DIABETIC NEPHROPATHY WITH FOCAL SEGMENTAL GLOMERULOSCLEROSIS

Krešimir Galešić1, Danica Ljubanović2, Josip Pavan3 and Ivana Račić3

1University Department of Medicine, 2Department of Pathology and 3Department of Ophthalmology, Dubrava University Hospital, Zagreb, Croatia

SUMMARY—The association of diabetic nephropathy with primary glomerulonephritis in type 1 diabetes is rare. Several reports have shown that primary glomerulonephritis can be superimposed on diabetic nephropathy. These glomerulonephritides include idiopathic membranous glomerulonephritis, IgA glomerulonephritis, Henoch-Schönlein nephritis, membranoproliferative glomerulonephritis, lupus nephritis, minimal change disease, postinfectious glomerulonephritis and rapidly progressive glomerulonephritis. Because some of these disorders can alter the management and prognosis of renal disease in diabetic patients, the appearance of urinary abnormalities or deterioration in renal function inconsistent with the natural history of diabetic nephropathy raises the possibility of a nondiabetic renal disease and should lead to a more detailed evaluation. We report on a patient with type 1 diabetes that underwent renal biopsy because of heavy proteinuria and nephrotic syndrome. Renal biopsy showed diabetic nephropathy coexistent with focal segmental glomerulosclerosis. To the best of our knowledge, this is the first reported case of primary focal segmental glomerulosclerosis associated with diabetic nephropathy and diabetic retinopathy, with excellent therapeutic response.

Key words: Glomerulosclerosis, focal – complications; Glomerulosclerosis, focal – diagnosis; Glomerulosclerosis, focal – therapy; Diabetic nephropathies – diagnosis; Diabetic nephropathies – immunology; Diabetic nephropathies – therapy; Kidney, glomerules – pathology

Introduction

Immune complex glomerulonephritis can occur in patients with diabetic nephropathy. Idiopathic membranous nephropathy, IgA nephropathy, lupus nephritis, Henoch-Schönlein nephritis, membranoproliferative glomerulonephritis, postinfectious glomerulonephritis and rarely rapidly progressive glomerulonephritis superimposed on diabetic nephropathy have been reported in the literature1–4. Primary focal segmental glomerulosclerosis associated with diabetic nephropathy is very rare2,4. We report on a patient with type 1 diabetes that underwent renal biopsy because of heavy proteinuria and nephrotic syndrome. Renal biopsy showed diabetic nephropathy coexistent with focal segmental glomerulosclerosis. To our knowledge, this is the first reported case of concomitant diabetic nephropathy, diabetic retinopathy and primary focal segmental glomerulosclerosis. The present case as well as the cases reported in the literature indicate that diabetic nephropathy is not always the sole cause of proteinuria in diabetic patients. Detection of nondiabetic renal lesions in a patient with diabetic nephropathy may alter therapy for renal disease.

Case Report

A 46-year-old man with nephrotic syndrome was admitted to our hospital in June 2005. The patient had a past history of diabetes mellitus type 1 of 25 years and hypertension of two months. He was seen in another hospital for resistant nephrotic syndrome and swelling
of the lower extremities, and later was referred to our hospital for further evaluation of nephrotic syndrome. There was no history of fever, hemophthisis, joint pain, or skin rash. Previous medical history, except for diabetes, was unremarkable. On admission, the patient was pale, weight 105 kg, had elevated blood pressure (160/100 mm Hg), bibasilar lung crackles and generalized edema. He had the following laboratory results: anemia was present with a hemoglobin level of 86 g/L, hematocrit 0.33, and mean corpuscular volume 85.3 fl. Urinary dipstick showed protein +++, trace red cells; microscopy showed a few granular casts. Liver enzymes were normal and creatinine was 130 μmol/L (reference range 64-109 μmol/L). The following tests were negative or normal: antinuclear antibody (ANA), hepatitis B surface antigen (HbsAg), hepatitis B core antibody (HbcAb), human immunodeficiency virus antibody (HIV) and prothrombin time (PT). Serum C3 and C4 were in the normal range. Serum protein electrophoresis was abnormal, with low total serum protein (36g/L) and albumin (19 g/L). Protein urine excretion was 20.2 g/day (normal value <0.2 g/day). Ultrasound showed kidneys of normal size with echogenic cortex. Examination of ocular fundus showed nonproliferative diabetic retinopathy with several discrete microaneurysms, dot and blot hemorrhages, and hard exudates (Fig. 1).

Fig. 2. Focal segmental glomerulosclerosis. A glomerulus showing perihilar segmental sclerotic lesion (periodic acid Schiff stain, X400).

Fig. 3. Diffuse form of diabetic glomerulosclerosis with widespread hyalinization of the mesangial region. Capsular drop is seen (arrow) (Masson trichrome stain; X400).

Fig. 4. Focal segmental glomerulosclerosis. There is extensive foot process effacement, cytoplasmic vacuolization and microvillus transformation of podocytes (transmission electron microscopy, X5600).
Biopsy findings

Light microscopy: the renal biopsy specimen contained 23 glomeruli, three of which were globally sclerotic. Eight glomeruli showed segmental sclerosis with hyalinosis and foam cells. In five glomeruli involved, perihilar sclerosis was observed (Fig. 2). All other glomeruli had mild to moderate expansion of mesangial matrix (diffuse glomerulosclerosis). Capsular drops were seen in two glomeruli (Fig. 3). Small areas of interstitial fibrosis and tubular atrophy were associated with global glomerulosclerosis. However, the majority of tubules were back to back and had normal morphology. Mild to moderate hyaline arteriolar sclerosis was affecting both afferent and efferent arterioles.

On immunofluorescence (23 glomeruli), there was focal segmental mesangial positive staining for IgM (+). C3 was positive (+ +) in Bowman’s capsule, blood vessel walls and focally in tubular basement membranes. The reaction for all other antibodies (IgG, IgA, C1q, fibrinogen, kappa and lambda chains) was negative.

On electron microscopy, one glomerulus available for study presented diffuse thickening of the glomerular basement membrane (measuring 550-850 nm, average 700 nm) and slight increase in mesangial matrix. Small mesangial immune deposits were noticed. There was extensive foot process effacement, cytoplasmic vacuolization and microvillous transformation of podocytes (Fig. 4).

According to light, immunofluorescence and electron microscopy findings, a diagnosis of mild to moderate diabetic nephropathy and focal segmental glomerulosclerosis was made. Therapy with corticosteroids, cyclophosphamide, albumin infusion and furosemide, and an angiotensin 2 receptor inhibitor (valsartan) was initiated. Within one month of the introduction of methylprednisolone and cyclophosphamide, the patient experienced massive diuresis and remission of nephrotic syndrome. In October 2005, during evaluation of the disease, the patient was well, without edema, his blood pressure was normal without therapy, and his body weight was 75 kg. His renal function improved (creatinine clearance was normal) and proteinuria was 0.8 g/day. Other laboratory findings were within the normal range.

Discussion

Glomerulonephritis has been recognized as a rare complication of diabetes mellitus. Once a history of longstanding diabetes has been elicited in patients with renal disease, abnormalities in renal function and structure are often attributed to diabetic nephropathy, without consideration of further diagnostic possibilities. However, in some diabetic patients a concurrent renal lesion may be superimposed on diabetic nephropathy3,5,9. Also, it appears that a wide spectrum of nondiabetic renal lesions can occur in patients with diabetes and without diabetic nephropathy6-9. Both situations present a diagnostic challenge to clinicians and pathologists. These situations most often occur when primary glomerulonephritis develops in a diabetic patient.

Several reports have shown that immune complex glomerulonephritis can be superimposed on diabetic nephropathy. These glomerulonephritis include idiopathic membranous glomerulonephritis, IgA glomerulonephritis, Henoch-Schönlein nephritis, membranoproliferative glomerulonephritis, lupus nephritis, postinfectious glomerulonephritis, and rapidly progressing glomerulonephritis1,4,6,10. Glomerular diseases such as minimal change disease and amyloidosis have also been described with diabetic nephropathy2,5. There are only few reports of focal segmental glomerulosclerosis in diabetic patients1,5,6,11. Yum et al. retrospectively analyzed 18 consecutive renal biopsies from diabetic patients. Eight of these patients were found to have primary glomerulonephritis in addition to diabetic nephropathy. One patient had primary focal segmental glomerulosclerosis in the absence of diabetic retinopathy. In this case, there were no data on immunosuppressive therapy and clinical course of focal segmental glomerulosclerosis either5. Izzedine et al. also retrospectively analyzed the incidence of diabetic nephropathy in 21 diabetic patients who underwent renal biopsy for microscopic hematuria and/or proteinuria. Six of these patients had focal segmental glomerulosclerosis but without diabetic retinopathy. Again, there are no data on patient treatment with focal segmental glomerulosclerosis10. Shimamura et al. report on the coexistence of focal segmental glomerulosclerosis and diabetic glomerulopathy. The authors could not exclude focal segmental glomerulosclerosis secondary to advanced diabetic glomerulopathy and/or hypertension. The patient described in this case did not have diabetic retinopathy5.

In comparison with all these reports, our patient had primary focal segmental glomerulosclerosis associated with diabetic nephropathy and diabetic retinopathy. The diagnosis of diabetic nephropathy was based on diffuse and nodular glomerulosclerosis on renal biopsy12. In the study by Mauer et al., the critical early lesion of diabetic nephropathy was an increase in the volume frac-
tion of mesangium. Capsular drop (a round, eosinophilic accumulation of material between the basement membrane and parietal epithelial cells of Bowman’s capsule) is seldom seen in conditions other than diabetes. On the other hand, the hyalinosis lesion (the so-called exudative lesion or fibrin cap) that often presents in diabetic patients is not specific for diabetic nephropathy. It is identical to the lesion characteristic of focal and segmental glomerulosclerosis with hyalinosis and may be seen nonspecifically in various forms of glomerulonephritis and reflux nephropathy. Global glomerulosclerosis (scarring) is common in diabetic patients. There are at least two types of glomerular scarring in diabetic patients. The first type has relatively large glomeruli that have accumulated huge amounts of matrix and basement membrane-like material as well as hyaline exudative changes. This type of glomerular scarring always occurs in the context of severe, diffuse or nodular glomerulosclerosis in other glomeruli. The second type has the appearance of small, shrunken, relatively acellular glomeruli with collapsed tufts and wrinkled glomerular basement membrane (the so-called ischemic changes) and is related to arteriolar hyalinosis that in diabetic patients affects both afferent and efferent arterioles. Although diabetes mellitus is a known cause of secondary focal segmental glomerulosclerosis, according to Mauer et al., focal segmental glomerulosclerosis is a rare lesion in diabetic patients. On immunofluorescence, a typical finding in diabetic nephropathy is the occurrence of linear staining along the glomerular capillary walls, usually with immunoglobulin G (IgG) and albumin. The earliest change on electron microscopy is the increase in the thickness of glomerular basement membrane. The epithelial cells show variable effacement of the foot process. There is variable increase in mesangial matrix and deposits of hyaline.

Focal segmental glomerulosclerosis is a clinicopathologic entity that takes both primary and secondary forms. It is characterized morphologically by segmental areas of sclerosis in some glomeruli. The sclerotic areas often contain hyalin and foam cells. There are five subtypes of primary focal segmental glomerulosclerosis: 1) focal segmental glomerulosclerosis, not otherwise specified; 2) perihilar variant; 3) cellular variant; 4) tip variant; and 5) collapsing variant. On immunofluorescence, in the segmental sclerotic area, IgM is commonly seen, usually in combination with C3. In the unaffected glomeruli, and in the unaffected parts of the tuft with segmental sclerotic lesions, there is no evidence of either immunoglobulins or complement other than sporo-
dradic weak mesangial staining for IgM. On electron microscopy, the foot process effacement is typically seen. The extent of this change is variable; in some instances it is patchy, and in others widespread. Complete foot process effacement is typically seen in idiopathic focal segmental glomerulosclerosis.

In our patient, because of the development of the severe nephrotic syndrome resistant to albumin infusion and intensive therapy by furosemide, we decided to perform renal biopsy, which showed mild to moderate diabetic nephropathy and focal segmental glomerulosclerosis. Diffuse glomerular sclerosis, capsular drops, hyaline arteriolosclerosis affecting both afferent and efferent arterioles, and thickening of the glomerular basement membrane on electron microscopy seen in the biopsy specimen are changes characteristic of diabetic nephropathy. On the other hand, segmental sclerosis with hyalinosis and foam cells in 35% of the glomeruli in the absence of advanced diabetic glomerulosclerosis in our case made it possible to recognize this as a complicating second glomerular disease rather than as part of diabetic glomerulosclerosis, i.e., hyalinosis lesion. The focal segmental mesangial positive staining for IgM on immunofluorescence and extensive foot process effacement on electron microscopy also supported this diagnosis. The excellent response to methylprednisolone and cyclophosphamide confirmed it.

Primary focal segmental glomerulosclerosis accounts for up to 20% of glomerular lesions in adults presenting with proteinuria. Over the last 20 years there has been a marked increase in the incidence of this lesion. This is the reason why we could expect in the future an increased rate of the association of this type of glomerulonephritis with diabetic nephropathy because the incidence of diabetes mellitus in the world is also increasing. The effect of the nondiabetic renal disease on the prognosis depends on the nature of that lesion and the time of its occurrence in the natural history of diabetic nephropathy. We believe that when proteinuria or any other abnormality in renal function appears in a diabetic patient, it deserves close scrutiny rather than being dismissed as diabetic nephropathy. The occurrence of red blood cell casts and hematuria as well as heavy proteinuria are not usual in diabetic nephropathy and require further evaluation. Deterioration of renal function either earlier in the course of diabetes or at a more accelerated face, such as a decline in glomerular filtration rate exceeding 1 mL per minute per month should also


K. Galešić et al.

Diabetic nephropathy with FSGS
arouse suspicion of a non-diabetic renal disease.

It is generally agreed that renal biopsy should not be performed routinely in diabetic patients who have abnormal urinary test findings or renal function. However, our case and the review of the literature attest to the usefulness of the biopsy in patients carefully selected according to the following criteria: 1) premature appearance of the nephrotic syndrome with a history of diabetes of less than ten years; 2) presence of gross or persistent microscopic hematuria; 3) sudden or rapid deterioration of renal function; and 4) nephrotic syndrome or renal insufficiency in the absence of retinopathy and hypertension.

In conclusion, renal biopsy with complete evaluation (light, immunofluorescence and electron microscopy) remains the only means for detecting a second glomerular disease in diabetic patients, which might alter the natural course, therapeutic approach and prognosis in patients with diabetes mellitus.

References

Sažetak

DIJABETIČNA NEFROPATIJA S FOKALNOM SEGMENTNOM GLOMERULOSKLEROZOM

K. Galešić, D. Ljubicić, J. Petrović \& I. Rašić

Udruženost dijabetične nefropatije s primarnim glomerulonefritom riječka je kod šećerne bolesti tip 1. Nekoliko izvješća pokazuje da se primarni glomerulonefrit može razviti na osnovi dijabetične nefropatije. Ovi glomerulonefriti obuhvaćaju idiopatski membranski glomerulonefritis, IgA glomerulonefritis, Henoch-Schönleinov nefritis, membranoproliferacijski glomerulonefritis, lupus nefritis, bolest minimalne promjene, postinfekcijski glomerulonefritis i brzo progredirajući glomerulonefritis. Kako neke od ovih bolesti mogu promijeniti liječenje i prognozu hubrežne bolesti kod dijabetičnih bolesnika, patološki nalaz u mokraći ili pogranične hubrežne funkcije koji nisu u skladu s naravnom dijabetične nefropatije ukazuju na mogućnost nedijabetične hubrežne bolesti i zahtijevaju podrobniju procjenu. Opisuje se bolesnik sa šećernom bolešću tip 1 kod kojega je napravljena biopsija hubrega zbog teške proteinurije i nefrotskog sindroma. Biopsija hubrega je pokazala dijabetičnu nefropatiju, ali i fokalnu segmentnu glomerulosklerozu. Prema našim saznanjima, ovo je prvi objavljeni slučaj primarne žarišne segmentne glomerulosklerore udružene s dijabetičnom nefropatijom i dijabetičnom retinopatijom, s izravnim odgovorom na terapiju.

Ključne riječi: Glomeruloskleroza, fokalna – komplikacije; Glomeruloskleroza, fokalna – dijagnostika; Glomeruloskleroza, fokalna – terapija; Dijabetične nefropatije – dijagnostika; Dijabetične nefropatije – immunologija; Dijabetične nefropatije – terapija; Bubrež, glomeruli – patologija