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On the geometric-arithmetic mean inequality
for matrices

M. Alić∗, P. S. Bullen†, J. E. Pečarić‡and V. Volenec§

Abstract. In this paper refinements and converses of matrix forms
of the geometric-arithmetic mean inequality are given.
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Ključne riječi: aritmetičke i geometrijske sredine, Hermiteove ma-
trice

AMS subject classifications: 26D15, 15A45

Received June 30, 1997 Accepted October 10, 1997

1. Introduction

Let α ∈]0, 1[ and let A,B be two n × n positive definite Hermitian matrices. The
weighted arithmetic, geometric and harmonic means of A and B are respectively:

A5B = αA + (1− α)B; A#B = B1/2
(
B−1/2AB−1/2

)α
B1/2;

A!B =
(
αA−1 + (1− α)B−1

)−1
.

(1)

The matrix form of the geometric-arithmetic mean inequality is well known:

A!B ≤ A#B ≤ A5B; (2)

where the matrix inequality A ≥ B means that A−B is positive semi-definite.
A converse inequality to a part of (2),

A!B ≤ A5B,

was obtained recently in [1].
In this paper we obtain further converses and refinements of (2).
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2. Preliminary lemmas

An essential tool in the proof of our main converse result is the following converse
of the geometric- arithmetic mean inequality due to Dočev.

Lemma 1. If 0 < m ≤ ai ≤ M, 1 ≤ i ≤ n, wi > 0, 1 ≤ i ≤ n and Wn =
∑n

i=1 wi

then
1

Wn

n∑

i=1

wiai ≤ K

(
n∏

i=1

awi
i

)1/Wn

; (3)

where if β = M/m then

K =
(β − 1)β1/(β−1)

e log β
. (4)

Furthermore, K regarded as a function of M is increasing, and regarded as a function
of m is decreasing.

Proof. The inequality (3) is stated in [2, p.124]. The method of proof is that
of [2, p.28, Remark(14)]; not as stated in the first reference. The last remark is an
easy consequence of the proof and the concavity of the logarithmic function. 2

The following generalization of Bernoulli’s inequality is due to Gerber [3].

Lemma 2. If α ∈ R, n ∈ N ,and x > −1 then

sgn
(

(1 + x)α −
n∑

i=0

(
α

i

)
xi

)
= sgn

((
α

n + 1

)
xn+1

)
. (5)

Substituting t− 1 for x in (5) leads to
(

α

n + 1

)(
tα −

n∑

i=0

(
α

i

)
(t− 1)i

)
≥ 0 if t ≥ 1 (6)

(−1)n+1

(
α

n + 1

)(
tα −

n∑

i=0

(
α

i

)
(t− 1)i

)
≥ 0 if 1 ≥ t > 0. (7)

3. Converse results

Theorem 1. Let A and B be two positive definite Hermitian matrices and let 0 <
α < 1, then

A5B ≤ K(A#B),

where K is given by (4) with β = max{λ1, λ−1
n }, where λ1 ≥ · · · ≥ λn are the

eigenvalues of B−1/2AB−1/2.

Proof. Apply Lemma 1 with n = 2, w1 = α,w2 = 1− α, a1 = λi, a2 = 1 to get

αλi + 1− α ≤ Kiλ
α
i ,

where Ki is given by (4) with

βi =
max{λi, 1}
min{λi, 1} = max{λi, λ−1

i }.
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Since λ1 ≥ · · · ≥ λn we have, from Lemma 1 that Ki ≤ K, 1 ≤ i ≤ n where K is
given by (4) with β as in the statement of the theorem. Hence

αλi + 1− α ≤ Kλα
i , 1 ≤ i ≤ n. (8)

If a positive definite matrix C has the representation C = ΓDλΓ∗, where Γ is
unitary and Dλ is the diagonal matrix diag{λ1, . . . , λn}, then (8) implies that

αDλ + (1− α)I ≤ KDα
λ . (9)

Pre- and post-multiplication of (9) by Γ and Γ∗ respectively gives

αC + (1− α)I ≤ KCα. (10)

Then setting C = B−1/2AB−1/2 in (10) we get

αB−1/2AB−1/2 + (1− α)I ≤
(
B−1/2AB−1/2

)α

. (11)

Pre- and post-multiplication of (11) by B1/2 completes the proof of the theorem.
2

Theorem 2. With the hypotheses and notations of Theorem 1,

A#B ≤ K(A!B).

Proof. Apply Theorem 1 with A,B replaced by A−1, B−1, respectively. 2

4. Refinements

In this section we use the notations in section 1 but allow α to be an arbitrary real
number.

Theorem 3. Let A and B be two positive definite Hermitian matrices and let α ∈ R
then 

α

n + 1

!�
A#B−A5B

�
≤
 

α

n + 1

!
nX

i=2

 
α

i

!
B1/2

�
B−1/2(A−B)B−1/2

�i

B1/2 if A > B;

(12)

(−1)n+1
�

α
n+1

��
A#B−A5B

�
≥(−1)n+1

�
α

n+1

�Pn
i=2

�
α
i

�
B1/2

�
B−1/2(A−B)B−1/2

�i

B1/2

if A < B.
(13)

Proof. Let C be a positive definite Hermitian matrix then as in the proof of
Theorem 1, but using (6) and (7), we get

(
α

n + 1

)(
Cα −

n∑

i=0

(
α

i

)
(C − I)i

)
≥ 0 if C > I (14)



128 M. Alić, P. S. Bullen, J. E. Pečarić and V. Volenec

(−1)n+1

(
α

n + 1

)(
Cα −

n∑

i=0

(
α

i

)
(C − I)i

)
≥ 0 if I > C > 0. (15)

Simple rewriting of (14) and (15) give:
(

α

n + 1

)(
Cα − αC − (1− α)I

)
≥

(
α

n + 1

) n∑

i=2

(
α

i

)
(C − I)i if C > I (16)

(−1)n+1
(

α
n+1

)(
Cα − αsC − (1− α)I

)
≥ (−1)n+1

(
α

n+1

) ∑n
i=2

(
α
i

)
(C − I)i

if I > C > 0.
(17)

Substitution in (16) and 17) of C = B−1/2AB−1/2 and then pre- and post-
multiplication by B1/2 leads to (12) and (13). 2

The special case n = 1 of Theorem 3 was proved in [4].
The case n = 2 of Theorem 3 gives

Corollary 1. Let A and B be two positive definite Hermitian matrices and let
α ∈ R. If A ≥ B and if either 0 < α < 1 or α > 2, then

A5B −A#B ≤ α(1− α)
2

B1/2
(
B−1/2(A−B)B−1/2

)2
B1/2.

If α < 0 or 1 < α < 2, then the reverse inequality holds.

Using a generalization of Bernoulli’s inequality proved in [5] we can generalize the
corollary as follows.

Theorem 4. Let A and B be two positive definite Hermitian matrices and let
α,K ∈ R. If A ≥ KB, with 0 < K ≤ 1 and if either 0 < α < 1 or α > 2,
then

A5B −A#B ≤ α(1− α)
2

Kα−2B1/2
(
B−1/2(A−B)B−1/2

)2
B1/2.

If α < 0 or 1 < α < 2, then the reverse inequality holds. The inequality also holds
if A ≤ KB, with K ≥ 1 and if either α < 0 or 1 < α < 2; the reverse inequality
then holds if 0 < α < 1 or α > 2.
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D.Reidel, Dordrecht, 1988.

[3] L. Gerber, An extension of Bernoulli’s inequality, Amer. Math. Montly
75(1968), 875–876.
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