit spectra. It 

is based on using the coverage statistics to assign a 

suspiciousness value to each statement in the program. 

Tarantula is based on the idea that statements, which are 

executed by faulty executions are more likely to be suspicious 

than those which are executed in successful executions. 

In [31]-[32], Ochiai and Jaccard similarity coefficients have 

also been used for fault localization. They are based on the 

same heuristic as Tarantula except that they use a different 

formula to compute suspiciousness. According to Abreu et al. 

[32], Ochiai formula is more effective in many experimental 

studies than Tarantula. Naish et al. [14]have introduced 

another formula called Op2, which proved to be effective in 

programs that have a single fault. In [17], the proposed 

statistical-based technique is based on separating effects of 

different faults and identifying predictors that are associated 

with individual faults. These predictors uncover the 

circumstances under which faults happen and reveal the 

frequencies of modes of failure, which consequently facilitates 

prioritizing debugging efforts to detect bugs. 

Liu et al.[1] have proposed an approach called SOBER which 

compares evaluation patterns of predicates of both failed and 

successful executions to isolate fault-relevant predicates. 

Causes transition [33] statistical-based approach, which is 

abbreviated as CT, is an extension of the previous work of 

Zeller et al. [34], which is based on using the Delta Debugging 

algorithm to narrow down the state difference between failing 

and successful executions according to their memory graphs. 

CT extends this idea by adding the capability of searching in 

time to searching in space. Searching in time seeks moments 

when faulty variables start to cause failures in the program. 

Despite the effectiveness of SBFL and statistical-based 

techniques, they ignore dependencies in a program where each 

component in a program is considered isolated from each 

other and regarded as independent, which may reduce their 

ability in detecting faults. However, the coverage run-time of 

program components is calculated individually. Many fault 

localization studies that use statement or predicate hit spectra 

neglect the dependency relationship between program entities, 

which may locate irrelative entities [35]. 
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In this paper, the proposed approach preserves the consistency 

of program entities in coverage and it considers the context of 

faults via path analysis. 

 

III. PRELIMINARIES AND THE PROPOSED FAULT-

LOCALIZATION TECHNIQUE 

 

A. Preliminaries 

Definition 1. A software program ∏ is formed by a 

sequence of N statements. 

Definition 2. A test suite T = {t1, t2… tm} is a collection of 

test cases that are intended to test whether the program works 

as expected or not, where m=|T| is the number of test cases. 

Definition 3. A test case is a  tuple, where I is a 

collection of input variables for determining whether the 

program being tested works as expected.  is the expected 

result.  If ∏, the test case is said to be successful and 

faulty otherwise. 

Definition 4. A basic block B in the software program is a 

sequence of statements or expressions that do not include the 

transfer of control such that if one of these statements is 

executed, all other statements are also executed. 

Definition 5. Control flow graph CFG= {N, E, P} is used to 

represent execution paths where N= {N1, N2, ···, Nm} is the set 

of nodes which represent basic blocks in the program, E= {E1, 

E2, ···, En} is the set of graph edges representing transitions 

from one basic block to another and P= {P1, P2, ···, Pk} is the 

set of execution paths 

Fig. 1 illustrates the control flow graph for a procedure called 

max and its control flow graph (CFG). 

 

procedure Max () { 

1 int a =read_int(); 

2 int b =read_int(); 

3 if (a  >  b ) { 

4 print (a); 

5 return ; 

6 } 

7 print(b); 

8 } 

        

 

 
(a) Procedure Max. 

 

 

 

 

 

 

 

 

 

 

(b) CFG of Max. 

Fig. 1.Function max with its control flow 

B. The proposed fault localization technique 

Given a faulty program to be debugged and a set of test 

cases for this program, the proposed method performs 

software-debugging going through four main phases: 

1. Constructing control flow graphs (CGF) for all test 

cases. 

2. Ranking graph nodes. 

3. Ranking graph edges. 

4. Constructing node suspiciousness list. 

 

Step 1: Constructing control flow graphs (CGF) for all test 

cases. 

Before building a CFG, the program being tested is 

instrumented by inserting a “print” statement in each basic 

block of the program. In this phase, the block-hit spectrum is 

used to collect execution traces of a program for each test 

case. The main idea behind tracing basic blocks is to cover 

different types of faults such as “missing statements” and 

perform context-aware fault detection.  

Each program is executed with different failing and passing 

runs. Each execution path is labelled as failed or passed 

according to the termination state of the program.  Then, the 

CFG is constructed based on the sequence of blocks covered 

by the execution path. If i and j are two consecutive basic 

blocks in an execution path where i appears first, then these 

two blocks are represented by nodes in the CFG and there is a 

directed edge from i to j. 

 

Step 2: Ranking graph nodes  

In this phase, the suspiciousness score of each node (basic 

block) is calculated. A suspiciousness metric is a binary 

similarity metric between the block coverage vector and the 

result vector (Fig.   2). Various suspiciousness metrics exist as 

Jaccard metric, Tarantula metric, Ochiai metric, and D* (D-

star) metric [36]. In the proposed method, D* (D-star) is used 

with * = 2 to compute the suspiciousness score of each node 

[37]. The D2 is defined as follows: 

 

            𝐷2 =
Ncf

2

Nuf+Ncs
                                                        

(1)                        

 

where Ncf is the number of failed test cases that cover a 

program entity, Nuf is the number of failed test cases that do 

not cover a program entity and Ncs is the number of passed test 

cases that cover a program entity.  

The D* metric computes the suspiciousness score at the 

level of program statements which prove its effectiveness over 

38 other metrics used for evaluation. However, the main 

problem with using a statement as the program entity is that 

statements are considered in isolation from each other and 

regarded as independent units that may reduce the ability to 

detect all types of faults.  In the proposed method, the use of 

D* is adapted such that the program entity of concern here is 

the basic block not the statement. The basic block coverage 

matrix represents the coverage information for each test case 

where (X) at basic block Bi and test case tj indicates that Bi is 

covered by tj. Each entry in the result vector indicates if that 

test case is faulty or successful. 

After calculating the suspicious score for all nodes of the 

graph that represent basic blocks of the faulty program, all 

T F 

EXIT 

ENTRY 

1 

2 

3 

4 
7 

5 
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nodes are sorted in a descending order to form the ranking list 

LN  of suspicious basic blocks. 

 

 
Fig.   2.  Coverage information for each test and basic blocks 

 

 

 Step 3: Ranking graph edges 

Because of dependencies, a suspicious node may affect all 

execution paths that cover this node and triggers the fault. 

Therefore, ranking nodes suspiciousness scores individually 

might report incorrect results. To incorporate dependencies 

between nodes and pinpoint the block that is the root cause of 

a fault, suspiciousness score is calculated for each edge in the 

graph based on the same similarity metric, D*, adopted for 

ranking nodes. The definition of the D*, as (1) where * is 

adapted to calculate a suspiciousness score for each edge e. 

In analogy to the block coverage matrix, an edge coverage 

matrix and a result vector are constructed  (Fig. 3). 

Each column in the edge column matrix represents an edge 

coverage vector that is used to compute the edge 

suspiciousness score. An (X) for edge Ei and test case tj 

indicates that Ei is covered by tj. 

 

Fig.  3.   Edge Coverage Matrix and Result Vector 

 

Step 4: Constructing node suspiciousness list 

Many studies provide a list of ranked basic blocks only after 

calculating their suspiciousness value using one of the 

similarity coefficients. In this work, edge ranking is 

incorporated into the suspiciousness value of each node. After 

ranking edges that appear in the CFG of a faulty execution, the 

suspiciousness score of each edge is assigned to both of its 

incident nodes. For example, if an edge e is incident to nodes x 

and y, the suspiciousness value of e is assigned to both x and 

y. If node x has a set of edges Ex to which it is incident, the 

maximum edge suspiciousness value of all edges in Ex is 

assigned to x. Then, all nodes are sorted in a descending order 

of their suspiciousness values to form the ranking list LE of 

suspicious basic blocks according to the suspiciousness value 

of their edges. 

If more than one node has the same suspiciousness value, 

these nodes are ranked according to their suspiciousness value 

in the LN list formed in step 2. Finally, the node that has the 

highest suspiciousness value should be inspected first. If it 

does not contain the fault, the node with the next highest 

suspiciousness value is inspected and so on until the fault is 

found. 

 

IV. ILLUSTRATIVE EXAMPLE 

   The previous steps are illustrated through one of the 

Siemens benchmark programs, namely, schedule v4. Siemens 

benchmark [38] programs are used in this work to test the 

effectiveness of the proposed technique as will be explained in 

later sections. Fig. 4 shows a code fragment of schedule v4, 

which is a priority scheduler. This fragment contains only one 

fault at line 23. 

As step 1, The CFG of the chosen code fragment is 

generated. It contains 33 statements and 9 basic blocks. Nodes 

represent basic blocks of the faulty program and each edge in 

the CFG represents a control flow transition between one basic 

block to another. 

As shown in Table 1, nodes and edges that appear in CFG in 

Fig. 4 
TABLE 1  

NODES AND EDGES OF CFG OF FIG. 4 

 

 

Nodes 

B1 

B2 

B3 

B4 

B5 

B6 

B7 

B8 

B9 

Edges 

B1 B3 

B1 B2 

B3 B4 

B3 B9 

B4 B5 

B6 B7 

B7 B5 

B8 B1 

 
 

 

In step 2, Table 2 shows the ranking of nodes in the fragment 

code using the D2 similarity metric as in (1). According to 

Table 2, B7 is the first block to be checked for the fault, then 

B3 and so on. The fault will be detected in the second basic 

block B3. Using suspicious basic blocks ranking individually 

may not report accurate results. Because of dependencies, a 
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suspicious node may affect all execution paths that cover this 

node. 

 

 

 

 

Lines Stat. Control Flow Graph Code 
1  1    Else 

2  -  {//B8 
3  2  upgrade_process_prio(prio, ratio); 
4  -  }//B9 
5  3  break; 
6  4   case NEW_JOB: 

       ------ 
     ------ 

7  -  } 
8  5   void upgrade_process_prio(prio, ratio) 

9  6  int prio; 

10  7  float ratio; 
11  8  int count; 

12  -  {//B1: the following statements are in one block called B1 

13  9  int n; 

14  10  Ele *proc; 

15  11  List *src_queue, *dest_queue; 
16  12   if (prio >= MAXPRIO) 

17  - {//B2 

18  13  return; 

19  - }//B3 

20  14   
 

 
  

src_queue = prio_queue[prio]; 

21  15  dest_queue = prio_queue[prio+1]; 

22  16  count = src_queue->mem_count; 

23  17  if (count > 1)//bug, it should be  if (count>0) 

24  -  {//B4 

25  18  n = (int) (count*ratio + 1); 

26  19  proc = find_nth(src_queue, n); 

  ----- 

----- 

    ----- 

27  20   Ele *find_nth(f_list, n) List *f_list; int n; 
28  -  {//B5  
29  21  Ele *f_ele;  

30  22  int i; 

31  23  if (!f_list) { 

   ------ 
------ 
------ 

32  24   void unblock_process(ratio) 

33  25  float ratio; 

34  - {//B6 

35  26   int count; 

36  27  int n; 

37  28  Ele *proc; 

38  29  int prio; 

39  30  if (block_queue) 

40  -  {//B7 

41  31  count = block_queue->mem_count; 
42  32  n = (int) (count*ratio + 1); 

43  33         proc = find_nth(block_queue, n); 

Fig. 4. Fragment of schedule v4 program (Siemens Test Suite) 
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TABLE 2 

FRAGMENT CODE BASIC BLOCKS RANKING USING D2
 BASED ON BLOCKS 

SUSPICIOUSNESS VALUES ONLY. 

 

 
Rank 

 
Basic blocks 

58.615 B7 

49.629 B6 

58.363 B3 

56.828 B9 

56.828 B8 

56.828 B1 

56.081 B5 

44.645 B4 

0.426 B2 

 

In step 3, the suspiciousness score is computed for each 

edge in the CFGs of all execution traces using D2. Edges are, 

then, ranked in descending order as in Table 3. 

As shown in Table 3, (B3, B9) edge is ranked first which 

means that this transition has the greatest suspiciousness score 

and it should be inspected first, (B6, B7) is second and so on. 

 

In step 4, nodes are ranked according to the suspiciousness 

score of their edges. For example, the suspiciousness score of 

edge (B3, B9) is 64.8918 so the suspiciousness score of 

B3 = 64:8918 and B9 = 64:8918. 

 
TABLE 3 

FRAGMENT CODE EDGE RANKING USING D2. 

 

 

Rank 

 

Edges 

64.891 B3 B9 

58.615 B6 B7 

58.615 B7 B5 

58.363 B1 B3 

56.828 B8 B1 

44.645 B3 B4 

44.645 B4 B5 

0.4269 B1 B2 

 

In case node B1 has a set of edges Ex = {(B1, B2), (B1; 

B3)} to which it is incident. The suspiciousness score of (B1, 

B2) and (B1, B3) is 0.4269 and 58.363 respectively. 

Therefore, node B1 is assigned the maximum edge 

suspiciousness value in Ex which is 58.363. With the same 

procedure, node B3 is assigned the suspiciousness value 

64.891. 

 

In Table 4, a fragment of a ranking list of nodes according to 

suspicious values of their edges. This list is noted LE. 

 
TABLE 4 

FRAGMENT OF RANKING VALUES OF NODES ACCORDING TO EDGES RANKING 

 

 

Rank 

 

Basic Blocks 

64.891 B3 

64.891 B9 

58.615 B6 

58.615 B7 

58.615 B5 

58.363 B1 

56.828 B8 

44.645 B4 

0.4269 B2 B2 

 

In case, there are more than one node has the same 

suspiciousness value such as B3 and B9, step 2 is used to rank 

these nodes according to their position in LN. The final ranking 

(See Table 5) orders basic blocks in the order they should be 

inspected by developers to find the fault. After incorporating 

edge ranking, the faulty basic block is the first on the list 

instead of the second. 

 
TABLE 5 

FINAL BASIC BLOCKS RANKING LIST AFTER INCORPORATING EDGE RANKING 

 

 

Rank 

 

Basic blocks 

1 B3 

2 B9 

3 B7 

4 B5 

5 B6 

6 B1 

7 B8 

8 B4 

9 B2 
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V. EXPERIMENTAL STUDY 

 In this paper, the Siemens test suite [38] is used as a 

benchmark to compare the proposed method to other well-

known approaches for fault localization. The experiments are 

conducted on Ubuntu-15.04 platform using GCC 4.9.2 

compiler. 

 To evaluate the proposed technique, the EXAM score [39] 

is used as a measure. The EXAM score indicates the 

percentage of program elements (number of examined basic 

blocks) that needs to be examined before the first fault is 

reached. The lower the EXAM score, the better the 

performance. EXAM score is computed as follows: 

 

𝐸𝑋𝐴𝑀 score =  
Rank of the first faulty program element

Total number of executable program elements 
× 100%                                                                                  

(2) 

 

The EXAM score is used to evaluate the result based on the 

generated ranking lists in case using D* as * = 2 with basic 

blocks and incorporating edge ranking in basic blocks ranking. 

Furthermore, it is used for comparing the proposed technique 

to some well-known approaches that use SBFL. 

A. Siemens Test Suite 

    This suite was originally prepared by Siemens 

Corporation Research with the aim of studying test adequacy 

criteria [40]. Many software fault localization studies as in [1], 

[9], [37], [41]-[44] used the Siemens test suite to evaluate their 

performance. The suite contains seven programs with different 

types of injected faults. Every version contains only one fault.  

The seven programs in this suite perform a variety of tasks: 

print-tokens and print-tokens2 are lexical analyzers, schedule1 

and schedule2 are priority schedulers, replace performs 

pattern matching and substitution, tot-info computes statistics 

given input data and tcas is an aircraft collision avoidance 

system. Some versions have been excluded from the 

experiments in the same manner as several previous studies 

did as in [12], [31]-[35] due to the absence of faulty test cases 

in some versions or the absence of syntactic differences from 

correct versions of the program. Error! Reference source not 

found. provides some statistics of the programs and test cases 

in the Siemens test suite. 

The vertical axis represents the percentage of identified 

faults that are located by examining an amount of code less 

than or equal to the corresponding value on the horizontal 

axis. 

In Error! Reference source not found.(a), it can be noted 

that by examining 5% of the code, the proposed technique can 

locate all faults in the print-tokens program while using D* on 

basic blocks, only 80% of the faults can be located. 

Performing edge ranking considerably improves the results. 

For all seven programs, edge ranking provides more 

information than pure basic block ranking, thus more faults 

can be located by examining less code. 

 

 

 
 

TABLE 6 

BRIEF DESCRIPTION OF SIEMENS TEST SUITE 
 

 

 

 

B. Comparison with well-known techniques 

In [24], empirical studies have shown that Dstar [37] is more 

effective than Ochiai [32], which is in turn more effective than 

O and OP [14], RBF [44], Crosstab-based [39], H3b and H3c 

[41]. Hence, according to the previous section, the proposed 

approach is suggested to be more effective than those 

techniques. Therefore, it will be more convenient to compare 

the proposed approach with some well-known techniques that 

use different similarity coefficients to locate bugs. 

 The proposed technique is compared to Tarantula [12], 

SOBER [1], Cause Transition [33] and Liblit05[17].These 

well-known methods are often chosen for comparison in 

previous studies. To evaluate the effectiveness of a fault 

localization approach, the number of detected faults and the 

amount of code that needs to be examined manually to find the 

root cause of the error has to be considered. 

Fig.  6 shows the percentage of code that should be 

examined manually in the source code to find the main cause 

of failure compared with some well-known fault localization 

techniques. For example, by examining 30% of program code, 

82.1% of faults (faulty versions) can be detected.  

Although the proposed technique does not perform best in 

all cases, it is very promising in bug localization. When the 

percentage of examined code is approximately above 30%, the 

proposed technique can localize more faulty versions than the 

other techniques. 

 

 

 

 

 

 

 

 

 

 

 

Siemens 

Programs 

 

No.of 

faulty 

versions 

 

Executabl

e LOC 

 

No.of  

test 

cases 

 

Description 

Print_toke

ns 
5 341-342 4130 

Lexical 

analyzer 

Print_toke

n2 
9 350–354 4115 

Lexical 

analyzer 

Replace 27 508–515 5542 
Pattern 

Replacement 

Schedule 5 291-294 2650 
Priority 

scheduler 

Schedule2 9 261-263 2710 
Priority 

scheduler 

Tcas 37 133-137 1608 
Altitude 

separation 

Tot_info 20 272-274 1052 
Information 

measure 
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Fig. 5. Evaluation of the proposed approach results using Dstar with basic blocks and edge ranking for the seven Siemens programs 
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VI. CONCLUSION AND FUTURE WORK  

An edge-ranking approach is introduced in this paper to 

localize faults in faulty software programs. The proposed 

approach provides a context-aware understanding for located 

faults using control flow graphs. It combines control flow 

graphs with block coverage to calculate the suspicious score 

for each basic block for successful and failed execution paths. 

Then, all suspicious basic blocks are ranked in descending 

order based on their suspiciousness. The final ranked list 

should be inspected by developers to check the suspicious 

blocks. 

By following the ranked list of suspicious basic blocks that 

are constructed using edges ranking, the number of inspected 

basic blocks to find the fault (i.e., the search space), is 

reduced.  

Experiments are conducted to compare the effectiveness of 

the proposed technique with existing representative techniques 

using Siemens benchmark. Results of these experiments are 

promising. The percentage of localized faulty versions is 

measured against the percentage of code examined. In most 

cases, the proposed technique outperforms Tarantula, SOBER, 

CT and Liblit05. For instance, when the percentage of 

examined code is 30%, the proposed technique can localize 

nearly 81% of the faulty versions, outperforming the other 

four techniques.  

Although the proposed edge-ranking based fault localization 

approach helps in locating many types of bugs and can provide 

a context-aware understanding for these bugs, there are many 

aspects that should be considered as future work.  The 

proposed edge-ranking based approach may be enhanced by 

detecting multiple faults instead of pinpointing just the first 

bug in the program. In addition, enhancing the proposed 

method by detecting faults in huge software and not only 

locating bugs in medium and small programs. Finally, we 

suggest attempting to enhance the proposed method by 

combining some other types of graphs (such as data-flow and  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

program dependence graphs) with spectrum-fault 

localization approaches. 
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