On the first passage over the one-sided stochastic boundary^{*}

Zoran Vondraček[†]

Abstract. We present two methods on how to compute the distribution of an Itô diffusion at the first moment it becomes smaller than a function of its current maximum.

Key words: Itô diffusion, the first-passage time, one-sided stochastic boundary

Sažetak. O vremenu prvog prelaska preko jednostrane stohastičke granice. Pokazane su dvije metode kako izračunati distribuciju Itôve difuzije u prvom trenutku kada postane manja od funkcije tekućeg maksimuma.

Ključne riječi: Itôva difuzija, vrijeme prvog prelaska, jednostrana stohastička granica

Let X_t denote the price of a share of a certain stock, and let S_t be the maximal price of that stock by the time $t \ge 0$. There is some interest in computing the distribution of the price at the first moment it becomes smaller than a function of the current maximum. Typical examples are the distribution of the price when it falls a units below the current maximum, or when it falls to a certain fraction of the current maximum.

A common model for stock prices (see, e.g. [2]) is a process that solves the stochastic differential equation

$$dX_t = \mu(X_t)dt + \sigma(X_t)dW_t, \quad X_0 = x,$$
(1)

where $W = (W_t; t \ge 0)$ is a standard one-dimensional Brownian motion, and σ : $\mathbb{R} \to (0, \infty), \ \mu : \mathbb{R} \to \mathbb{R}$ are Lipschitz continuous functions. The process $X = (X_t; t \ge 0)$ is usually called an Itô diffusion. There exists a function s, the scale function of X, such that $s(X_t)$ is a local martingale. Explicitly,

$$s(u) = \int_{c}^{x} \exp\left(-\int_{c}^{y} \frac{2\mu(z)}{\sigma^{2}(z)} dz\right) dy.$$

^{*}The lecture presented at the MATHEMATICAL COLLOQUIUM in Osijek organized by Croatian Mathematical Society – Division Osijek, April 18, 1997.

[†]Department of Mathematics, University of Zagreb, Bijenička cesta 30, HR-10000 Zagreb, Croatia, e-mail: vondracek@cromath.math.hr

Z. Vondraček

Let $S_t = \max_{0 \le r \le t} X_r$ be the maximum of X by the time t, and let $g : [0, \infty) \to \mathbb{R}$ be a monotone function. Let us introduce the stopping time

$$\tau = \inf\{t \ge 0; X_t \le g(S_t)\}.$$

Then τ is the first time that X becomes less than a function of its current maximum. The random variable S_{τ} is the maximum of X at time τ .

Theorem 1. The distribution function $F_{S_{\tau}}$ of the random variable S_{τ} is given by

$$F_{S_{\tau}}(u) = 1 - \exp\left(-\int_{x}^{u} \frac{ds(t)}{s(t) - s(g(t))}\right), \quad u \ge x.$$
(2)

Distribution of X_{τ} is easily obtained from $F_{S_{\tau}}$ and the fact that $X_{\tau} = g(S_{\tau})$.

In order to prove the theorem one first assumes that X is a Brownian motion $(\mu = 0, \sigma = 1)$.

There are two different approaches in calculating the distribution of S_{τ} in case X is a Brownian motion. The first approach relies on the first-order calculus for semimartingales ([1], [4]) and was in the same context exploited in [5]. The main ingredient is the fact that for a C^1 -function H, the process $H(S_t) - (S_t - X_t)H'(S_t)$ is a martingale. The optional stopping theorem gives that

$$E[H(S_{\tau})] = E[(S_{\tau} - X_{\tau})H'(S_{\tau})]$$
(3)

with $H(t) = \int_0^t h(u) du$, h a continuous, nonnegative function with compact support. Simple calculations imply that

$$E[H(S_{\tau})] = \int_0^\infty (1 - F_{S_{\tau}}(u))h(u)du,$$
(4)

$$E[H(S_{\tau} - X_{\tau})H'(S_{\tau})] = \int_{0}^{\infty} (u - g(u))h(u)dF_{S_{\tau}}(u).$$
(5)

From (3),(4) and (5), one obtains the differential equation for $F_{S_{\tau}}$: $(1-F_{S_{\tau}}(u))du = (u - g(u))dF_{S_{\tau}}(u)$. It is easily seen that $F_{S_{\tau}}$ given in (2) (with s(r) = r, x = 0) solves this equation.

The second approach to calculate $F_{S_{\tau}}$ relies on the excursion theory, and can also be applied to Lévy processes with no positive jumps. For $u \ge 0$, let

$$T(u) = \inf\{t \ge 0; S_t > u\} = \inf\{t \ge 0; X_t > u\}.$$

Then $\{S_{\tau} > u\} = \{T(u) < \tau\}$. Hence, it suffices to compute $P(T(u) < \tau)$. The first passage time process $\{T(t); t \ge 0\}$ is an increasing Lévy process. For t > 0 such that T(t-) < T(t), let $h_t = \sup\{(S-X)_{T(t-)+s}; 0 \le s < T(t) - T(t-)\}$ be the height of the excursion of the reflected process S - X at the local time t. Then $\{(t, h_t); t > 0\}$ is a Poisson point process with characteristic measure $dt \times d\nu$, where $\nu(t, \infty) = 1/t$ (see, for example, [3]). The key observation in this approach (see [6]) is that $T(u) < \tau$ if and only if $H_t < t - g(t)$, for all $t \in [0, u]$. Let $\Lambda = \{(t, y) : y \ge t - g(t)\}$, and let

$$N_u^{\Lambda} = \sum_{0 < t \le u} \mathbf{1}_{\Lambda}(t, h_t)$$

be the number of points in Λ up to the (local) time u. Then $\{N_u^{\Lambda} = 0\} = \{h_t < t - g(t), \forall t \in [0, u]\}$. But N_u^{Λ} is a Poisson random variable with parameter $dt \times d\nu(\Lambda \cap [0, u] \times (0, \infty)) = \int_0^u \nu(t - g(t), \infty) dt$. Therefore,

$$P(N_u^{\Lambda}=0) = \exp\left(-\int_0^u \nu(t-g(t),\infty)dt\right) = \exp\left(-\int_0^u \frac{dt}{t-g(t)}\right).$$

Once again, (2) easily follows from the preceding calculations.

Finally, in order to prove (2) for an Itô diffusion, it suffices to use the change of scale.

References

- J. AZEMA, M. YOR, En guise d'introduction, Astérisque 52-53, Temps Locaux (1978) 3–16.
- [2] M. BAXTER, A. RENNIE, Financial Calculus. An introduction to derivative pricing, Cambridge Univ. Press, 1996.
- [3] J. BERTOIN, Lévy Processes, Cambridge Univ. Press, 1996.
- [4] D. REVUZ, M. YOR, Continuous Martingales and Brownian Motion, Springer-Verlag, 1991.
- [5] G. PEŠKIR, A. N. SHIRYAEV, On the Brownian First-Passage Time Over a One-Sided Stochastic Boundary, Research Report No. 371, Dept. Theoret. Statist. Aarhus (1997), 11 pp.
- [6] L. C. G. ROGERS, Williams characterization of the Brownian excursion law: proof and application, Sém. Prob XV. Lecture Notes in Mathematics, Vol. 850. Springer-Verlag (1981), 227-250.