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On the first passage over the one-sided
stochastic boundary∗

Zoran Vondraček†

Abstract. We present two methods on how to compute the distri-
bution of an Itô diffusion at the first moment it becomes smaller than a
function of its current maximum.
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Sažetak. O vremenu prvog prelaska preko jednostrane sto-
hastičke granice. Pokazane su dvije metode kako izračunati distribu-
ciju Itôve difuzije u prvom trenutku kada postane manja od funkcije
tekućeg maksimuma.

Ključne riječi: Itôva difuzija, vrijeme prvog prelaska, jednostrana
stohastička granica

Let Xt denote the price of a share of a certain stock, and let St be the maximal
price of that stock by the time t ≥ 0. There is some interest in computing the
distribution of the price at the first moment it becomes smaller than a function of
the current maximum. Typical examples are the distribution of the price when it
falls a units below the current maximum, or when it falls to a certain fraction of
the current maximum.

A common model for stock prices (see, e.g. [2]) is a process that solves the
stochastic differential equation

dXt = µ(Xt)dt + σ(Xt)dWt, X0 = x, (1)

where W = (Wt; t ≥ 0) is a standard one-dimensional Brownian motion, and σ :
R → (0,∞), µ : R → R are Lipschitz continuous functions. The process X =
(Xt; t ≥ 0) is usually called an Itô diffusion. There exists a function s, the scale
function of X, such that s(Xt) is a local martingale. Explicitly,

s(u) =
∫ x

c

exp
(
−

∫ y

c

2µ(z)
σ2(z)

dz

)
dy.

∗The lecture presented at the Mathematical Colloquium in Osijek organized by Croatian
Mathematical Society – Division Osijek, April 18, 1997.

†Department of Mathematics, University of Zagreb, Bijenička cesta 30, HR-10 000 Zagreb,
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Let St = max0≤r≤t Xr be the maximum of X by the time t, and let g : [0,∞) → R
be a monotone function. Let us introduce the stopping time

τ = inf{t ≥ 0; Xt ≤ g(St)}.
Then τ is the first time that X becomes less than a function of its current maximum.
The random variable Sτ is the maximum of X at time τ .

Theorem 1. The distribution function FSτ of the random variable Sτ is given by

FSτ
(u) = 1− exp

(
−

∫ u

x

ds(t)
s(t)− s(g(t))

)
, u ≥ x. (2)

Distribution of Xτ is easily obtained from FSτ
and the fact that Xτ = g(Sτ ).

In order to prove the theorem one first assumes that X is a Brownian motion
(µ = 0, σ = 1).

There are two different approaches in calculating the distribution of Sτ in case
X is a Brownian motion. The first approach relies on the first-order calculus for
semimartingales ([1], [4]) and was in the same context exploited in [5]. The main
ingredient is the fact that for a C1-function H, the process H(St)−(St−Xt)H ′(St)
is a martingale. The optional stopping theorem gives that

E[H(Sτ )] = E[(Sτ −Xτ )H ′(Sτ )] (3)

with H(t) =
∫ t

0
h(u)du, h a continuous, nonnegative function with compact support.

Simple calculations imply that

E[H(Sτ )] =
∫ ∞

0

(1− FSτ (u))h(u)du, (4)

E[H(Sτ −Xτ )H ′(Sτ )] =
∫ ∞

0

(u− g(u))h(u)dFSτ (u). (5)

From (3),(4) and (5), one obtains the differential equation for FSτ : (1−FSτ (u))du =
(u − g(u))dFSτ (u). It is easily seen that FSτ given in (2) (with s(r) = r, x = 0)
solves this equation.

The second approach to calculate FSτ relies on the excursion theory, and can
also be applied to Lévy processes with no positive jumps. For u ≥ 0, let

T (u) = inf{t ≥ 0; St > u} = inf{t ≥ 0;Xt > u}.
Then {Sτ > u} = {T (u) < τ}. Hence, it suffices to compute P (T (u) < τ). The
first passage time process {T (t); t ≥ 0} is an increasing Lévy process. For t > 0
such that T (t−) < T (t), let ht = sup{(S − X)T (t−)+s; 0 ≤ s < T (t) − T (t−)}
be the height of the excursion of the reflected process S − X at the local time t.
Then {(t, ht); t > 0} is a Poisson point process with characteristic measure dt× dν,
where ν(t,∞) = 1/t (see, for example, [3]). The key observation in this approach
(see [6]) is that T (u) < τ if and only if Ht < t − g(t), for all t ∈ [0, u]. Let
Λ = {(t, y) : y ≥ t− g(t)}, and let

NΛ
u =

∑

0<t≤u

1Λ(t, ht)
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be the number of points in Λ up to the (local) time u. Then {NΛ
u = 0} = {ht <

t − g(t),∀t ∈ [0, u]}. But NΛ
u is a Poisson random variable with parameter dt ×

dν(Λ ∩ [0, u]× (0,∞)) =
∫ u

0
ν(t− g(t),∞)dt. Therefore,

P (NΛ
u = 0) = exp

(
−

∫ u

0

ν(t− g(t),∞)dt

)
= exp

(
−

∫ u

0

dt

t− g(t)

)
.

Once again, (2) easily follows from the preceding calculations.

Finally, in order to prove (2) for an Itô diffusion, it suffices to use the change of
scale.
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