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Summary 

Rank particle filtering was applied to fault diagnosis technology. Control force and yaw 

moment losses that occurred in the corresponding degrees of freedom were estimated, and the 

trends of change were calculated by the multi-step-ahead prediction process in the rank 

particle filter. Based on the estimated results in the normal state, the situations involving 

failure were detected. To achieve this target, a mathematical model of the normal and faulty 

motion states of an underwater vehicle was first developed. Subsequently, the rank sample 

method combined with the particle filter was used, to obtain the importance probability 

density function of the autonomous underwater vehicle status. The rank particle filter 

obtained above realized the real-time state estimation and trend prediction of the motion state. 

A modified Bayesian algorithm was used to process the estimated control force and yaw 

moment losses in a given length of time. Based on the calculation results in the normal 

situations, a back propagation neural network was trained to obtain the diagnostic values. The 

condition of the propellers was determined based on the diagnostic values. Fault diagnosis 

simulation experiments were carried out using both the data obtained from the semi-physical 

simulation system with a hypothetical propeller failure, and the real sea trail data to verify the 

performance of the proposed algorithm. The results showed that the rank particle filter 

method could be applied to the propeller fault diagnosis of autonomous underwater vehicles, 

and solved the problem that arises when a single degree of freedom of the loss is utilized. 

Key words: Autonomous Underwater Vehicle; Rank Particle Filter; Fault diagnosis; 

Propeller 

1. Introduction 

Deprived of a tether that would connect them to ships, the working state of autonomous 

underwater vehicles (AUVs) is difficult to observe in the underwater environment; therefore, 

AUVs must possess enough autonomy to accomplish missions [1]. For such vehicles to be 

capable of accomplishing missions, many advanced control systems are being widely applied 

to the guidance and control of these unmanned vehicles [2][3]. Without proper steering, a ship 
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may lose its control under harsh conditions [4]. The underwater environment is even more 

complicated and variable, and frequently has unpredictable effects on AUVs. Such effects 

include minor and severe effects, where a minor effect may lead to the failure of a task, and a 

severe effect may lead to the damage, and even the loss of the AUV. For example, the loss 

accidents of KAIKO and Nereus [5][6] was regrettable, which brought significant losses to 

the research development of the two study teams. As described above, improvements in the 

AUV's operating ability increased the complexity of the AUV system [7][8], and the AUV's 

safety and security have received increasing attention. Therefore, the fault diagnosis of 

propulsion, sensors, and other equipment subsystems of the AUVs is required [9].  

According to different classification criteria, fault types can be divided into different 

types and regions. As the manipulating operation of an AUV depends on its propellers, a fault 

in a propeller may lead to a failure in the underwater task, or even the eventual loss of the 

vehicle. For example, an AUV controlled by double stern propellers may encounter a 

situation where the propeller can output the desired thrust at low speed, but cannot output the 

desired thrust that exceeds a certain value. This failure affects the yaw primarily, such that the 

AUV will always be subject to an uncontrollable yaw moment, resulting in the failure of path 

following. Therefore, it is necessary to carry out the fault detection of the propellers 

independently [10]. 

When the motion state of an AUV is represented by the state equation, we can utilize 

the observations to estimate the unknown state variables. Therefore, a model-based fault 

diagnosis method was considered: based on the states observed, we could detect the fault and 

estimate the fault degree [11]. Fault diagnosis based on the analytic model is the oldest and 

most systematic method; for example, Matko [12] applied the sigma-point unscented Kalman 

filter method to two types of AUVs in an open-water navigation task simulation, and 

Filaretov et al. [13] solved the problem of fault detection and localization using the kinematic 

model of the AUV, with special data fusion from its navigation sensors. Chu et al. [14] 

presented a propeller fault reconstruction method based on a terminal sliding observer. Sun et 

al. [15] proposed the fault diagnosis method based on a Gaussian particle filter, introducing 

the yaw moment loss parameter to estimate the fault. The idea of using the modified Bayesian 

algorithm to detect faults is worth learning from; however, as only a certain degree of 

freedom in the control force and yaw moment losses is used, the method may misdiagnose 

fault-free situations. In addition, because the method lacks forecasts for future trends, the fault 

is detected relatively late.  

According to the principle of rank statistics [16], we can conclude that the sampling 

points obtained by the rank sampling method are reasonable and can simulate the probability 

distribution of the system state effectively. Further, the particle filtering method has high 

filtering precision, and can track system state changes with time. In the literature [17], to 

solve the problem of particle diversity and effectiveness lost due to particle degeneracy and 

resampling, the rank filter and particle filter methods were combined. First, the importance 

density function was obtained by the rank filtering method. As the importance density 

function contains the latest observation information, it is closer to the true state probability 

density; the particle filter method is used subsequently to estimate the system state. This 

allows the rank particle filter to have high filtering accuracy, while eliminating the complexity 

of calculations in the particle resampling method.  

In view of the theories above, this study applied the rank particle filter method to the 

fault diagnosis technology. First, the mathematical model of the AUV was modelled by 

hydrodynamic parameters. The probability density function of the motion state of the AUV 

was obtained by the rank filtering method, and its trend was predicted at this time. 

Subsequently, the particle filter was combined to construct the rank particle filter, and the 
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control force and yaw moment losses in the AUV were estimated. Further, the modified 

Bayes (MB) algorithm was used to analyse the estimated losses over a time period. Finally, 

the back propagation (BP) neural network was used for propeller fault diagnosis. With the 

simulation data and the sea trail data with the propeller fault, the fault diagnosis simulation 

experiments were carried out to test the performance of the proposed method.  

2. AUV Mathematical Model and Fault Model 

2.1 AUV Platform and Hydrodynamic Model 

Because the main target of the fault diagnosis is the propeller of the AUV, a certain type 

of AUV was selected as the research object. Propellers were the only actuators of this AUV, 

and no fin was used in its motion control.  

To simplify the complexity of the fault diagnosis algorithm, the mathematical model of 

the AUV system was decomposed in the horizontal and vertical planes. Only the planar 

motion of the AUV was observed, and it was assumed that the fault occurred in the two stern 

propellers in the horizontal plane. The AUV stern propellers’ configuration in the horizontal 

plane is shown in Fig. 1. The efficiency of the channel propellers will reduce at high 

velocities, therefore the turning motion is primarily controlled by these two stern propellers. 

The two propellers adopt catheter propellers, in which the longitudinal axis of each propeller 

and that of the AUV form a 13° angle. The main parameters of the AUV are listed in Table 1.  

Table 1  Main hydrodynamic parameters of the AUV 

m 2.1510-3 kg  L 5.6 m 

b 1 m  h 1 m 

G (0.09,0, -0.022) m  Ix 5.42102 kg 

Iy 7.58103 kg  Iz 7.62103 kg 

uX   -1.5810-3  
vY   -8.15410-2 

wZ   -7.6310-2  
vN   -3.8810-3 

rY   -8.0910-3  
wM   3.8010-3 

The established space coordinate system is defined as recommended by the 

International Ship Model Towel Pool Recall (ITTC) and the Shipbuilding and Engineering 

Society (SNAME) terminology bulletin system, as shown in Fig. 2. 

   

 Fig. 1 Propeller configuration in horizontal plane  Fig. 2 AUV space coordinate system 

The E   geodetic coordinate system is fixed on the earth at any fixed point, and 

the origin of the body coordinate system O xyz  is fixed at the AUV’s centre of gravity. 
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Furthermore, the geodetic coordinate system and the body system can reach the 

corresponding relations through the conversion: 

1
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T  (1) 

In this equation, 
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Τ , (2) 

where   is the roll angle, and the AUV tilting to the right is defined as positive;   is 

the pitch angle, and the AUV tilting to the stern is defined as positive;   is the yaw angle, 

and the AUV turning to the right is defined as positive.  

We assumed that the AUV operated in a deep and still environment; thus, the control 

force was produced by the main body hydrodynamic force and the propeller thrust, according 

to equation (3): 

( , , , , )F f V V n    (3) 

where V and V are the velocity and acceleration of the AUV, respectively;  and  are 

the angular velocity and angular acceleration of the AUV, respectively; n  is the propeller’s 

rotating speed. 

Through a Taylor expansion at the reference point, the hydrodynamic coefficients in the 

formula above were obtained, while ignoring the second-order coefficients above. Based on 

the previous assumptions, the inertial hydrodynamic terms were attributed to the terms on the 

left side of the equation, and the non-inertial hydrodynamic terms were attributed to the terms 

on the right side of the equation. By setting [ ]'u v w p q rX , we obtained 

vis propellerDX F F   (4) 

In the equation, 
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'[ ]vis vis vis vis vis vis visF X Y Z K M N 　 　 　 　 　   

visF is the non-inertial hydrodynamic term;  propellerF  is the thrust generated by the 

propeller. 

The motion system of the AUV is highly nonlinear and can be described by the 

following equation of state: 
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x Ax Bu

Zobser Cx

 


 ，
 (5) 

where A  is the system matrix, x  is the vector of the motion state variables, u  is the 

control input, B  is the input matrix of the system, Zobser is the measured value, and C  is the 

observation matrix of the system. 

2.2 AUV Platform Fault Model 

In Section 2.1, the state equation of the AUV was obtained, which was a continuous 

equation. However, in the actual operation, the status of the AUV is periodically sampled. 

Similarly, the corresponding control command is also periodically sent to the propellers. 

Therefore, the discretization for the continuous equation above is needed: 

1

1

k k k k k k

k k k k

x G x H u Q

Zobser C x R





    


   ，
 (6) 

 where kG  is the discretized system matrix, kH  is the discretized input matrix of the 

system, kQ and kR are the system process noise and measurement noise, respectively. 

The failure in the propeller will weaken the output thrust; therefore, the actual axial 

control force and the yaw moment of the AUV will change. The actual control force and yaw 

moment will deviate from ku  to k ku u , where ku  in the normal state should be zero. To 

diagnose the AUV’s state, the actual control force and yaw moment, which include the fault 

condition are introduced into equation (6), and the motion model including the failure of the 

AUV can be obtained as shown in equation (7): 

1

1

( )k k k k k k k

k k k k

x G x H u u Q

Zobser C x R





      


  
 (7) 

3. Rank Particle Filtering and Improved Algorithm 

3.1 Rank Filtering Method 

The rank sampling method is a deterministic sampling method. First, we determined the 

state vector X  with a mean value X and the covariance matrix xCov , and then calculated the 

mean and mean square error of the nonlinear change ( )f X .  

According to X and xCov , we obtained the initial sample points xSigmaPts : the thi  

sample point was 

( ) ( )j pj X lxSigmaPts i X Cov    (8) 

In this case, 1,2,..., nl R  ( nR is the dimension of X ), and when  1,2,..., mj R  ( mR  

represents the layers of rank sampling, and the more the layers, the higher is the precision of 

the sampling), ( 1) 1ni j R   . pj  is the lower bound of the confidence interval with 

probability jp  in the X  distribution. j is the correction factor of the sampling point, 

subjected to 
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  (9) 

The initial sampling points were subject to non-linear changes to obtain the set of output 

variables xPred : 

( ) ( ( ))xPred i f xSigmaPts i  (10) 

Next, the mean and covariance were calculated: 

1

1
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   (11) 
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Here, the weight coefficient of the covariance is   

2 1
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R
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  

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   (12) 

3.2 Rank Particle Filter with Multi-Step-Ahead Prediction 

The rank particle filter method was used subsequently to estimate the future state of the 

AUV. The importance density function was obtained by the rank filtering method in Section 

3.1 above, and then the particle filter method was combined to estimate the future state.  

We knew that xSigmaPts was the initial sample points from the posterior probability 

distribution N( , )xX Cov , and it was updated to generate the xPred and corresponding weights 

via the rank filter method above. Further, we assumed that ( ,i)xPred k  was one of the sample 

points in ( )xPred k at time k obtained by the particle filter sampling process. 

We defined a discrete distribution that contained the sample points and weights ( , )k i : 

0:

1

ˆ ( ( ) | ) ( , ) ( ( ) ( | 1, ))
N

k

i

p xPred k Zobser k i xPred k xPred k k i 


    (13) 

where ( )x  is the Dirac delta function, 

and the p-step-ahead prediction probability density function could be obtained based on 

the following distribution:   

0: 0: : 1

1

( ( ) | ) ( ( ) | ) [ ( ( ) | ( 1)]
k p

k k k k p

j k

p xPred k p Zobser p xPred k Zobser p xPred j xPred j dx


 

 

   
 (14) 

Subsequently, 0:( ( ) | )kp xPred k Zobser  in this equation was an alternative by the 

particles obtained by the rank sampling method:  

1: 1

1 2

( , ) ( ( 1) | ( , )) ( ( ) | ( 1))
k pN

k k p

i j k

k i p xPred k xPred k i p xPred j xPred j dx


  

  

     (15) 
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If 
*2 Np   , by calculating the integrals, ( ,i)xPred k  in ( )xPred k  could now be 

extended. The p-step prediction algorithm for the rank particle filter was obtained as follows: 

For j   = 1, 2, ..., p 

  For i  = 1, 2, ..., N 

    sample ( | 1, )xPred k j k j i    from ( ( ) | ( 1))p xPred k j xPred k j    

  end 

end 

The multi-step-ahead prediction probability density function was then obtained, and the 

weights ( , )k i  were maintained as those at time k: 

0:

1

ˆ ( ( ) | ) ( , ) ( ( ) ( | 1, ))
N

k

i

p xPred k p Zobser k i xPred k p xPred k p k p i 


        (16) 

Finally, we could resample the prediction particles from this distribution and repeated 

the prediction process in the next iteration. 

4. AUV Propeller Fault Diagnosis Method 

4.1 Constructing the Rank Particle Filter 

Using the fault diagnosis model obtained in Section 2.2, the following rank particle 

filter was constructed: 

1

1

ˆ ˆ ( )

ˆ ˆ

k k k k k k k

k k k k

x G x H u u Q

Zobser C x R





      


  

 (17) 

The goal of the fault diagnosis is to analyse the value ku and its trend, of which the 

mean value should be zero in the normal state. When the propeller fails, the thrust loss and 

additional yaw moment lead to changes in ku . The amplitude of the changes is determined 

by the gap between the desired and the actual control force and yaw moment. Therefore, we 

considered { , , , , , }ku X Y Z K M N         as the estimated term of the AUV state. 

4.2 Fault Diagnosis Method 

The MB algorithm was then used to analyse the time series of the AUV states. The 

mean value ˆku , the variance 2( )S k , the relative normal mean value ku  , and the 

variance 1( )S k  of the N-point state estimation values were obtained by the following 

operations, based on the ˆku  estimated at N time points respectively before time k: 

1

1
ˆ ˆ  ( ) ( )

N

k k

j

u k u k j
N 

     

2
1

1

1
ˆ  ( ) [ ( ) ]

1

N

k k

j

S k u k j u
N 

   

  
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2
2

1

1
ˆ ˆ( ) [ ( ) ( )]

1

N

k k

j

S k u k j u k
N 

   

  

1 2( ) ( )
  ( ) ln( ) 1

S k S k
MB k

Q Q
  

 
 (18) 

If the fault was diagnosed directly by the MB value ( )MB k  above using the threshold 

method, owing to the use of only one degree of freedom, problems would occur. For example, 

when considering the state-estimated value in the X-axis direction alone, thrust losses would 

also exist except in fault conditions, as a result of the accelerating process or the presence of 

ocean current interference. This might lead to the misdiagnosis of a normal condition; 

therefore, a BP neural network algorithm was combined, considering its pattern recognition 

ability.  

As shown in Fig. 3, the control force and yaw moment losses, and the MB values were 

taken as the input, and the output was the diagnostic value indicating whether the fault existed. 

The thrust loss and diagnostic values in normal conditions were selected as training samples 

to train the neural network. 

 

Fig. 3 Fault diagnosis algorithm process 

4.3 Rank Particle Filter Propeller Fault Diagnosis Method 

Based on the theories above, the fault diagnosis process is described below: 

Step 1: Initialize the system state values, and give the initial state 

0 { , , , , , }x u v r X Y N    first; subsequently, obtain the particle set 

{ ( ),1/ }( 1,2..., )xSigmaPts i N i N from the initial distribution. 

Step 2: Obtain a new set of particles ˆ{ ( , )}( 1,2..., )xPredSigmaPts k i i N  by the rank 

sampling method. 

Step 3: Use the rank particle filter method to obtain the posterior probability density 

function, which is then considered to be the proposed distribution 

Step 4: Use the multi-step-ahead prediction method, described in Section 3.2, to update 

the sample distribution. 

Step 5: Obtain the new particle set { ( , )}( 1,2..., )xSigmaPts k i i N from the proposed 

distribution. The important weights are taken as the likelihood probability density function, 

and are normalized using the weighted set of particles, such that the mean and covariance of 

the probability distribution at k can be calculated.  
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Step 6: Estimate the AUV state û based on the particle set and the normalized weights, 

and use the MB algorithm to manage û . 

Step 7: Take the AUV state estimation û , and the MB value obtained by the MB 

algorithm as the input to the BP neural network. If the diagnostic value is beyond a certain 

value, a fault is considered to have occurred. 

5. Fault Diagnosis Simulation 

5.1 Simulation Environment Configuration 

To simplify the complexity of the fault diagnosis algorithm, the mathematical model of 

the AUV system was decomposed in the horizontal and vertical planes as described in Section 

2. Assuming that one of the stern propellers in the horizontal plane was faulty, the fault only 

affects three degrees of freedom in the horizontal plane. Thus, we primarily discuss the fault 

situation simulation in the horizontal plane, and use the fault diagnosis algorithm in this paper 

to diagnose the fault. 

During the actual sea trail with this AUV, we found that a faulty propeller might not 

output enough thrust to meet the desired thrust, owing to the fault in the blade. In addition, 

another fault state existed: when the desired thrust was small, the propeller could output the 

required thrust; however, when the desired thrust was greater than a certain value, the 

propeller could not output the desired output thrust, instead, a lower thrust was output. 

Therefore, the failure condition of the AUV's left stern propeller was set as follows: 

when the output thrust of the propeller was less than 60 N, the propeller was considered to be 

rotating at a low speed, and the thrust of the propeller could be output normally; when the 

desired thrust of the propeller was greater than 60 N, this faulty propeller could only output 

60 N thrust. In this case, the fault diagnosis result was analysed. Considering that the desired 

output thrust of the propeller was related to the desired velocity and yaw angle of the AUV, 

the simulation parameters were set based the different desired velocities and yaw angles of the 

AUV. 

The accelerating process, or the turning of the bow during acceleration will cause thrust 

loss, which may be misdiagnosed by the algorithm as a fault. In determining the threshold, we 

carried out a set of simulations under different desired velocities and yaw angles, where no 

fault occurred in the propeller model, and obtained the MB values caused by the motion 

changes in the AUV. In Table 2, the maximum MB values in fault-free conditions, diagnosed 

by the MB algorithm under different AUV motion states, are enumerated: 

Table 2 MB values in fault-free conditions 

AUV Status X-axis Y-axis  Z-axis 

Accelerate 26 8 8 

Accelerate (Turn) 13 14 155 

Turn 9 8 8 

Cruise 9 8 8 

The maximum operating velocity of the AUV in the simulation was 2.0 m/s; therefore, a 

series of simulations were carried out, where the desired velocities range from 0 to 2.0 m/s 

and different yaw angles were selected. The MB values of the AUV in different motion states 

characterized the AUV states during a time period. The threshold should be set to improve the 

sensitivity of the algorithm, and provide the basis for the comparison of different algorithms. 
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We considered that if the MB value of the fault diagnosis algorithm was greater than the 

maximum MB value at a certain degree of freedom in a fault-free state, the propeller was 

considered to be possibly faulty. In this case, the maximum MB values obtained with different 

degrees of freedom respectively in Table 2 were set as the threshold. 

5.2 Simulation and Results Analysis 

First, the case of an AUV cruising in a straight line was simulated: the desired velocity 

was set as 0.5 m/s during the first 50 s; from 50 s to 100 s, and the desired velocity was 1.0 

m/s. The desired velocity of the AUV was set as 2.0 m/s starting from 100 s. 

Figures 4–6 show the simulation results, describing the use of the rank particle filter 

method. The control command and the current motion state of the AUV were taken as the 

input, and the control force and yaw moment losses and their multi-step-ahead predictions in 

different degree of freedom were shown. The solid line is the estimated result, and the dash-

dot line is the result of the forward prediction. The results show that the multi-step-ahead 

prediction will amplify the original control force and yaw moment losses. 

  

 Fig. 4 X-axis force loss estimation and prediction Fig. 5 Y-axis force loss estimation and prediction 

 

Fig. 6 Yaw moment loss estimation and prediction 

Based on the MB algorithm, the control force and yaw moment losses are used to 

calculate the trend in a certain time period using the sliding time window, and the threshold 

method is used to judge whether a fault had occurred. Figures 7–10 show the results. Fig. 7 

shows that the calculation result in the X-axis direction is greater than the set threshold value 

of 26 at 110.5 s, and the fault diagnosis algorithm considers that a fault has occurred at this 

time. 
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 Fig. 7 X-axis force loss with MB algorithm Fig. 8 Y-axis force loss with MB algorithm 

   

 Fig. 9 Yaw moment loss with MB algorithm Fig. 10 Threshold method diagnosis result 

The control force and the yaw moment losses prediction were also analysed by the MB 

algorithm. The threshold method was also used to judge whether a fault has occurred. Figure 

14 shows that the fault diagnosis algorithm with prediction diagnosed the potential failure 

earlier, at 105 s. However, between 7 s to 23 s and between 57 s to 73 s, the AUV was 

accelerating and the thrust loss in the X-axis direction was amplified by the multi-step-ahead 

prediction, resulting in a larger estimated thrust loss. Although the MB values in the Y-axis 

and Z-axis directions showed that the AUV was in a normal state, a fault was error detected, 

owing to the X-axis value that is beyond the threshold set previously. Therefore, it would not 

be accurate if only the loss in a single degree of freedom is considered to determine the fault. 

   

 Fig. 11 X-axis force loss prediction with MB  Fig. 12 Y-axis force loss prediction with MB  
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 Fig. 13 Yaw moment loss prediction with MB Fig. 14 Threshold method diagnosis result 

The comparison above shows that the control force and yaw force losses prediction can 

reflect the trend, and can detect an imminent fault sooner. However, only a certain degree of 

freedom of loss was used, and was not enough to eliminate the misdiagnosis. Considering the 

propeller fault configuration again: the left main propeller could output a thrust below 60 N 

normally, but could not provide enough thrust beyond 60 N. When the AUV was no longer at 

a standstill, a flow had caused resistance during acceleration. Furthermore, a delay response 

occurred between the control command and the execution of the actuator in the actual sea trail. 

This caused the estimated thrust output to deviate from the expected thrust. This deviation 

was detected, and also amplified in the multi-step-ahead prediction process, which resulted in 

an increase of the MB values. Faults were error determined to occur. 

Therefore, the control force and yaw moment losses with only one degree of freedom 

should not be analysed. All the control force losses in the X-axis and Y-axis, the yaw moment 

in the Z-axis, and the corresponding MB values should be taken into account. Subsequently, 

the normalized values were used as the input of the BP neural network, which was trained by 

the values in the normal state, and the fault situation could be diagnosed. 

The BP neural network is capable of pattern recognition, and we expected the 

diagnostic value to be approximately zero in the normal states. During the training process, 

the control forces and the yaw moments, the MB values, and the expected diagnostic values in 

the normal states were taken as samples. According to the previous simulations, a thrust loss 

due to acceleration was estimated. Thus, we expected that when the AUV was accelerating 

when cruising in a straight line or when turning the bow, the output should be 0.2 and 0.3, 

respectively. Some examples for training the neural network are given in Table 3.  

The state vectors included the control force, yaw moment losses, and the MB values; 

the BP neural network was trained by those values. Under normal circumstances, the 

diagnostic value of the neural network is up to 0.3. If the diagnostic value was close to 0, it 

indicated that the AUV was in a normal state. However, if the diagnostic value was farther 

away from 0, it indicated that the AUV might be faulty. In this study, the system was 

considered to be faulty if the diagnostic value was greater than 0.3. 

Table 3 BP neural network training samples 

AUV Status Example of Samples Expected Output 

Accelerate [-4.35,0.04,0.13, -87.55,0,0] 0.2 

Accelerate (Turn) [3.26,5.54,7.84,1.44,2.1,11.02] 0.3 

Turn [-75.3,36.7, -135, -79.3,35.9, -136.2] 0 

Cruise [0.68,0,0, -3.76,0,0] 0 
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As shown in Fig. 15, when the diagnostic value deviates from 0 during the previous two 

accelerating processes, the output value of the fault diagnosis result is always below the 

threshold value of 0.3. At 108 s, the diagnostic value of the BP neural network is greater than 

the threshold value of 0.3 for the first time, which means that the AUV experienced an 

imminent fault. The comparison between Fig. 15 and Fig. 14 show that the fault diagnosis 

using the BP neural network can avoid the misdiagnosis when the AUV is accelerating. 

Compared with the fault diagnosis results obtained by the fault diagnosis algorithm without 

prediction in Fig. 10, we observed that the original method detected the fault in the propeller 

at 110.5 s, and the proposed method showed that the AUV was faulty at 108 s. The proposed 

method can detect the AUV failure at the soonest possible. 

 

Fig. 15 BP neural network diagnosis result 

Next, the case of an AUV turning the bow during acceleration was simulated: from 0 s 

to 100 s, the AUV was released and accelerated to 0.5 m/s; from 100 s to 200 s, the AUV was 

turning 45° to the left; subsequently, the AUV was accelerating from 0.5 m/s to 1.0 m/s while 

turning its bow 90° to the left starting from 200 s. Fault diagnosis algorithms with and without 

prediction were applied to judge whether a fault has occurred. 

Figures 16–19 show the simulation results. Fig. 17 shows that the MB value in the Z-

axis was greater than the set threshold value of 155 at 212 s, and the fault diagnosis algorithm 

considered that a fault had occurred at this time. In addition, from Fig. 18 and Fig. 19, we 

could conclude that the diagnosis algorithm with prediction detected the fault sooner, and the 

diagnostic value of the BP neural network exceeded the threshold at 202.5 s.   

   

 Fig. 16 X-axis force loss with MB algorithm Fig. 17 Yaw moment loss with MB algorithm 
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 Fig. 18 Diagnosis results with and without predictionFig. 19 Diagnosis result with BP neural network 

We considered that the AUV was primarily controlled by only one propeller in the 

process of turning the bow; for instance, the AUV’s right propeller provided the primary part 

of the thrust, while the left propeller was less involved in the turning left process. Therefore, 

another simulation test was configured: from 0 s to 50 s, the AUV was accelerating to 1.0 m/s, 

and no fault occurred in the propeller during this process; from 50 s to 100 s, the AUV was 

turning 45° to the left; and the AUV started turning to the right from 100 s. In the simulation, 

the AUV’s left propeller was fault-free at first, but it became faulty starting from 50 s: the 

maximum output thrust was 60 N. 

   

 Fig. 20 X-axis force loss with MB algorithm Fig. 21 Yaw moment loss with MB algorithm 

   

 Fig. 22 Diagnosis results with and without predictionFig. 23 Diagnosis result with BP neural network 

Fig. 20 to Fig. 23 show that the fault diagnosis algorithm without prediction diagnosed 

the existence of a fault at 103.5 s, from the MB value in the Z-axis exceeding the threshold, 
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whereas the algorithm with prediction diagnosed a fault at 75 s. However, owing to the 

prediction, from 4 s to 26 s, a misdiagnosis occurred. The BP neural network diagnosed the 

existence of a fault at 78.5 s instead, and a misdiagnosis did not occur. 

When the AUV was turning to the left, the yaw moment was primarily provided by the 

right propeller, and the left one was less involved at the beginning of the process. If the left 

propeller failed, it was very difficult to accurately judge the problem during this process. The 

fault diagnosis algorithm did not have the correct estimation of the propeller thrust loss; on 

the contrary, when the AUV was close to the desired yaw angle, the required thrust of the left 

propeller increased, the impact of the fault on the AUV's motion state became more obvious, 

and the presence of the fault was quickly detected. 

Finally, we tried to use the real sea trail data to test the performance of the fault 

diagnosis algorithms. Figures 24 and 25 display a part of the sea trail process with a fault 

situation. The AUV was configured to sail straight at the velocity of 1.0 m/s, and then turn the 

bow to 30° to continue sailing. From the velocity curve and the yaw angle curve, we observed 

that the AUV experienced a velocity loss and an unstable change in the yaw angle during the 

last section of the trail, which corresponded to the thrust loss in the relevant degree of 

freedom. 

   

 Fig. 24 AUV velocity data in sea trail Fig. 25 AUV yaw angle data in sea trail 

Figures 26 and 27 compare the results analysed from the sea trail data, using the 

Gaussian particle filter method [11] and the rank particle filter method. Sea trail data was used 

by these two kinds of filter methods to estimate the control force and yaw moment losses. 

Subsequently, the MB algorithm was used to analyse the estimated values during a certain 

time period. The dash-dot line is the MB value of the Gaussian particle filter and the solid line 

is the result of the rank particle filter.  

   

 Fig. 26 X-axis force loss with MB algorithm Fig. 27 Yaw moment loss with MB algorithm 
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Here, we observed that in the initial stage of releasing the AUV, the Gaussian particle 

filter method along the X-axis direction has a larger estimation of the control force loss than 

the rank particle filter method, and the MB value estimated during this stage is close to that at 

the end of the trail, which indicates that the AUV may be faulty. In contrast, the rank particle 

filter method estimated the current state of the AUV sooner and more accurately in the initial 

stage, and also estimated the control force loss quickly at the end of the trail, reducing the 

possibility of a misdiagnosis. 

Environmental interference in the real sea trail and a delayed response in the mechanical 

devices have also occurred. To determine the threshold value of a fault, several groups of the 

normal-state data with desired velocities from 0 m/s to 1.0 m/s during the sea trial process 

were selected. We obtained the MB values in these various states, and the maximum values 

were selected to determine the threshold. The AUV had a maximum value of 539 in the X-

axis, 356 in the Y-axis, and 2518 in the Z-axis. At the same time, in the training process of the 

BP neural network, the expected diagnostic value of the turning process with acceleration was 

set as 0.3 and the expected diagnostic value of the accelerating process was set as 0.2. Using 

this method, the trained BP neural network could be used to detect the existence of a fault; the 

fault diagnosis process is shown in Figure 28. 

 

Fig. 28 Fault diagnosis simulation using the actual sea trail data 

Figure 29 shows the comparison between the fault diagnosis results with and without 

prediction. It is known that a certain deviation exists between the actual model of an AUV in 

the sea trail and the hydrodynamic model in the simulation. Over the course of the experiment, 

the fault diagnosis algorithm without prediction diagnosed a fault at 180.5 s. Further, the 

algorithm with prediction detected a fault at 178.5 s, but misdiagnoses still occurred. This was 

also due to the amplified loss that caused the MB value to be greater than the threshold, and 

the fault threshold was kept as before. In Figure 30, from the diagnostic result by the BP 

neural network, we observed some delays between the control command and the response of 

the actuator when the AUV moves from the initial position at around 50 s. During this stage, a 

relatively greater diagnostic value compared with the rest of the normal conditions existed. 

From 125 s to 178 s, the average absolute value of the diagnostic results is greater than the 

average absolute value of the previous 50 s, because the AUV was turning its bow, and there 

was a larger change in the Y-axis direction. A certain degree of increase in the force loss 

would occur in the Y-axis, causing the diagnostic value of the BP neural network to vibrate. 

Finally, the diagnostic value at 179 s exceeds the threshold of 0.3, implying that the AUV's 

propeller was faulty.  
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 Fig. 29   Fault diagnosis results comparison  Fig. 30 BP neural network diagnosis result 

6. Conclusions and Future Work 

1. The simulation results show that the rank particle filtering method can be applied to 

fault diagnosis, and the control force (moment) loss can be analysed through the MB 

algorithm with the sliding time window. 

2. The proposed algorithm can detect the fault in advance through the multi-step-ahead 

prediction process, and the misdiagnosis caused by using only the loss in a single degree of 

freedom can be reduced using the BP neural network.  

3. The noise that exists in the sea trail environment creates a mostly non-Gaussian case. 

The rank particle filter method is suitable for the actual state estimation of an AUV and helps 

to improve the accuracy of the diagnosis. 

4. The next step is to increase the real-time ability of the fault diagnosis algorithm, and 

complete the real-time diagnosis of failure of an AUV in open water, or under conditions 

where currents exist. 
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