The general solution of the Frenet system of differential equations for curves in the pseudo-Galilean space G_{3}^{1}

Blaženka Divjak*

Abstract

In this paper the general solution of the Frenet system of differential equations for curves in the pseudo-Galilean space is given. The analogous result in the isotropic (pseudotropic), doubly isotropic and Galilean space are obtained in [3], [4], and [5]. Such result is still unknown in the Euclidean space. There is one particular solution for the Euclidean case in [1] and three particular solutions in [2].

Key words: pseudo-Galilean space, Frenet equations, admissible curve

Sažetak. Opće rješenje Frenetovog sustava diferencijalnih jednadžbi za krivulje u pseudogalilejevom prostoru $\mathbf{G}_{\mathbf{3}}^{\mathbf{1}}$. U ovom radu je dano opće rješenje Frenetovog sustava diferencijalnih jednadžbi za krivulje u pseudogalilejevom prostoru. Analogni rezultat za izotropni (i pseudoizotropni), dvostruko izotropni i Galilejev prostor dobiveni su u [3], [4] i [5], dok je takav rezultat za euklidski prostor do sada nepoznat. Jedno partikularno rješenje za euklidski slučaj dano je u [1] i još tri partikularna rješenja u [2].

Ključne riječi: pseudogalijev prostor, Frenetove jednadžbe, dopustiva krivulja

AMS subject classifications: 51M30, 53A35
Received July 12, $1997 \quad$ Accepted December 28, 1997

1. The pseudo-Galilean Space

The geometry of the pseudo-Galilean space is similar (but not the same) to the Galilean space which is presented in [6].

The pseudo-Galilean space G_{1}^{3} is a three-dimensional projective space in which the absolute consists of a real plane ω (the absolute plane), a real line $f \subset \omega$ (the absolute line) and a hyperbolic involution on f.

[^0]Projective transformations which presere the absolute form of a group H_{8} and are in nonhomogeneous coordinates can be written in the form

$$
\begin{aligned}
& x=a+\alpha x \\
& y=b+c x+r \operatorname{ch} \varphi y+r \operatorname{sh} \varphi z \\
& z=d+e x+r \operatorname{sh} \varphi y+r \operatorname{ch} \varphi z
\end{aligned}
$$

where $\alpha r \neq 0$ and $a, b, c, d, e, r, \varphi \in \mathbb{R}$. The group H_{8} is called the similarity group of G_{1}^{3}.

If $\alpha=1, r=1$ we obtain the group $B_{6} \subset H_{8}$ of isometries (or the group of motions) of G_{1}^{3}.

A curve $c: I \rightarrow G_{1}^{3}$ given as $\mathbf{r}(t)=(x(t), y(t), z(t))$, where $x(t), y(t), z(t) \in C^{3}$, $t \in I(\subseteq \mathbb{R})$, is said to be an admissible curve if

$$
\begin{array}{ll}
\text { (i) } & \dot{\mathbf{r}} \times \ddot{\mathbf{r}}=0 \\
\text { (ii) } & \dot{x} \neq 0 \\
\text { (iii) } & \dot{y} \neq \pm \dot{z}
\end{array}
$$

An admissible curve parametrized by the parametar of arc length $s=x$ (invariant of B_{6}) is given in the coordinate form by

$$
\mathbf{r}(x)=(x, y(x), z(x))
$$

The curvature $\kappa(x)$ and the torsion $\tau(x)$ of an admissible curve are also invariants of B_{6} and are given by the following formulas

$$
\begin{gathered}
\kappa(x)=\sqrt{\left|y^{n}(x)^{2}-z^{\prime \prime}(x)^{2}\right|} \\
\tau(x)=\frac{1}{\kappa^{2}(x)} \operatorname{det}\left(\mathbf{r}^{\prime}(x), \mathbf{r}^{\prime \prime}(x), \mathbf{r}^{\prime \prime \prime}(x)\right)
\end{gathered}
$$

Furthermore, the associated moving trihedron is given by

$$
\begin{aligned}
& \mathbf{t}=\mathbf{r}^{\prime}(x)=\left(1, y^{\prime}(x), z^{\prime}(x)\right) \\
& \mathbf{n}=\frac{1}{\kappa(x)}\left(0, y^{\prime \prime}(x), z^{\prime \prime}(x)\right) \\
& \mathbf{b}=\frac{1}{\kappa(x)}\left(0, z^{\prime \prime}(x), y^{\prime \prime}(x)\right)
\end{aligned}
$$

and it is called a Frenet trihedron associated to the curve c. Consequently, the following Frenet's formulas are true

$$
\begin{equation*}
\mathbf{t}^{\prime}(x)=\kappa(x) \mathbf{n}(x), \quad \mathbf{n}^{\prime}(x)=\tau(x) \mathbf{b}(x), \quad \mathbf{b}^{\prime}(x)=\tau(x) \mathbf{n}(x) \tag{1}
\end{equation*}
$$

2. The general solution of the Frenet system of differential equations for curves in G_{3}^{1}

Now our goal is to find all vector fields $\mathbf{t}^{*}, \mathbf{n}^{*}, \mathbf{b}^{*}$ and all functions $\kappa^{*}, \tau^{*}: I \rightarrow \mathbb{R}$ assigned to a curve c such that the formulas analogous to Frenet's (1) are true, i.e.

$$
\begin{equation*}
\frac{d \mathbf{t}^{*}}{d x}=\kappa^{*} \mathbf{n}^{*}, \quad \frac{d \mathbf{n}^{*}}{d x}=\tau^{*} \mathbf{b}^{*}, \quad \frac{d \mathbf{b}^{*}}{d x}=\tau^{*} \mathbf{n}^{*} \tag{2}
\end{equation*}
$$

We first write

$$
\begin{align*}
& \mathbf{t}^{*}=a_{11} \mathbf{t}+a_{12} \mathbf{n}+a_{13} \mathbf{b} \\
& \mathbf{n}^{*}=a_{21} \mathbf{t}+a_{22} \mathbf{n}+a_{23} \mathbf{b} \tag{3}\\
& \mathbf{b}^{*}=a_{31} \mathbf{t}+a_{32} \mathbf{n}+a_{33} \mathbf{b}
\end{align*}
$$

where $a_{i j}: I \rightarrow \mathbb{R}, i, j=1,2,3$, are yet unknown coefficients.
By differentiating (3) and using (1) we get

$$
\begin{align*}
& \frac{d \mathbf{t}^{*}}{d x^{*}}=a_{11}^{\prime} \mathbf{t}+\left(a_{12}^{\prime}+a_{11} \kappa+a_{13} \tau\right) \mathbf{n}+\left(a_{13}^{\prime}+a_{12} \tau\right) \mathbf{b} \\
& \frac{d \mathbf{n}^{*}}{d x^{*}}=a_{21}^{\prime} \mathbf{t}+\left(a_{22}^{\prime}+a_{21} \kappa+a_{23} \tau\right) \mathbf{n}+\left(a_{23}^{\prime}+a_{22} \tau\right) \mathbf{b} \tag{4}\\
& \frac{d \mathbf{b}^{*}}{d x}=a_{11}^{\prime} \mathbf{t}+\left(a_{12}^{\prime}+a_{11} \kappa+a_{13} \tau\right) \mathbf{n}+\left(a_{13}^{\prime}+a_{12} \tau\right) \mathbf{b}
\end{align*}
$$

By substituting (3) into the right-hand side of (1) we obtain

$$
\begin{align*}
& \frac{d \mathbf{t}^{*}}{d x^{*}}=\kappa^{*}\left(a_{21} \mathbf{t}+a_{22} \mathbf{n}+a_{23} \mathbf{b}\right) \\
& \frac{d \mathbf{n}^{*}}{d x^{*}}=\tau^{*}\left(a_{31} \mathbf{t}+a_{32} \mathbf{n}+a_{33} \mathbf{b}\right) \tag{5}\\
& \frac{d \mathbf{b}^{*}}{d x}=\tau^{*}\left(a_{21} \mathbf{t}+a_{22} \mathbf{n}+a_{23} \mathbf{b}\right)
\end{align*}
$$

By comparing (4) and (5) we get the following differential equations for unknown functions

$$
\begin{align*}
& a_{11}^{\prime}=\kappa^{*} a_{21} \\
& a_{12}^{\prime}+a_{11} \kappa+a_{13} \tau=a_{2} 2 \kappa^{*} \\
& a_{13}^{\prime}+a_{12} \tau=a_{23} \kappa^{*} \\
& a_{21}^{\prime}=\kappa^{*} a_{31} \\
& a_{22}^{\prime}+a_{21} \kappa+a_{23} \tau=a_{32} \kappa^{*} \tag{6}\\
& a_{23}^{\prime}+a_{22} \tau=a_{33} \kappa^{*} \\
& a_{31}^{\prime}=a_{21} \tau^{*} \\
& a_{32}^{\prime}+a_{31} \kappa+a_{33} \tau=a_{22} \tau^{*} \\
& a_{33}^{\prime}+a_{32} \tau=a_{23} \tau^{*} .
\end{align*}
$$

Now, we will concentrate on finding solutions of the system (6).
Since the vector $\mathbf{t}^{*}, \mathbf{n}^{*}$, and \mathbf{b}^{*} are orthonormal vectors in G_{3}^{1}, they have to be of the following form

$$
\begin{align*}
& \mathbf{t}^{*}=\mathbf{t}+f \mathbf{n}+g \mathbf{b} \\
& \mathbf{n}^{*}=\operatorname{ch} \varphi \mathbf{n}+\operatorname{sh} \varphi \mathbf{b} \tag{7}\\
& \mathbf{b}^{*}=\operatorname{sh} \varphi \mathbf{n}+\operatorname{ch} \varphi \mathbf{b}
\end{align*}
$$

where f, g, φ are certain functions of x and

$$
\left|f^{\prime}+\kappa+g \tau\right|>\left|g^{\prime}+f \tau\right|
$$

By comparing (7) with (3) we can conclude

$$
\begin{array}{lll}
a_{11}=1 & a_{12}=f & a_{13}=g \\
a_{21}=0 & a_{22}=\operatorname{ch} \varphi & a_{23}=\operatorname{sh} \varphi \tag{8}\\
a_{31}=0 & a_{32}=\operatorname{sh} \varphi & a_{33}=\operatorname{ch} \varphi
\end{array}
$$

In addition, we put (8) in (6) and get

$$
\begin{align*}
& f^{\prime}+\kappa+g \tau=\operatorname{ch} \varphi \kappa^{*} \\
& g^{\prime}+f \tau=\operatorname{sh} \varphi \kappa^{*} \tag{9}
\end{align*}
$$

and as a result of (9) we have

$$
\begin{gather*}
\varphi=\operatorname{arth} \frac{g^{\prime}+f \tau}{f^{\prime}+\kappa+g \tau} \tag{10}\\
\kappa=\sqrt{\left(f^{\prime}+\kappa+g \tau\right)^{2}-\left(g^{\prime}+f \tau\right)^{2}} \tag{11}
\end{gather*}
$$

Finally, if we set $a_{23}=\operatorname{sh} \varphi, a_{22}=\operatorname{ch} \varphi$ and $a_{33}=\operatorname{ch} \varphi$ in $a_{23}^{\prime}+a_{22} \tau=a_{33} \tau^{*}$ we obtain

$$
\begin{equation*}
\tau^{*}=\tau+\varphi^{\prime} \tag{12}
\end{equation*}
$$

Now, the following theorem is proven.
Theorem 1. Let $c: I \rightarrow G_{3}^{1}, I \subseteq \mathbb{R}$ be an admissible C^{4} curve, κ and τ its curvature and torsion, respectively, and $f, g: I \rightarrow \mathbb{R} C^{2}$ functions. Then, the general solution of the Frenet system is given by (8), (11) and (12), where $\varphi: I \rightarrow \mathbb{R}$ is a differentiable function defined by (10).

This theorem can be generalized as follows. Let $c: I \rightarrow G_{3}^{1}, I \subseteq \mathbb{R}$ be an admissible curve of the class C^{4} and $\kappa_{1}=\kappa(x), \tau_{1}=\tau(x)$ its curvature and torsion, respectively. Now, we define a sequence of functions $\kappa_{i}, \tau_{i}: I \rightarrow \mathbb{R}$ in the following way

$$
\begin{gathered}
\kappa_{i+1}=\sqrt{\left(f_{i}^{\prime}+\kappa_{i}+g_{i} \tau_{i}\right)^{2}+\left(g_{i}^{\prime}+f_{i} \tau_{i}\right)^{2}} \\
\tau_{i+1}=\tau_{i}+\varphi_{i}^{\prime}
\end{gathered}
$$

where

$$
\varphi_{i}=\operatorname{arth} \frac{g_{i}^{\prime}+f_{i} \tau_{i}}{f_{i}^{\prime}+\kappa_{i}+g_{i} \tau_{i}}, \quad i=1,2,3, \ldots
$$

$f_{i}, g_{i}: I \rightarrow \mathbb{R}$ are arbitrary functions of the class C^{1} and $f_{1}=f, g_{1}=g$. It has to be

$$
\left|f_{i}^{\prime}+\kappa_{i}+g_{i} \tau_{i}\right|>\left|g_{i}^{\prime}+f_{i} \tau_{i}\right|, \quad i=1,2,3 \ldots
$$

Moreover, let $F_{i}=\left\{\mathbf{t}_{i}, \mathbf{n}_{i}, \mathbf{b}_{i}\right\}$ be a sequence of the orthogonal trihedra in G_{3}^{1} defined by

$$
\begin{aligned}
& \mathbf{t}_{i+1}=\mathbf{t}_{i}+f_{i} \mathbf{n}_{i}+g_{i} \mathbf{b}_{i} \\
& \mathbf{n}_{i+1}=\operatorname{ch} \varphi_{i} \mathbf{n}_{i}+\operatorname{sh} \varphi_{i} \mathbf{b}_{i} \\
& \mathbf{b}_{i+1}=\operatorname{sh} \varphi_{i} \mathbf{n}_{i}+\operatorname{ch} \varphi_{i} \mathbf{b}_{i}
\end{aligned}
$$

We set $\mathbf{t}_{1}=\mathbf{t}, \mathbf{n}_{1}=\mathbf{n}, \mathbf{b}_{1}=\mathbf{b}$.
Then it is easy to prove by induction the following
Theorem 2. For derivatives of the vector fields of the trihedra F_{i} and the functions κ_{i}, τ_{i} the following Frenet type formulas hold

$$
\frac{d \mathbf{t}_{i}}{d x}=\kappa_{i} \mathbf{n}_{i}, \quad \frac{d \mathbf{n}_{i}}{d x}=\tau_{i} \mathbf{b}_{i}, \quad \frac{d \mathbf{b}_{i}}{d x}=\tau_{i} \mathbf{n}_{i}
$$

References

[1] S. Bilinski, Eine Verallgemeinerung der Formeln von Frenet und eine Isomorphie gewisser Teile der Differentialgeometrie der Raumkurven, Glasnik Mat.-Fiz.-Astr. 10(1955), 175-180.
[2] Z. Kurnik, V. Volenec, Über die begleitenden Dreibene der Raumkurve, Glasnik Mat. 6(26)(1971), 129-142.
[3] B. Pavković, Allgemeine Lösung des Frenetschen Systems von Differentialgleichungen in isotropen and pseudotropen dreidimensionalen Raum, Glasnik Mat. 10(30)(1975), 207-218.
[4] B. Pavković, I. Kamenarović, The general solution of the Frenet system in the doubly isotropic space $I_{3}^{(2)}$, Rad JAZU 428(1987), 17-24.
[5] B. Pavković, The general solution of the Frenet system of differential equations for curves in the Galilean space G_{3}, Rad JAZU 450(1990), 123-128.
[6] O. Röschl, Die Geometrie des Galileischen Raumes, Habilitationsschrift, Leoben, 1984.

[^0]: *Faculty of Organisation and Informatics, Varaždin (University of Zagreb), Pavlinska 2, HR42000 Varaždin, Croatia, e-mail: bdivjak@foi.hr

