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On nonexistence of an integer regular polygon∗

Davor Klobučar†

Abstract. In this paper we consider the question whether there is
a regular polygon in the Cartesian coordinate system such that all of its
coordinates are integers. We are not interested in the case of square
since it is trivial. We will show that a regular integer polygon does not
exist in the orthogonal coordinate plane.
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Sažetak.O nepostojanju pravilnog cjelobrojnog mnogogkuta.
Razmatra se pitanje postoji li u Kartezijevom koordinatnom sustavu
pravilan mnogokut, takav da su mu sve koordinate cjelobrojne. Slučaj
pravilnog četverokuta nas ne zanima jer je trivijalan. Pokazat će se da
u pravokutnoj koordinatnoj ravnini ne postoji pravilan cjelobrojni mno-
gokut.

Ključne riječi: pravilni mnogokut

The problem of existence of an integer regular polygon is equivalent to the
following: does there exist an integer regular polygon whose coordinates are natural,
i.e. rational numbers. It is very important to note the following: if we consider
a regular polygon with n sides, whereby n is not a prime, it suffices to study all
regular polygons having the number of sides equal to any divisor of the number n,
different from 2. If such polygons with integer coordinates do not exist, then an
integer polygon with n sides does not exist either. We will prove that the following
theorem holds:

Theorem 1. In the orthogonal coordinate plane there does not exist a regular in-
teger polygon with n sides (n > 2, n 6= 4).

In the proof we will use the following well known results:

Lemma 1. (On rational polynomial null-points) If a polynomial P (x) = anxn +
an−1x

n−1 + · · ·+ a2x
2 + a1x + a0, (an 6= 0) with integer coordinates has a rational

null-point p
q ∈ Q (p, q relatively prime), then q divides an, and p divides a0.
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Lemma 2. When n is odd,
n∑

k=1
k odd

(
n

k

)
= 2n−1.

Proof. Since
n∑

k=0
k odd

(
n

k

)
=

n∑
k=0

k odd

(
n

(n− k)

)
=

∑
k=0

k even

(
n

k

)
,

the sum over odd k makes half of the sum over all k. Since
n∑

k=0

(
n

k

)
= (1 + 1)n = 2n,

the given sum equals 2n−1.
Proof of Theorem 1. Let us assume the opposite with respect to the theorem

statement, that is, that there exists an integer regular polygon. It suffices to find an
integer polygon with n sides with the lowest vertex at the origin of the coordinate
system, where n ∈ N is a prime number, or n = 8. Let us choose the first three
vertices A, B, C of the searched polygon with n sides, as in Figure 1.
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Figure 1.

The coordinates of vertices are as follows:

A(0, 0), B(a, 0), a ∈ R+, C(a + a · cos∠CBX, a · sin∠CBX),

where

∠CBX = π − ∠ABC = π − (n− 2)π
n

=
2π

n
.

Therefore,

C(a(1 + cos
2π

n
), a sin

2π

n
).

The side AB does not have to be on the x-axis. By a rotation of all points through
an angle ϕ ∈ [0, π

2 ], we obtain new points A′, B′ and C ′, which are immediately
renamed as A, B and C. We have:

A(0, 0), B(a cosϕ, a sin ϕ),
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C(a(1 + cos
2π

n
) cos ϕ− a sin

2π

n
sin ϕ, a(1 + cos

2π

n
) sin ϕ + a sin

2π

n
cos ϕ).

We want the coordinates of points B and C, that is, bx, by, cx, cy, be integers,
wherefrom it follows that by

bx
, cx

bx
, cy

bx
are rational numbers. We may assume that

bx 6= 0, since instead of ϕ = π
2 we would have the integrality for ϕ = 0 already.

Thus,
tgϕ = q ∈ Q,

(1 + cos
2π

n
)− sin

2π

n
tgϕ ∈ Q,

(1 + cos
2π

n
)tgϕ− sin

2π

n
∈ Q.

By substituting the first equation into the other two, we obtain the necessary
condition of existence of the searched polygon (n prime or n = 8):

sin
2π

n
∈ Q & cos

2π

n
∈ Q. (1)

By a direct substitution in (1) we exclude the cases n = 8 and n = 6 (which
eliminates also the case n = 3). Now n is odd, prime and greater than 3.

It can be shown that the terms in (1) are null-points of some polynomial.
Namely, since

(cos α + i sin α)n = cos nα + i sin nα =
n∑

k=0

(
n

k

)
cosn−k α · ik · sink α.

by comparing imaginary parts, we obtain

sin nα =
(

n

1

)
cosn−1 α sin α−

(
n

3

)
cosn−3 α sin3 α + · · ·+ (−1)

n−k
2 sinn α.

For odd k there holds: cosn−k α = (cos2 α)
n−k

2 = (1 − sin2 α)
n−k

2 . Since n and k
are odd, n−k is even, and n−k

2 is an integer. Thus, sin nα is a polynomial in sin α.
Specially, sin

(
n · 2π

n

)
is a polynomial in sin

(
2π
n

)
, and since sin

(
n · 2π

n

)
= 0, the

number x = sin
(

2π
n

)
is a null-point of the polynomial:

(
n

1

)
x(1− x2)

n−1
2 −

(
n

3

)
x3(1− x2)

n−3
2 + · · ·+ (−1)

n−1
2 xn = 0.

Let us shorten the equation by x and find rational solutions. According to Lemma
1, we should first determine an−1 (coefficient with xn−1) and a0 (free coefficient).
Except in the first term, it is everywhere xr, r ≥ 1. Thus, from

(
n
1

)
(1 − x2)

n−1
2 is

a0 = n. The power xn−1 is present in every term, so that

an−1 =
(

n

1

)
(−1)

n−1
2 −

(
n

3

)
(−1)

n−3
2 + · · ·+ (−1)

n−1
2

(
n

n

)
(−1)

n−n
2 =

=
n∑

k=1
k odd

(−1)
k−1
2

(
n

k

)
(−1)

n−k
2 =

n∑
k=1

k odd

(−1)
n−1

2

(
n

k

)
. (2)
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Since n is odd, the expression (2) turns into

an−1 =
n∑

k=1
k odd

(
n

k

)
,

and this is according to Lemma 2 equal to 2n−1.
It is only those p

q that are rational solutions of the equation, where p divides n,
and q divides 2n−1. We take only the positive sign, because 0 < p

q = sin 2π
n . Since

n is a prime number, p ∈ {1, n}. The case p = 1 is excluded, because then the
cosine would not be rational. Only the case p = n is left. Since q should divide
2n−1, there follows q ∈ {1, 22, 23, ..., 2n−1}. The case q = 1 is excluded, because
sin 2π

n < 1. Therefore, q must be an even number.
Let sin 2π

n = p
q . Then cos 2π

n = r
q . According to the Pythagoras’ Theorem and

because p = n, we have the following:

n2

q2
+

r2

q2
= 1

that is,
n2 + r2 = q2, (3)

where n is odd, q even, from which it follows that r must also be odd. Here we
come to a contradiction, since the right-hand side in (??) should be divisible by 4
(as the square of an even number), and it is not, because the sum of squares of two
odd numbers by dividing by 4 gives a remainder of 2.
By which the theorem is proved.


