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Thirty years of shape theory∗

Sibe Mardešić
†

Abstract. The paper outlines the development of shape theory since
its founding by K. Borsuk 30 years ago to the present days. As a mo-
tivation for introducing shape theory, some shortcomings of homotopy
theory in dealing with spaces of irregular local behavior are described.
Special attention is given to the contributions to shape theory made by
the Zagreb topology group.

Key words: homotopy, shape, homotopy groups, homotopy progroups

Sažetak. Trideset godina teorije oblika. U članku je prikazan
razvitak teorije oblika od njenog osnivanja od strane K. Borsuka prije
30 godina do današnjih dana. Kao motivacija za uvod̄enje teorije ob-
lika opisani su neki nedostaci teorije homotopije za prostore nepravilnog
lokalnog ponašanja. Posebna pažnja dana je doprinosima teoriji oblika
zagrebačke topološke grupe.
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It is generally considered that the theory of shape was founded in 1968 when
the Polish topologist Karol Borsuk (1905-1982) published his well-known paper on
the homotopy properties of compacta [4]. However, he submitted the paper on Feb-
ruary 2, 1967 and spoke about his result at the Symposium on Infinite-dimensional
Topology, held in Baton Rougeu, Louisiana, USA from March 27 to April 1, 1967.
This means that we are only a few months away from the thirtieth birthday of shape
theory. Borsuk also presented his results and ideas at the International Symposium
on Topology and its Applications, held in Hercegnovi from August 25 to 31, 1968
(see [5]). This was the first time that he used the suggestive term shape. Several
topologists from Zagreb attended that conference and thus, had the opportunity to
learn about shape theory shortly after it was inaugurated.

∗Expanded version of a lecture presented at the Mathematical Colloquium in Osijek, orga-
nized by the Croatian Mathematical Society - Division Osijek, November 15, 1996.

†Department of Mathematics, University of Zagreb, Bijenička cesta 30, HR-10 000 Zagreb,
Croatia, e-mail: smardes@cromath.math.hr
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Borsuk’s starting point was the observation that many theorems in homotopy
theory are valid only for spaces with good local behavior, e.g., manifolds, CW-
complexes and absolute neighborhood retracts (ANR’s), but fail for spaces like
metric compacta. A simple example of this phenomenon is the well-known theo-
rem of J.H.C. Whitehead, which asserts that a mapping between connected CW-
complexes f : X → Y, which induces isomorphisms πn(f) : πn(X) → πn(Y ) of
all homotopy groups, is a homotopy equivalence. This theorem does not hold for
metric continua.

E.g., let X be the Warsaw circle, defined by the following figure.
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Fig. 1. Warsaw circle

It is readily seen that X is a pathwise connected continuum, all of whose homotopy
groups vanish. Therefore, the mapping f : X → {∗} to a single point induces iso-
morphisms πn(f), for all n. Nevertheless, f is not a homotopy equivalence, because
X disconnects the plane R

2 and {∗} does not.

To overcome this difficulty, Borsuk considered metric compacta embedded in the
Hilbert cube Q (more generally, in a fixed absolute retract). Instead of considering
mappings f : X → Y he considered fundamental sequences (fn) : X → Y, i.e.,
sequences of mappings fn : Q → Q, n = 1, 2, . . . , such that, for every neighborhood
V of Y in Q, there exist a neighborhood U of X in Q and an integer m such that
fn(U) ⊆ V, for n ≥ m. Moreover, the restrictions fn|U and fn′ |U are homotopic in
V, for n, n′ ≥ m. Fundamental sequences compose by composing their components,
i.e., (gn)(fn) = (gnfn). Two fundamental sequences (fn), (f ′

n) are considered homo-
topic provided every V admits a U and an m such that fn|U � f ′

n|U in V, whenever
n ≥ m. Homotopy of fundamental sequences is an equivalence relation, whose classes
compose by composing their representatives, i.e., [(gn)][(fn)] = [(gn)(fn)]. In this
way one obtains a category ShQ. Its objects are compacta in Q, while its morphisms
are homotopy classes of fundamental sequences. Since arbitrary metric compacta
embed in Q, one readily extends ShQ to an equivalent category Sh(CMet), whose
objects are all metric compacta. This is Borsuk’s shape category.

Every mapping f : X → Y induces a fundamental sequence, whose homotopy
class depends only on the homotopy class of f. In this way one obtains a functor S :
Ho(CMet) → Sh(CMet), defined on the homotopy category of metric compacta,
called the shape functor. Clearly, compacta of the same homotopy type have the
same shape, i.e., are isomorphic objects of Sh(CMet). It is easy to see that, for a
compact ANR Y, shape morphisms F : X → Y are in one-to-one correspondence
with the homotopy classes of mappings X → Y. Therefore, for compact ANR’s,
shape coincides with the homotopy type. The Warsaw circle and the circle S1 are
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examples of metric continua which have different homotopy types, but the same
shape.

Shortly after Borsuk’s seminal papers on shape theory [4, 5, 6, 7, 8], there
appeared an avalanche of articles devoted to this new branch of topology. Until
1980 the literature on shape theory already consisted of about 400 papers. Around
the world, groups of shape theorists were formed. Warsaw was the center of all
activities and the seat of the Borsuk group of shape theorists. In USA the first
contributions to shape theory were made by Ralph H. Fox (1913–1973), Jack Segal
and Thomas A. Chapman. In Moscow research on shape theory was directed by
Yurĭı M. Smirnov. In Japan contributions to shape theory came from Kiiti Morita
(1915-1995) and the group in Tsukuba around Yukihiro Kodama. There was a
group in Zagreb, led by the author and one in Frankfurt, led by Friedrich W.
Bauer. In Great Britain the first contributions to shape theory came from Timothy
Porter and in France from Jean-Marc Cordier. In Spain the research on shape was
initiated by José R. Sanjurjo.

Already in 1970. S. Mardešić and J. Segal generalized Borsuk’s shape theory
to compact Hausdorff spaces. It is well-known that every compact Hausdorff space
X can be represented as the limit of a (cofinite) inverse system X = (Xλ, pλλ′ , Λ)
of compact polyhedra (or compact ANR’s). In [54, 55] shape morphisms F : X →
Y were defined as homotopy classes of homotopy mappings f = (f, fµ) : X →
Y = (Yµ, pµµ′ , M). The latter consist of an increasing function f : M → Λ and of
mappings fµ : Xf(µ) → Yµ such that, for µ0 ≤ µ1, the following diagram commutes
up to homotopy

Xf(µ0) Xf(µ1)

Yµ0 Yµ1 .

pf(µ0)f(µ1)

qµ0µ1

�

�
fµ0

�
�
fµ1

(1)

Two homotopy mappings (f ′, f ′
µ), (f ′′, f ′′

µ ) are considered homotopic if there exists
an increasing function f ≥ f ′, f ′′ such that f ′

µpf ′(µ)f(µ) � f ′′
µpf ′′(µ)f(µ). Equiva-

lence with the Borsuk approach (for metric compacta) was proved using decreasing
sequences of compact ANR-neighborhoods of X in Q, viewed as inclusion inverse
systems.

While Borsuk’s approach was rather geometric, the inverse system approach
was more categorical and led quickly to further generalizations. In 1972 Fox [31]
generalized Borsuk’s shape theory in a different direction, i.e., to arbitrary metric
spaces X. He embedded X as a closed subset in an absolute retract L and used
the inclusion system of open neighborhoods of X in L to define morphisms. Both
generalizations were unified by Morita [60], who gave the general description of the
shape category Sh(Top) for arbitrary topological spaces. He allowed his systems
X to be homotopy systems, i.e., the usual conditions on bonding mappings were
replaced by the corresponding homotopy conditions. Moreover, some theorems
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from [55] became conditions (M1), (M2), which are a part of the definition of a
system being associated with a space.

(M1) For every mapping f : X → P to a polyhedron (or ANR) P, there exist a
λ ∈ Λ and a mapping h : Xλ → P such that hpλ � f.

(M2) For every λ ∈ Λ and mappings h, h′ : Xλ → P such that hpλ � h′pλ, there
exists an index λ′ ≥ λ such that hpλλ′ � h′pλλ′ .

Morita proved that the Čech system, formed by the nerves of all normal cov-
erings of X, is a homotopy system associated with X [61]. In the terminology
introduced in algebraic geometry by A. Grothendieck [32], shape morphisms are
given by morphisms X → Y from the category pro -Ho(Top), where Ho(Top)
denotes the homotopy category of topological spaces.

Among the first successful applications of shape theory is Fox’s theory of over-
lays, a modification of covering spaces [31]. While the classical theorems on cover-
ing spaces are valid only for locally connected and semi-locally 1-connected spaces,
the corresponding theorems on overlays hold without such restrictions. However,
the fundamental group π1(X, ∗) has to be replaced by the fundamental progroup
π1(X, ∗).

Further significant successes of shape theory were the shape-theoretic versions of
the theorems of Whitehead, Hurewicz and Smale. The statements of these results
also use progroups, i.e., inverse systems of groups. Application of the homology
functor Hm(.; G) to X yields an inverse system of Abelian groups Hm(X; G) =
(Hm(Xλ; G), pλλ′∗, Λ), called the mth-homology progroup of X. Similarly, for sys-
tems of pointed spaces (X, ∗), one defines the mth-homotopy progroup πm(X, ∗). If
X and (X, ∗) are systems of ANR’s associated with the spaces X and (X, ∗), re-
spectively, these progroups do not depend on the choice of the associated systems.
Moreover, they are shape invariants of X and (X, ∗), respectively. The inverse
limit Ȟm(X; G) = lim Hm(X; G) is the Čech homology group, introduced long be-
fore the advent of shape theory, by L. Vietoris [73] and E. Čech [10]. The shape
groups π̌m(X, ∗) = limπm(X, ∗), were first defined in 1944 by D.E. Christie [18].
One should keep in mind that the Čech groups and the shape groups contain less
information than the corresponding homology and homotopy progroups.

Shape-theoretic versions of the theorems of Whitehead and Hurewicz were ob-
tained by several authors. Here we state two theorems obtained by Morita [59].
The first one asserts that a morphism of pointed shape F : (X, ∗) → (Y, ∗) between
finite-dimensional topological spaces is a shape equivalence, i.e., an isomorphism of
pointed shape, if and only if it induces isomorphisms of all homotopy progroups
F# : πm(X, ∗) → πm(Y, ∗). In contrast to the classical Whitehead theorem, in the
above theorem there are no restrictions concerning the local behavior of the spaces
involved. The dimensional assumptions cannot be omitted, as it was shown by a
counterexample [36], which depends on sophisticated algebraic topology [72], [1].
However, these assumptions can be weakened by requiring that the spaces involved
be of finite shape dimension Sd. The latter notion is a numerical shape invariant,
also introduced by Borsuk [5] and studied extensively by S. Nowak [62] and S. Spież
[69, 70].
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In the shape-theoretic Hurewicz theorem, one considers (n− 1)-shape connected
spaces X, n ≥ 2, i.e., one assumes that πm(X, ∗) = 0, for m ≤ n − 1. The theorem
asserts that Hm(X ; Z) = 0, m ≤ n − 1, and there exists a natural isomorphism
φn : πn(X, ∗) → Hn(X ; Z).

The classical Smale theorem is the homotopy version of a theorem of Vietoris
concerning cell-like mappings of compacta. This class of spaces is of great impor-
tance in geometric topology and was studied long before the development of shape
theory. Using the shape-theoretic terminology, a mapping f : X → Y is cell-like
provided all of its fibers f−1(y), y ∈ Y, have trivial shape, i.e., have the shape of
a single point. The shape-theoretic version of Smale’s theorem was obtained by
J. Dydak [23, 24]. It asserts that every cell-like mapping induces isomorphisms of
homotopy progroups f# : πn(X, ∗) → πn(Y, ∗), for all n and all base-points.

Among the most important contributions of Borsuk to shape theory is the in-
troduction of two shape invariant classes of metric compacta, the fundamental ab-
solute neighborhood retracts FANR’s [6] and movable compacta [7]. FANR’s gener-
alize ANR’s and are their shape-theoretic analogues. They coincide with compacta
shape dominated by compact polyhedra. Borsuk introduced movability as a tool
useful in detecting that some compacta, e.g., the solenoids, are not FANR’s.

Further studies revealed the importance of pointed FANR’s and pointed mov-
ability. The main protagonists of this research were D.A. Edwards, R. Geoghegan,
H.M. Hastings and A. Heller in U.S. and J. Dydak in Poland. It was shown in
[27, 29] that connected pointed FANR’s coincide with continua having the shape
of a polyhedron. Whether (X, ∗) has the shape of a compact polyhedron can be
detected using tools from algebraic K−theory. More precisely, the answer depends
on the vanishing of a Wall obstruction σ(X, ∗), which is an element of the reduced
projective class group K̃0(π̌1(X, ∗)) of the first shape group π̌1(X, ∗) [28].

The question whether every FANR is a pointed FANR for several years eluded
the efforts of shape theorists. Finally, in 1982, Hastings and Heller proved that this
is always the case [37]. The proof essentially uses facts from combinatorial group
theory. Whether movable continua are always pointed movable, is still an open
problem.

A new direction in shape theory was inaugurated by Chapman, who applied
methods of infinite-dimensional topology to the study of shape of metric compacta
[15]. He considered compacta X which are Z-embedded in the Hilbert cube Q, i.e.,
have the property that there exist mappings f : Q → Q, which are arbitrarily
close to the identity but their image f(Q) misses X. This condition, introduced by
R.D. Anderson [2], implies tameness and unknottedness of compacta. It proved to
be fundamental in the development of the theory of Q-manifolds [17]. Chapman’s
complement theorem asserts that two compacta X, Y, embedded in Q as Z-sets,
have the same shape if and only if their complements Q\X, Q\Y are homeomorphic.
Chapman also exhibited an isomorphism of categories T : WP → S, where WP is
the weak proper homotopy category of complements M = Q\X of Z-sets X of Q,
while S is the restriction of the shape category Sh(CMet) to Z-sets X of Q. For
objects M = Q\X of WP, one has T (M) = X.
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Subsequently, Chapman published a second paper, which contained a finite-
dimensional complement theorem, i.e., a theorem where the ambient space was the
Euclidean space [16]. This paper had a strong geometric flavor and immediately
attracted attention of a number of specialists in geometric topology, in particular in
PL-topology, who produced a series of finite-dimensional complement theorems. In
these theorems one assumes that X and Y are ”nicely” embedded in the Euclidean
space R

n and satisfy the appropriate dimensional conditions. The conclusion is
that X and Y have the same shape if and only if their complements R

n\X, Rn\Y
are homeomorphic. The most general of the results obtained is the complement
theorem of I. Ivanšić, R.B. Sher and G.A. Venema [39].

Based on Quillen’s homotopical algebra [65], Edwards and Hastings introduced a
homotopy category of inverse systems, denoted by Ho(pro-Top). It is obtained from
the category pro-Top by localization at level homotopy equivalences. Using this
category instead of pro-Ho(Top), they defined a strong shape category SSh(CMet)
of compact metric spaces. Strong shape has distinct advantages over shape, e.g.,
the analogue of Chapman’s category isomorphism theorem assumes a more natural
form. It asserts the existence of an isomorphism T : P → SS, between proper
homotopy category P of complements M = Q\X of Z-sets X of Q and the restriction
SS of the strong shape category SSh(CMet) to Z-sets of Q. Through efforts of
various authors over a period of several years a strong shape category for topological
spaces SSh(Top) was defined and so was a strong shape functor S : Ho(Top) →
Sh(Top) [64], [3], [9], [43]-[45], [33], [25]. It is related to the shape functor S by a
factorization S = ES, where E : SSh(Top) → Sh(Top) is a functor, which forgets
a part of the richer structure of strong shape.

In defining the strong shape category for arbitrary spaces, one needed a method
of associating with any given space an inverse system of polyhedra (or ANR’s) in
the category Top. One way of doing this is provided by the Vietoris system [64],
[30], [34]. Another method is provided by the notion of a resolution of a space X
[50]. A resolution p : X → X is a morphism of pro-Top which satisfies a stronger
version of Morita’s conditions.

(R1) Given a polyhedron P and an open covering V of P, any mapping f : X →
P admits a λ ∈ Λ and a mapping h : Xλ → P such that the mappings hpλ and f
are V−near.

(R2) There exists an open covering V ′ of P, such that whenever, for a λ ∈ Λ
and two mappings h, h′ : Xλ → P, the mappings hpλ, h′pλ are V ′−near, then there
exists a λ′ ≥ λ such that the mappings hpλλ′ , h′pλλ′ are V−near.

To define a strong shape morphism F : X → Y, it suffices to choose (cofinite)
polyhedral resolutions p : X → X, q : Y → Y and a morphism X → Y of
Ho(pro-Top).

It is an important fact that the category Ho(pro-Top) is equivalent to the
coherent homotopy category CH(Top) [52], which can be viewed as a concrete
realization of the former category [44, 45]. Its morphisms are coherent homotopy
classes of coherent mappings f : X → Y. These consist of an increasing function f :
M → Λ and of mappings fµ0 : Xf(µ0) → Yµ0 , which make diagram (1) commutative
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up to a homotopy fµ0µ1 : Xf(µ1) × I → Yµ0 , which is also part of the structure of f .
For three indices µ0 ≤ µ1 ≤ µ2, one has homotopies fµ0µ1µ2 : Xf(µ2) × ∆2 → Yµ0 ,
where ∆2 is the standard 2-simplex. One requires that, on the faces of ∆2, fµ0µ1µ2

is given by the mappings fµ1µ2 , fµ0µ2 , fµ0µ1 as indicated in Fig. 2.

�
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�
�

�
�

��
fµ0µ2

fµ2

fµ0 fµ0µ1
fµ1

fµ1µ2
fµ0µ1µ2

Fig. 2. Coherence conditions for n = 2.

There are other (more sophisticated) descriptions of coherent categories, but they
all yield equivalent categories [19], [71], [74].

An important circle of ideas, related to strong shape, refers to strong or Steenrod
homology. Its relation to singular and Čech homology is similar to the relation of
strong shape to homotopy and usual shape. From the point of view of shape theory,
the most important property of strong homology is its invariance with respect to
strong shape [48], [53].

The approach to shape by inverse systems of polyhedra or ANR’s is not the
only one. Recently, a different approach was inaugurated by J. Sanjurjo [67] and
further developed by Z. Čerin [13]. The basic idea consists in replacing mappings
by multivalued mappings, which map points to small sets.

Generally, one expects to find applications of shape theory in problems concern-
ing global properties of spaces having irregular local behavior. Such spaces naturally
appear in many areas of mathematics. E.g., they appear as fibers of mappings, as in
the case of cell-like mappings. Other examples are sets of fixed points, increments of
compactifications [42], boundaries of certain geometric groups, spectra of operators
[40], [22], fractal sets and attractors of dynamical systems [35], [68].

There are many situations, where shape itself does not apply, but its methods are
applicable. A typical example are properties at infinity of locally compact spaces,
in particular the theory of ends. Ideas of shape theory stated in an abstract way,
as in categorical shape theory [21], yield further possibilities of application, e.g., in
pattern recognition [63], [20].

We conclude this short survey by recalling some events related to the develop-
ment of shape theory in the former Yugoslavia and Croatia.

My first encounter with shape theory occurred during an international confer-
ence on topology, held in Hercegnovi in 1968, where Borsuk delivered a talk on the
shape of compacta [5]. This was the first time he used the suggestive term shape.
My first paper on shape (written jointly with Jack Segal) appeared already in 1970
[54]. Since that time members of the Zagreb topology group published more than
100 papers on the subject.
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In addition to the work discussed above, we here mention a few of the topics
considered. Mardešić defined the shape category for arbitrary topological spaces.
Mardešić and Š. Ungar [57] proved a relative shape-theoretical Hurewicz theorem.
Mardešić generalized the existing shape-theoretical Whitehead theorems. Ungar
proved the analogue of the Blakers-Massey excision theorem and the analogue of
the van Kampen theorem. Čerin obtained a series of results on cell-like mappings
and homotopy properties of locally compact spaces at infinity. He introduced some
new properties like calmness and smoothness. Particularly interesting was his class
of calm compacta, which lies between the class of FANR’s and the class of movable
compacta [12]. Mardešić, jointly with T.B. Rushing, introduced and studied shape
fibrations. Ivanšić studied compacta X, which embed in R

n up to shape, i.e., they
admit a compactum X ′ ⊆ R

n such that sh(X) = sh(X ′). Jointly with L.S. Husch,
he found sufficient conditions for the existence of embeddings up to shape and
sufficient conditions in order that a shape equivalence be a shape concordance. Čerin
wrote a series of papers on regular convergence [11], an area where ideas of shape
theory raised new problems and provided new techniques. He also studied notions
obtained from shape-theoretical notions by imposing the additional requirement
that all homotopies involved be dominated by given coverings. In such controlled
shape theory, he was able to characterize various old and new classes of compacta
and spaces. Ivanšić and N. Uglešić worked on shape improved compacta and weak
fibrant compacta. Q. Haxhibeqiri worked in shape fibrations and N. Šekutkovski
in coherent homotopy. Jointly with S.A. Antonian, Mardešić studied equivariant
shape theory for compact groups. Using the method of multivalued mappings Čerin
defined equivariant shape for arbitrary groups [14]. Mardešić proved the existence of
paracompact spaces X, whose homology progroups have nonvanishing derived limits
limnHm(X ; Z) of arbitrarily high order n [51]. If X is compact, limnHm(X ; Z) = 0,
for n ≥ 2 [53].

Over a number of years many topologists from abroad, interested in shape the-
ory, visited Zagreb. Stays lasting one academic year or at least one semester were
realized by J. Segal (U. of Washington), T.B. Rushing (U. of Utah), L.S. Husch
(U. of Tennessee), D.S. Coram (State U. of Oklahoma), T. Watanabe (U. of Ya-
maguchi), A.P. Šostak (U. of Riga), Yu.T. Lisitsa (Moscow Power Institute), S.A.
Antonian (U. of Erevan), L.R. Rubin (U. of Oklahoma) and A.V. Prasolov (U.
of Minsk). In 1976, 1981 and 1986 at the Interuniversity Centre of Postgraduate
Studies in Dubrovnik the Zagreb group organized three international topology con-
ferences, devoted to shape theory and geometric topology. Proceedings of the two
latter conferences were published as volumes 870 and 1283 of the Springer Lecture
Notes in Mathematics (editors, S. Mardešić and J. Segal). In 1976 the University
of Zagreb conferred to Professor Borsuk a doctorate honoris causa in recognition of
his scientific contributions and influence he had on the development of the Zagreb
topology group. In 1978 at the International congress of mathematicians in Helsinki,
in an invited address, Mardešić reported on the development of shape theory during
its first ten years [49]. In 1982, North Holland published the Mardešić-Segal mono-
graph on shape theory as volume 26 of their prestigious collection North-Holland
Mathematical Library [56].
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[47] Ju. T. Lisica, S.Mardešić, Strong homology of inverse systems of spaces II,
Topology and its Appl. 19 (1985), 45–64.
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[54] S.Mardešić, J. Segal, Movable compacta and ANR-systems, Bull. Acad. Sci.
Sér. Sci. Math. Astronom. Phys. 18(1970), 649–654.
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[70] S. Spież, On the fundamental dimension of the cartesian product of compacta
with fundamental dimension 2, Fund. Math. 116(1983), 17–32.
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