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ABSTRACT
Portfolio selection is one of the most vital financial problems in 
literature. The studied problem is a nonlinear multi-objective problem 
which has been solved by a variety of heuristic and metaheuristic 
techniques. In this article, a metaheuristic optimiser, the multi-
objective water cycle algorithm (MOWCA), is represented to find 
efficient frontiers associated with the standard mean-variance (M-
V) portfolio optimisation model. The inspired concept of WCA 
is based on the simulation of water cycle process in the nature. 
Computational results are obtained for analyses of daily data for 
the period January 2012 to December 2014, including S&P100 in 
the US, Hang Seng in Hong Kong, FTSE100 in the UK, and DAX100 
in Germany. The performance of the MOWCA for solving portfolio 
optimisation problems has been evaluated in comparison with 
other multi-objective optimisers including the NSGA-II and multi-
objective particle swarm optimisation (MOPSO). Four well-known 
performance metrics are used to compare the reported optimisers. 
Statistical optimisation results indicate that the applied MOWCA is an 
efficient and practical optimiser compared with the other methods 
for handling portfolio optimisation problems.

1.  Introduction

Portfolio management is one of the most important financial research areas for many scien-
tists and researchers (Zhu et al., 2011). Lots of efforts has been made by portfolio managers 
in order to create appropriate portfolios for investors (Woodside-Oriakhi, Lucas, & Beasley, 
2011). Making effective portfolio selections in real stock markets is not such an easy task 
(Corazza, Fasano, & Gusso, 2013). That is why all financial experts have been trying to find 
a better practical model compared with to the others.

Although, a proportion of portfolio selection decisions are taken on a qualitative basis, 
quantitative approaches are being used more frequently. Markowitz (1952) set up a quanti-
tative framework for the selection of a portfolio (Chang, Meade, Beasley, & Sharaiha, 2000). 
He introduced mean-variance (M-V) model. The M-V model has become the foundation of 
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the modern finance theory since 1950s (Chen, 2015). In its basic form, this model requires 
to determine the composition of a portfolio of assets which minimises risk while achieving a 
predetermined level of expected return (Crama & Schyns, 2003). His theory has revolution-
ised the way people think about portfolios of assets, and has gained widespread acceptance 
as a practical tool for portfolio optimisation. However, in some cases, the characteristics 
of the problem, such as its size, real-world requirements, very limited computation time, 
and limited precision in estimating instance parameters, may make analytical methods not 
particularly suitable for tackling large instances of this M-V model.

Such examples, however, are not necessarily a sign that the theory of risk-return opti-
misation is flawed. Rather, it means that the classical framework has to be modified when 
used in practice in order to achieve reliability, stability, and robustness with respect to model 
and limitations (Kolm, Tütüncü, & Fabozzi, 2013). Therefore, after Markowitz’s work, fur-
ther work has been done to improve and extend his model (Chen, 2015). These attempts, 
regarding the limitations of a factual market, have tried to make his model more practical.

Over recent years, various algorithms have been developed to solve portfolio optimisa-
tion problems. Most of these algorithms are based on numerical linear and nonlinear pro-
gramming methods that may require substantial gradient information and usually seek to 
improve the solution in the neighbourhood of a starting point. These numerical optimisation 
algorithms provide a useful strategy to obtain the global optimum solution for simple and 
ideal models. The portfolio optimisation problem, however, is very complex in nature and 
quite difficult to solve. If there is more than one local optimum in the problem, the results 
may depend on the selection of the starting point for which the obtained optimal solution 
may not necessarily be the global optimum.

Furthermore, the gradient search method may become unstable when the objective 
function and constraints have multiple or sharp peaks. The drawbacks (i.e., efficiency 
and accuracy) of existing methods have encouraged researchers to rely on metaheuris-
tic optimisation algorithms based on simulations and nature-inspired methods to solve 
optimisation problems. Metaheuristic algorithms commonly operate by combining rules 
and randomness to imitate natural phenomena (Goldberg, 1989; Woodside-Oriakhi et al., 
2011). Genetic algorithms (GAs), one of the most widely used metaheuristic algorithms, 
is based on the genetic process of biological organisms (Goldberg, 1989). GA is the most 
popular optimisation method in financial optimisation problems used in the literature 
(Bermúdez, Segura, & Vercher, 2012; Chang, Sang-Chin, & Chang, 2009; Li & Xu, 2007; 
Lin & Liu, 2008; Najafi & Mushakhian, 2015; Ruiz-Torrubiano & Suarez, 2010; Soleimani, 
Golmakani, & Salimi, 2009).

Metaheuristic methods are capable of finding the near-optimum solution to the numer-
ical real-valued test problems. This study introduces and utilises the water cycle algorithm 
(WCA) as a metaheuristic optimisation method for solving optimising portfolio selection. 
Hence, the ability and efficiency of the WCA to create high-quality solutions for Markowitz 
M-V model will be investigated. The idea of WCA was first suggested for solving engineering 
optimisation problems (Eskandar, Sadollah, Bahreininejad, & Hamdi, 2012).

Recently, the multi-objective water cycle algorithm (MOWCA) has been validated and 
implemented for solving constrained and unconstrained multi-criteria benchmark problems 
(Sadollah, Eskandar, & Kim, 2015; Sadollah, Eskandar, Kim, & Bahreininejad, 2014). The 
main objective of this article is to show the efficiency of WCA for solving portfolio optimi-
sation problems. Statistical optimisation results obtained by the MOWCA are compared 
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with the other multi-objective optimisers named as non-dominated sorting GA (NSGA-II) 
(Deb, Pratap, Agarwal, & Meyarivan, 2002) and multi-objective particle swarm optimisation 
(MOPSO) (Li, 2003).

The rest of this article is organised as follows: Section 2 provides a literature review 
regarding the applied optimisers for solving portfolio optimisation problem. The portfolio 
optimisation problem is formulated and represented in Section 3. Multi-objective optimi-
sation problems (MOPs) are explained in brief in Section 4 and then a detailed MOWCA 
is introduced in Section 5. Computational experiments, their comparisons, and discussions 
using different optimisers have been provided in Section 6. Finally, conclusions and further 
studies are drawn in Section 7.

2.  Literature review

Despite the simplicity and intuitive appeal of portfolio construction using modern portfolio 
theory, it took many years until portfolio managers started using portfolio optimisation to 
manage real money. In real world applications, there are many concerns associated with its 
use, and portfolio optimisation is still considered by many practitioners to be impractical 
to apply (Kolm et al., 2013).

Recently, various algorithms have been developed to solve portfolio optimisation prob-
lems. Due to the complexity and the instantaneity of these problems, applying metaheuristic 
optimisation algorithms is a good alternative. The most of these algorithms have some 
shortcomings in solving the portfolio selection problem. However, as reported by Zhu  
et al. (2011), GA and particle swarm optimisation (PSO) required more computational time 
when the size of the problem is too large to find adequate solutions.

In fact, there are many applications using the GA and PSO (i.e., considered as the most 
commonly used metaheuristic optimisation methods) for solving portfolio optimisation 
problems (Chang et al., 2009; Li & Xu, 2007; Najafi & Mushakhian, 2015; Soleimani et al., 
2009). Therefore, the following sections are designated for some applications of GA, PSO, 
and proposed WCA.

2.1.  Genetic algorithm

Based on the Darwin principle ‘the fittest survive’ in nature, the GA was first introduced by 
Holland (1975) and has rapidly become the best-known techniques (Chang et al., 2009). 
The GA is an optimisation method which works by mimicking the evolutionary principles 
and chromosomal processing in natural genetics. It belongs to the larger class of evolution-
ary algorithms (EA), which generate solutions to optimisation problems using techniques 
inspired by natural evolution such as inheritance, mutation, selection, and crossover.

A GA begins its search with a random set of solutions usually coded in binary strings. 
Every solution is assigned a fitness which is directly related to the objective function of 
the optimisation problem. Thereafter, the population of solutions is modified to a new by 
applying three operators similar to natural genetic operators’ reproduction, crossover, and 
mutation. It works iteratively by successively applying these three operators in each gener-
ation till a termination criterion is satisfied (Holland, 1975).

Since the developing of GA, numerous related GA-based portfolio selection approaches 
have been tackled. For instance, Kyong et al. (2005) used the GA to support portfolio 
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optimisation for index fund management. Chang et al. (2009), and Lin and Liu (2008) also 
proposed the GA for portfolio selection problems with minimum transaction lots.

2.2.  Particle swarm optimisation

The PSO is originally attributed to Kennedy and Eberhart (1995) and was first introduced 
for simulating social behaviour, as a stylised representation of the movement of organisms in 
a bird flock or fish school. It is based on a psychosocial model of social influence and social 
learning. A PSO swarm resembles a population, and a particle resembles an individual. It 
is initialised with a particle swarm, and each particle position represents a possible solu-
tion. The particles fly through the multidimensional search space by dynamically adjusting 
velocities according to its own experience and that of its neighbours (Kennedy et al., 2001).

The PSO has proven its efficiency in many empirical studies in the literature (Ali & Kaelo, 
2008; Jiang et al., 2007; Tsai et al., 2010; Yang et al., 2007). The PSO have been widely applied 
for solving portfolio optimisation problems. The portfolio model was tested on various 
restricted and unrestricted risky investment portfolios and compared with the GA. The 
PSO demonstrated high computational efficiency in portfolio optimisation reported in the 
literature (Deng et al., 2012; Liu et al., 2012; Zhu, Wang, Wang, & Chen, 2011).

Recently, Golmakani and Fazel (2011) used the PSO for selecting the constrained port-
folio. They showed that the proposed PSO effectively outperforms the GA especially in 
large-scale problems. Corazza et al. (2013) proposed a non-smooth penalty reformulation 
PSO for solving a complex portfolio selection problem.

2.3.  Water cycle algorithm

The WCA is based on the observation of water cycle process and how rivers and streams 
flow into downhill towards the sea in nature (Eskandar et al., 2012). It was first introduced 
by Eskandar et al. (2012) for solving engineering optimisation problems. They showed 
that the WCA is more able to find a wider range of solutions compared with the GA and 
PSO. Compared to the GA and PSO, the WCA has demonstrated considerable success in 
providing good solution qualities to many complex engineering optimisation problems.

Recently, Haddad, Moravej, and Loáiciga (2014) utilised the WCA for finding optimal 
operation of reservoir systems. Their obtained optimisation results demonstrate the high effi-
ciency and reliability of the WCA in solving reservoir operation problems. Lenin, Reddy, and 
Kalavathi (2014) used the WCA for detecting optimum reactive power dispatch problems. They 
claimed that the WCA has been applied on standard IEEE 30 bus test systems and simulation 
results show clearly about the superior performance of the WCA in decreasing real power loss.

Jabbar and Zainudin (2014) applied the WCA for attribute reduction problems in rough 
set theory. Based on their findings, it has been shown that the WCA performed equally 
well or even better than other methods for detecting optimal attribute selection. Guney and 
Basbug (2014) proposed an improved version of WCA, so called quantised WCA (QWCA) 
and applied it for solving antenna array pattern synthesis. The internal quantisation mech-
anism of QWCA is utilised to achieve digital values matching to the discrete values of the 
phase shifter instead of the simple rounding up/down routines after optimisation.

Therefore, the motivation is created to use the MOWCA (Sadollah et al., 2014, 2015) 
for solving multi-objective portfolio optimisation problem. Moreover, the portfolio 
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optimisation problem with multi-objective functions cannot be efficiently solved using 
traditionally approaches (Zhu et al., 2011). This article represents a multi-objective meta-
heuristic approach to portfolio optimisation problem using the WCA.

3.  Portfolio problem formulation

In this section, the cardinality constrained M-V portfolio optimisation problem has been 
formulated. For solving the portfolio selection problem, the notations used in this analysis 
are based on M-V model (Markowitz, 1952, 1991). Markowitz was the first researcher who 
applied variance or standard deviation as a measure of risk. He assumed that his classical 
formation can be formulated given as follows (Markowitz, 1952):
 

Equation (1) minimises the total variance (risk) associated with the portfolio. From a 
practical perspective, however, the Markowitz model may often be considered too basic. 
Real world investors have to face a lot of constraints such as trading limitations, size of 
the portfolio, etc. The portfolio optimisation problem becomes much more difficult if the 
number of variables is increased or if additional constraints such as cardinality constraints 
are introduced. Including such constraints in the formulation results in a problem which is 
considerably more practical than the original model (Maringer & Kellerer, 2003).

Therefore, in order to enrich the model, as can be seen in Equation (1), in this study, 
the portfolio optimisation problem is investigated as a multi-objective problem, where 
the expected return is maximised (i.e., first objective function) and the risk is minimised 
(i.e., second objective function). Therefore, the standard format of our objectives and their 
constraints are given in the following equations:

 

 

subject to:
 

 

where ri is the expected return of asset ith, N is the number of available assets, wi is the 
proportion of the portfolio held in assets ith, ρij is the correlation between asset ith and jth, 
and δi and δj are the standard deviation of stocks returns ith and jth, respectively. Therefore, 
Equation (2) maximises the portfolio return, Equation (3) minimises the total variance (risk) 

(1)Minimise

N∑
i=1

N∑
j=1

WiWj�ij.

(2)Maximise Portfolio Return F
1
(w) =

N∑
i=1

wir̄i,

(3)Minimise Portfolio Risk F
2
(w) =

N∑
i=1

N∑
j=1

wiwj�i�j�ij,

(4)
N∑
i=1

wi = 1,

(5)0 ≤ wi ≤ 1, i = 1, 2, 3, ...,N ,
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associated with the portfolio. In terms of applied constraints, Equation (4) ensures that the 
sum of the proportions is equal to one. Also, the proportion held in each asset is between 
zero (minimum amount) and one (maximum amount) as can be seen in Equation (5).

4.  Standard format of multi-objective optimisation problems

MOPs is an area of multiple criteria decision-making involving more than one objective 
function to be optimised simultaneously as can be seen in the following equation:
 

where X = [x1, x2, x3, . . .,xd ] is a vector of design variables, and, d and m are the number 
of design variables and objectives, respectively. A simple approach for solving MOPs is to 
use a wide variety of weight factors to convert a MOPs into a single-objective optimisation 
problem. It can be formulated based on the following equation (Haupt & Haupt, 2004):
 

where m is the number of objective functions and wi, and fi are weighting factors and objec-
tive functions, respectively. However, it is time consuming task and it is considered as a 
major downside of this method. The most common way to solve MOPs is by keeping a set 
of best solutions in an archive and updating the archive at each iteration. In this method, 
the best solutions are defined as non-dominated solutions or Pareto optimal solutions. A 
solution can be considered as a non-dominated solution if and only if the following condi-
tions become satisfied by the solution as given follows (Coello C.A.C 2000):

(a) � Pareto dominance: U = (u1, u2, u3, . . .,un) < V=(v1, v2, v3, . . .,vn) if and only if U is 
partially less than V in the objective space which it means:

 

(b) � Pareto optimal solution: vector U is a Pareto optimal solution if and only if any other 
solutions cannot be determined to dominate U. A set of Pareto optimal solutions is 
called a Pareto optimal front (PFoptimal).

Figure 1 shows that among three solutions A, B, and C, solution C has the highest values 
for f1 and f2. It means that this solution is a solution dominated by solutions A and B. In 
contrast, both solutions A and B can be considered as non-dominated solutions, as neither 
of them dominates each other (Sadollah et al., 2015).

4.1.  Performance metrics for MOPs

Four performance parameters that are used to evaluate the performance of metaheuristic 
algorithms are investigated in this article. These criteria are listed as follows: generational 

(6)F(X) = [F
1
(X), F

2
(X),… , Fm(X)]

T

(7)F =

m∑
i=1

wifi

(8)

{
Fi(U) ≤ Fi(V ) ∀i

Fi(U) ≺ Fi(V ) ∃i
, i = 1, 2, 3, ...,m
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distance (GD) metric, metric of spacing, diversity metric, and metric of maximum spread 
(MS) widely used in the literature (Sadollah et al., 2015).

Veldhuizen and Lamont (1998) introduced the GD metric. It clarifies the capability of the 
different algorithms of finding a set of non-dominated solutions having the lowest distance 
with the Pareto optimal fronts (PFoptimal). An algorithm with the minimum GD has the best 
convergence to the PFoptimal. This evaluator is defined as the following:

 

where NPF is the number of members in the generated Pareto front (PFg) and d is Euclidean 
distance between member ith in the PFg and the nearest member in the PFoptimal. Figure 2 
shows a schematic view of GD performance metric for the 2D space. The best obtained 
value for the GD metric is equal to zero which means that the PFg exactly covers the PFoptimal.

Schott (1995) suggested the metric of spacing (S). It shows the distribution of non-dom-
inated solutions obtained by a specified algorithm. It can show how well the obtained solu-
tions are distributed among each other. It is defined as the following equation:

 

where d̃i = minj(
|||f

i
1
(x) − f

j

1
(x)

||| +
|||f

i
2
(x) − f

j

2
(x)

|||, i, j = 1, ...,NPF and d̄is average of all di. 
The smallest value of S gives the best uniform distributionn in the PFg. If all non-dominated 
solutions are uniformly distributed in the PFg, then, the values of di and d̄ are the same, 
therefore, the value of S metric is zero. Figure 3 displays a schematic view of the spacing 
metric used in this article.

Deb (2001) proposed the metric of diversity (∆). It determines the extent of spread 
attained by the non-dominated solutions obtained from a specified algorithm. To be more 

(9)GD =

(
1

NPF

NPF∑
i=1

d2

i

)1∕2

,

(10)S =

√√√√ 1

NPF − 1

NPF∑
i=1

(d̃i − d̄)2,

Figure 1. Optimal Pareto solutions (A and B) for the two-dimensional space. Source: Sadollah et al. (2015).



1284   ﻿ M. MORADI ET AL.

precise, it can analyse how the solutions are extended across the PFoptimal. It is defined as 
follows:

 

where df and dl are Euclidean distance between the extreme solutions in the PFoptimal and 
PFg, respectively. Also, di is Euclidean distance between each point in the PFg and the closest 
point in the PFoptimal.

Value of the ∆ metric is always greater than zero, and a small value of ∆ means better 
distribution and spread of the solutions. In this condition, ∆ = 0 is the perfect condition 
indicating that extreme solutions of the PFoptimal have been found and that di=d̄ for all 

(11)Δ =

df + dl +
NPF∑
i=1

���di − d̄
���

df + dl + (NPF − 1)d̄

Figure 2. Schematic view of GD criterion for the MOPs. Source: Veldhuizen and Lamont (1998).

Figure 3. Schematic view of S evaluator for the MOPs. Source: Scott (1995).
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non-dominated points. Figure 4 shows a schematic view of the ∆ performance metric for 
a given Pareto front.

The metric of MS measures how ‘well’ the PFoptimal is covered by the PFg through hyper-
boxes formed by the extreme function values observed in the PFoptimal and PFg. It is defined 
as follows (Kaveh & Laknejadi, 2011):

 

where fi
max and fi

min are the maximum and minimum of the ith objective in the PFoptimal, 
respectively, Fi

max and Fi
min are the maximum and minimum of the ith objective in the PFoptimal, 

respectively. Larger value of MS implies a better spread of solutions.

5.  Multi-objective WCA for portfolio optimisation

5.1.  Water cycle algorithm

The WCA mimics the flow of rivers and streams toward the sea and derived by the obser-
vation of water cycle process. Let us assume that there are some rain or precipitation phe-
nomena. An initial population of design variables (i.e., population of streams) is randomly 
generated after raining process. The best individual (i.e., the best stream), classified in terms 
of having the minimum cost function (for minimisation problem), is chosen as the sea.

Then, a number of good streams (i.e., cost function values close to the current best 
record) are chosen as rivers, while the other streams flow into the rivers and sea. In an D 
dimensional optimisation problem, a stream is an array of 1 × D. Starting an optimisa-
tion algorithm, an initial population representing a matrix of streams of size Npop × D is 
generated. Hence, the matrix of initial population, which is generated randomly, is given 
as (rows and column are the number of population and the number of design variables, 
respectively):

(12)MS =

[
1

m

m∑
i=1

[
min(f max

i , Fmax

i ) −max(f min

i , Fmin

i )

Fmax

i − Fmin

i

]2] 1

2

,

Figure 4. Schematic view of diversity metric (∆) for the MOPs. Source: Deb et al. (2002).
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where Npop and D are population size and the number of design variables, respectively. Each 
of the decision variable values (x1, x2, . . ., xD) can be represented as floating point number 
(real values) or as a predefined set for continuous and discrete problems, respectively. The 
cost of a stream is obtained by the evaluation of cost function (fitness function).

At the first step, Npop streams are created. A number of Nsr from the best individuals 
(minimum values) are selected as a sea and rivers. The stream which has the minimum 
value among others is considered as the sea. In fact, Nsr is the summation of number of 
rivers (which is defined by user) and a single sea. The rest of the population (i.e., streams 
flow into the rivers or may directly flow to the sea) are considered as streams.

Depending on magnitude of flow, each river absorbs water from streams. The amount 
of water entering a river and/or the sea, hence, varies from stream to stream. In addition, 
rivers flow to the sea which is the most downhill location. The designated streams for each 
rivers and sea are calculated using the following equation (Eskandar et al., 2012):

 

 

where NSn is the number of streams which flow to the specific rivers and sea. As it happens 
in nature, streams are created from the raindrops and join each other to generate new rivers. 
Some stream may even flow directly to the sea. All rivers and streams end up in the sea that 
corresponds to the current best solution. Let us assume that there are Npop streams of which 
Nsr-1 are selected as rivers and one is selected as the sea. Figure 5a shows the schematic view 
of a stream flowing towards a specific river along their connecting line.

At the exploitation phase in the WCA, new positions for streams and rivers have been 
suggested as follows (Eskandar et al., 2012):

(13)Total Population =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Sea

River
1

River
2

River
3

⋮

StreamNsr+1

StreamNsr+2

StreamNsr+3

⋮

StreamNpop

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
1

x1
2

x1
3 ⋯ x1D

x2
1

x2
2

x2
3 ⋯ x2D

⋮ ⋮ ⋮ ⋮ ⋮

x
Npop

1
x
Npop

2
x
Npop

3
⋯ x

Npop

D

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(14)Cn = Costn − CostNsr+1 n = 1, 2, 3, ...,Nsr ,

(15)NSn = round{

����������

Cn

Nsr∑
n=1

Cn

����������

× NStreams} , n = 1, 2, ...,Nsr ,
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where 1 < C < 2 and the best value for C may be chosen as 2 and rand is an uniformly dis-
tributed random number between zero and one. Equations (16) and (17) are for streams 
which flow into the sea and their corresponding rivers, respectively. Notations having vec-
tor sign correspond to vector values, otherwise the rest of notations and parameters are 
considered as scalar values. If the solution given by a stream is better than its connecting 
river, the positions of river and stream are exchanged (i.e., the stream becomes a river and 
the river becomes a stream). A similar exchange can be performed for a river and the sea.

The evaporation process operator also is introduced to avoid premature (immature) con-
vergence to local optima (exploitation phase) (Sadollah et al., 2015). Basically, evaporation 

(16)X⃗t+1
Stream = X⃗t

Stream + rand × C × (X⃗t
Sea − X⃗t

Stream)

(17)X⃗t+1
Stream = X⃗t

Stream + rand × C × (X⃗t
River − X⃗t

Stream),

(18)X⃗t+1
River = X⃗t

River + rand × C × (X⃗t
Sea − X⃗t

River),

Figure 5. Schematic description of: (a) the stream’s flow to a specific river; (b) the WCA optimisation 
process. Source: Eskandar et al. (2012).
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causes sea water to evaporate as rivers/streams flow into the sea. This leads to new precip-
itations. Therefore, we have to check if the river/stream is sufficiently close to the sea to 
make the evaporation process occur. For that purpose, the following criterion is utilised 
for evaporation condition (Eskandar et al., 2012):

where dmax is a small number close to zero. After evaporation, the raining process is applied 
and new streams are formed in the different locations (similar to mutation in the GAs). 
Hence, in the new generated sub-population, the best stream will act as a new river and 
other streams move toward their new river. This condition will also apply for streams that 
directly flow to the sea.

Similarly, the best newly formed stream is considered as a river flowing to the sea. The 
rest of new streams are assumed to flow into the rivers or may directly flow into the sea. The 
following equation is used only for the streams which directly flow to the sea. It encourages 
the creation of streams which directly flow to the sea in order to improve the explora-
tion near the sea (the optimum solution) in the feasible region for constrained problems 
(Eskandar et al., 2012):

 

where μ is a coefficient which shows the range of searching region near the sea, randn is 
the normally distributed random number. The larger μ increases the possibility to exit from 
feasible region. The smaller μ leads the algorithm to search in smaller region near the sea. Its 
suitable value is set to 0.1. Indeed, term 

√
� represents the standard deviation. The generated 

individuals with variance μ are distributed around the best obtained optimum point (sea).
Therefore, the evaporation operator is responsible for the exploration phase in the WCA.
A large value for dmax prevents extra searches and small values encourage the search 

intensity near the sea. Therefore, dmax controls the search intensity near the sea (i.e., best 
obtained solution). The value of dmax adaptively decreases as follows:

 

where t is an iteration index. The development of the WCA optimisation process is illustrated 
by Figure 5b where circles, stars, and the diamond correspond to streams, rivers, and sea, 
respectively. The white (empty) shapes denote the new positions taken by streams and rivers.

5.2.  Multi-objective WCA

In order to convert the WCA to an efficient multi-objective optimisation algorithm, the 
pre-dominant features of the algorithm (i.e., sea and rivers) should be defined correctly. 
In ordinary optimisation problems for the WCA, only one objective function needs to 

if
‖‖‖X⃗

t
Sea − X⃗t

Riverj

‖‖‖ < dmax or rand < 0.1 j = 1, 2, 3, ...,Nsr − 1

Perform raining process by unifrom random search

end

(19)X⃗t+1
Stream = X⃗t

Sea +
√
𝜇 × randn (1,D),

(20)dt+1
max = dt

max −
dt
max

Max_Iteration
t = 1, 2, 3,… ,Max_Iteration
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be minimised (maximised). In this condition, a number of best obtained solutions in the 
population are selected as a sea (i.e., best obtained solution so far) and rivers.

Nevertheless, in MOPs, there is more than one function to be minimised (maximised). 
Therefore, the definition in the WCA for selecting sea and rivers has to be changed in 
the multi-objective space. A crowding-distance mechanism is used for selecting the most 
efficient (best) solutions in the population as a sea and rivers. At first, Deb et al. (2002) 
defined the concept of crowding-distance mechanism. This criterion shows the distribution 
of non-dominated solutions around a particular non-dominated solution. Figure 6 illustrates 
how to calculate the crowding-distance (i.e., the average side length of the cuboid) for point i.

A lower value for the crowding-distance indicates greater distribution of the solutions 
in a specific region. In MOPs, this parameter is calculated in objective spaces. Hence, all 
non-dominated solutions must be sorted in terms of values for one of the objective func-
tions. It is necessary to compute this parameter for each non-dominated solution. A vital 
step in the MOWCA is to select the sea and rivers from the obtained population as the best 
solutions for other solutions at each iteration. It affects the convergence capability of the 
MOWCA and maintains a good spread of non-dominated solutions.

Therefore, the crowding-distance for all non-dominated solutions must be calculated for 
all iterations. It is necessary to determine which solutions have the highest crowding-distance 
values. Afterwards, the obtained non-dominated solutions are designated as a sea and rivers 
and, furthermore, the flow intensity of rivers and sea is calculated based on the crowding-dis-
tance values. Some non-dominated solutions will most likely be created around the sea and 
rivers at the next iteration, and their crowding-distance values will be amended and reduced.

Moreover, it is very important to save non-dominated solutions in an archive to generate 
the Pareto front sets. This archive is updated at each iteration, and any dominated solutions 
are eliminated from the archive. Therefore, whenever the number of members in the Pareto 
archive becomes greater than the Pareto archive size, the crowding-distance is applied 
again to eliminate as many as necessary of the non-dominated solutions having the lowest 
crowding-distance values among the Pareto archive members. The MOWCA has the great 

Figure 6. Schematic view of crowding-distance calculation. Source: Deb et al. (2002).
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potential for exploitation in the design space as it focuses in near optimum solutions and 
exploits far distance solutions.

Mostly, the MOWCA starts with exploitation approach, moving streams toward rivers 
and rivers toward the sea. However, at early iteration, these movements act as an explo-
ration operator in the MOWCA due to the diversity of early population. Afterwards, the 
MOWCA applies evaporation condition in order to perform exploration phase. This trend 
can be considered as the potential of the MOWCA to search a wide range of design space, 
while concentrating to near optimum non-dominated solutions (Sadollah et al., 2015).

Many MOPs are subjected to a set of constraints (e.g., inequality, equality, linear, nonlin-
ear, and so forth). Therefore, finding the good and simple strategies to handle the imposed 
constraints and detect solutions in the feasible area is important. Hence, a simple approach 
is defined here to apply on the MOWCA. After generating a set of solutions at each itera-
tion, all constraints are checked and some solutions that are in the feasible area are selected. 
Afterward, non-dominated solutions are selected from the feasible solutions and inserted 
into the Pareto archive. Finally, sea and rivers are chosen from this archive for the next 
iteration (Sadollah et al., 2015).

The detailed steps of MOWCA are described as follows (Sadollah et al., 2015):
Step 1: Choose the initial parameters of the MOWCA: Nsr, dmax, Npop, maximum iteration 

number, and Pareto archive size.
Step 2: Create random initial population and form the initial streams, rivers, and sea.
Step 3: Create the value of multi-objective functions for each stream.
Step 4: Determine the non-dominated solutions in the initial population and save them 

in the Pareto archive.
Step 5: Determine the non-dominated solutions among the feasible solutions and save 

them in the Pareto archive.
Step 6: Calculate the crowding-distance for each Pareto archive member.
Step 7: Select a sea and rivers based on the crowding-distance value.
Step 8: Determine flow intensity of rivers and sea based on the crowding distance values 

by Equations (14) and (15).
Step 9: Some streams may directly flow into the sea using Equation (16).
Step 10: Exchange positions of sea with a stream which gives the best solution.
Step 11: Streams flow into the rivers by Equation (17).
Step 12: Exchange positions of river with a stream which gives the best solution.
Step 13: Rivers flow into the sea using Equation (18).
Step 14: Exchange positions of sea with a river which gives the best solution.
Step 15: Check the evaporation condition using the pseudo-code in Section 4.1.
Step 16: The raining process will occur if the evaporation condition is satisfied.
Step 17: Reduce the value of dmax which is a user defined parameter using Equation (19).
Step 18: Determine the new feasible solutions in the population.
Step 19: Determine the new non-dominated solutions among the feasible solutions and 

save them in the Pareto archive.
Step 20: Eliminate any dominated solutions in the Pareto archive.
Step 21: Go to the Step 22 if the number of member in the Pareto archive is more than 

the determined Pareto archive sizes, other-wise, go to the Step 23.
Step 22: Calculate the crowding-distance value for each Pareto archive member and 

remove as many members as necessary with the lowest crowding-distance value.
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Step 23: Calculate the crowding-distance value for each Pareto archive member to select 
new sea and rivers.

Step 24: Check the convergence criterion. The WCA will be stopped if the stopping 
criterion is satisfied, otherwise return to the Step 9.

6.  Computational experiments and discussion

Portfolio selection problem seeks the best allocation of wealth among different investment 
opportunities in a market consisting of risky assets. Determination of optimal portfolios is 
a rather complex problem depending on the objective of the investor. Generally, an investor 
tends to lowest risk and highest return. Therefore, they are faced with a multi-objective 
function. High return is accompanied with high risk and so, an investor must explicitly 
consider the trade-off between the risk and return in deciding which portfolio to adopt.

In this section, a set of computational experiments are used to clarify the performance 
of MOWCA. In this article, the MOWCA is compared with the NSGA-II (Deb et al., 2002) 
and MOPSO (Li, 2003). The MOWCA, NSGA-II, and MOPSO were coded in MATLAB 
programming software, and the optimisation task of each experiment was executed using 
20 independent runs.

For all experiments, the initial parameters for the MOWCA were selected as 50, 8 and 
1E-05, for Npop, Nsr, and dmax, respectively. In terms of MOPSO and NSGA-II, population 
size of 50 is considered for all experiments. Values of 0.75 and 1.5 were set for inertia weight 
and both learning coefficients used in MOPSO, respectively. Talking about user parameters 
of NSGA-II, the crossover and mutation rates were 0.5 and 0.1, accordingly. It is worth 
mentioning that the used initial parameters for all reported optimisers have been fine-tuned 
and the optimal initial values are used for the optimisation task using sensitivity analyses.

In order to have fair and reliable comparison, the maximum number of function evaluations 
(NFEs) used and the Pareto archive size for all MOPs were set to 10,000 and 100, respectively. 
In fact, the maximum NFEs is taken as the stopping condition is assumed in this article. 
Four performance metrics, widely used in the literature, have been utilised for evaluating the 
efficiency of MOWCA and the other optimisers. It is worth mentioning that both applied 
optimisers (i.e., NSGA-II and MOPSO) have been coded and implemented in this article.

Four MOPs are investigated to assess the capability of the MOWCA in handling 
constrained portfolio optimisation problems involving daily data from January 2012 to 
December 2014. Data obtained from the following indices: 97 firms from S&P 100 in the 
US, 50 firms from Hang Seng (HSI) in Hong Kong, 96 firms from FTSE 100 in the UK, and 
30 firms from DAX in Germany.

Table 1. Statistical optimisation results obtained by the GD and S metrics for the S&P problem using 
different optimisers.

Source: Data processing was performed off-line using a commercial software package MATLAB 8.5, The MathWorks Inc., 
Natick, MA, 2000.

aStandard deviation.

Method

GD S

Worst Average Best SD Worst Average Best SDa
NSGA-II 1.55E-03 1.16E-03 9.32E-04 1.92E-04 7.25E-01 4.50E-01 3.15E-01 1.04E-01
MOPSO 2.01E-02 9.86E-03 5.01E-03 4.44E-03 3.93E-01 2.49E-01 1.82E-01 7.40E-02
MOWCA 1.50E-03 1.07E-03 6.57E-04 2.06E-04 3.70E-01 2.22E-01 1.66E-01 5.25E-02
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6.1.  S&P100 (97 stocks)

Tables 1 and 2 show statistical optimisation results for the considered evaluators using the 
NSGA-II, MOPSO, and MOWCA for the S&P100 problem. As it can be seen from Table 
1, MOWCA could find the non-dominate solutions with the minimum distance from the 
PFoptimal (see GD metric in Table 1) and better distribution (see S metric in Table 1) compared 
with the other optimisers. In terms of ∆ and MS metrics, as the statistical results show in 
Table 2, the MOWCA have found better non-dominated solutions against the MOPSO 
and NSGA-II.

Moreover, the extreme solutions (ranges) obtained by the MOWCA are (0.454, 0.152) and 
(1.464, 0.511). In contrast, the minimum and maximum returns obtained by the NSGA-II 
are 0.412 units with a risk of 0.151 and 1.375 units with a deflection of 0.445, respectively. 
Hence, NSGA-II has found the lowest return. On the other hand, MOWCA could find 
better maximum return against the NSGA-II.

Figure 7 demonstrates computed (generated) Pareto front using the reported multi- 
objective optimisers for solving S&P problem. Figure 7 shows the capability of each algo-
rithm to find the PFoptimal and also how well the final non-dominated solutions are distributed 

Table 2. Statistical optimisation results obtained by the MS and ∆ metrics for the S&P problem using 
different optimisers.

Source: Data processing was performed off-line using a commercial software package MATLAB 8.5, The MathWorks Inc., 
Natick, MA, 2000.

Method

∆ MS

Worst Average Best SD Worst Average Best SD
NSGA-II 6.29E-01 4.96E-01 3.69E-01 7.68E-02 5.69E-01 7.50E-01 9.20E-01 1.09E-01
MOPSO 7.37E-01 4.76E-01 2.91E-01 2.14E-01 0.97E-01 6.38E-01 9.12E-01 2.88E-01
MOWCA 6.30E-01 3.40E-01 2.41E-01 8.37E-02 4.44E-01 8.32E-01 9.21E-01 1.05E-01

Figure 7. Generated Pareto front versus optimal (true) Pareto front (PF True) for solving S&P problem 
obtained by the: (a) NSGA-II; (b) MOPSO; (c) MOWCA. Source: Data processing was performed off-line 
using a commercial software package MATLAB 8.5, The MathWorks Inc., Natick, MA, 2000.
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next to each other. Looking at Figure 7c, it can be concluded that the MOWCA was suc-
cessful in covering the optimal Pareto front, having satisfactory distribution and spread for 
the non-dominated solutions.

6.2.  Hang Seng (50 stocks)

In terms of statistical optimisation results reported by the evaluators, the MOWCA has 
the best convergence to the PFoptimal (i.e., GD metric in Table 3), as shown in Table 3 for 
the HSI problem. Regarding the metric of spacing, the MOWCA has the best distribution 
of non-dominated solutions compared to the other considered methods (see S metric in 
Table 3).

Talking about the MS and ∆ metrics reported in Table 4, the MOWCA has surpassed 
the NSGA-II and MOPSO (only for ∆ metric). However, the MOPSO is superior over the 
MOWCA in terms of MS metric as shown in Table 4.

It is worth pointing out that the NSGA-II could perform better in finding the lowest 
return, while the MOWCA had a better performance in finding the maximum return. In 
terms of extreme solutions’ locations, the MOWCA has found the extreme solutions with the 
position of (0.353, 0.174) and (1.305, 0.512), whereas, the minimum and maximum values 
achieved by the NSGA-II are (0.360, 0.174) and (1.292, 0.505), respectively. As it can be 
seen, the interval span covered by the MOWCA is [0.952, 0.338], while the detected interval 
span obtained by the NSGA-II is [0.932, 0.331] which shows the capability of MOWCA in 
finding wider range of non-dominate solutions.

Figure 8 displays a graphical comparison among reported optimisers in finding Pareto 
optimal solution for the HSI experiment. The non-dominated solutions obtained by the 
MOWCA are finely distributed compared to the NSGA-II as can be seen in Figures 8a and 
8c. In terms of MOPSO (Figure 8b), it shows fine coverage of non-dominated solutions in 

Table 3.  Statistical optimisation results obtained by the GD and S metrics for the HSI problem using 
different optimisers.

Source: Data processing was performed off-line using a commercial software package MATLAB 8.5, The MathWorks Inc., 
Natick, MA, 2000.

Method

GD S

Worst Average Best SD Worst Average Best SD
NSGA-II 6.87E-04 5.85E-04 4.53E-04 7.40E-05 5.44E-01 3.02E-01 2.22E-01 8.59E-02
MOPSO 1.10E-01 1.15E-02 2.26E-03 2.43E-02 2.15E-01 1.99E-01 1.80E-01 2.16E-02
MOWCA 9.21E-04 4.40E-04 2.01E-04 1.75E-04 2.28E-01 1.97E-01 1.50E-01 2.81E-02

Table 4. Statistical optimisation results obtained by the MS and ∆ metrics for the HSI problem using 
different optimisers.

Source: Data processing was performed off-line using a commercial software package MATLAB 8.5, The MathWorks Inc., 
Natick, MA, 2000.

Method

∆ MS

Worst Average Best SD Worst Average Best SD
NSGA-II 4.16E-01 3.38E-01 2.76E-01 3.23E-02 8.00E-01 8.80E-01 9.53E-01 3.73E-02
MOPSO 3.65E-01 2.98E-01 1.88E-01 6.04E-02 8.67E-01 9.46E-01 1.09E+00 5.26E-02
MOWCA 3.51E-01 2.92E-01 1.77E-01 4.63E-02 8.43E-01 8.85E-01 9.65E-01 3.26E-02
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the objective space, however, it suffers the capability of being close to the Pareto optimal 
solution (i.e., GD metric) with respect to MOWCA.

6.3.  FTSE100 (96 stocks)

The final statistical optimisation results obtained by the reported methods for the perfor-
mance measurements are shown in Tables 5 and 6 for the FTSE100 problem. As can be seen 

Figure 8. Generated Pareto front versus optimal (true) Pareto front (PF True) for solving HSI problem 
obtained by the: (a) NSGA-II; (b) MOPSO; (c) MOWCA. Source: Data processing was performed off-line 
using a commercial software package MATLAB 8.5, The MathWorks Inc., Natick, MA, 2000.

Table 5. Statistical optimisation results obtained by the GD and S metrics for the FTSE problem using 
different optimisers.

Source: Data processing was performed off-line using a commercial software package MATLAB 8.5, The MathWorks Inc., 
Natick, MA, 2000.

Method

GD S

Worst Average Best SD Worst Average Best SD
NSGA-II 1.80E-03 1.17E-03 7.61E-04 2.55E-04 9.13E-01 5.33E-01 3.04E-01 1.78E-01
MOPSO 4.94E-02 1.98E-02 8.61E-03 1.14E-02 5.67E-01 3.49E-01 2.37E-01 7.89E-02
MOWCA 3.52E-03 1.98E-03 6.14E-04 8.34E-04 5.23E-01 2.79E-01 1.66E-01 1.07E-01

Table 6. Statistical optimisation results obtained by the MS and ∆ metrics for the FTSE problem using 
different optimisers.

Source: Data processing was performed off-line using a commercial software package MATLAB 8.5, The MathWorks Inc., 
Natick, MA, 2000.

Method

∆ MS

Worst Average Best SD Worst Average Best SD
NSGA-II 7.23E-01 6.00E-01 5.19E-01 6.34E-02 5.64E-01 6.71E-01 7.78E-01 5.28E-02
MOPSO 7.27E-01 4.58E-01 3.35E-01 1.67E-01 3.48E-01 6.52E-01 7.65E-01 2.33E-01
MOWCA 6.62E-01 3.86E-01 2.83E-01 7.83E-02 6.65E-01 7.81E-01 8.95E-01 1.14E-01
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from Table 5, the NSGA-II shows better statistical results for the GD metric compared to 
the MOPSO and MOWCA. However, for the rest of the reported evaluators, the NSGA-II 
was not successful as can be observed in Tables 5 and 6.

The non-dominated solutions obtained by the MOWCA have the best distribution and 
spread, which can be inferred from the statistical results of the S, ∆, and MS metrics (see 
Tables 5 and 6). In other words, the MOWCA was superior over the reported methods for 
the spacing, spread, and MS metrics.

Except of GD metric, the MOWCA has represented better results compared to those 
obtained by the MOPSO and NSGA-II. Moreover, note that the non-dominated solutions 
obtained by the MOWCA are distributed in the range between (0.5487, 0.1792) and (1.6393, 
0.5199), whereas non-dominated solutions obtained by the NSGA-II are spread in the range 
of (0.5729, 0.1789) and (1.4673, 0.4196).

Figure 9 depicts how well the considered optimisation method could cover the PFoptimal. 
Looking at Figure 9c, it can be emphasised that the non-dominated solutions detected by 
the MOWCA have the highest accuracy with the best distribution for the FTSE experiment.

6.4.  DAX100 (30 stocks)

Tables 7 and 8 tabulate obtained statistical results by the reported evaluators in this article 
for the DAX100 problem. By observing statistical results obtained by the GD metric, it 
indicates that the MOWCA has surpassed the others. In this regard, the MOPSO has shown 
the worst results in terms of GD metric, as can be seen in Table 7. Moreover, the MOWCA 
not only could reach the best GD value but also possesses the first rank in terms of having 
the minimum values for the metrics of spacing and spread (see Tables 7 and 8).

However, in terms of MS, the MOPSO has obtained the best MS metric value as can be 
seen in Table 8. In contrast, with respect to average and worst results for the MS metric, the 
MOWCA has been placed at the first rank among the considered optimisers.

Figure 9. Generated Pareto front versus optimal (true) Pareto front (PF True) for solving FTSE problem 
obtained by the: (a) NSGA-II; (b) MOPSO; (c) MOWCA. Source: Data processing was performed off-line 
using a commercial software package MATLAB 8.5, The MathWorks Inc., Natick, MA, 2000.
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Talking about extreme non-dominated solutions, the MOWCA has found the minimum 
and maximum solutions of (0.3903, 0.2212) and (1.2965, 0.4793), whereas the minimum 
and maximum returns obtained by the NSGA-II are 0.4159 units with a risk of 0.2210 and 
1.2482 units with a risk of 0.4517, respectively.

These observations, summarised in Tables 7 and 8, will be completed by the results 
presented in Figure 10. Looking at Figure 10c, one can conclude that the MOWCA was 

Table 7. Statistical optimisation results obtained by the GD and S metrics for the DAX problem using 
different optimisers.

Source: Data processing was performed off-line using a commercial software package MATLAB 8.5, The MathWorks Inc., 
Natick, MA, 2000.

Method

GD S

Worst Average Best SD Worst Average Best SD
NSGA-II 3.89E-04 3.16E-04 2.30E-04 4.75E-05 4.99E-01 3.33E-01 2.32E-01 7.37E-02
MOPSO 2.90E-02 7.93E-03 2.11E-03 7.97E-03 3.51E-01 2.76E-01 2.41E-01 3.23E-02
MOWCA 6.31E-04 3.12E-04 1.84E-04 1.33E-04 3.76E-01 1.96E-01 1.39E-01 5.14E-02

Table 8. Statistical optimisation results obtained by the MS and ∆ metrics for the DAX problem using 
different optimisers.

Source: Data processing was performed off-line using a commercial software package MATLAB 8.5, The MathWorks Inc., 
Natick, MA, 2000.

Method

∆ MS

Worst Average Best SD Worst Average Best SD
NSGA-II 5.60E-01 3.78E-01 2.60E-01 6.56E-02 7.68E-01 8.73E-01 9.56E-01 5.52E-02
MOPSO 6.16E-01 2.64E-01 2.65E-01 1.36E-01 5.08E-01 8.84E-01 9.79E-01 1.50E-01
MOWCA 2.59E-01 2.18E-01 1.92E-01 1.88E-02 9.06E-01 9.44E-01 9.68E-01 1.77E-02

Figure 10. Generated Pareto front versus optimal (true) Pareto front (PF True) for solving DAX problem 
obtained by the: (a) NSGA-II; (b) MOPSO; (c) MOWCA. Source: Data processing was performed off-line 
using a commercial software package MATLAB 8.5, The MathWorks Inc., Natick, MA, 2000.
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successful in covering the optimal Pareto front, having satisfactory distribution and spread 
for the non-dominated solutions.

To sum up, it can be concluded that the MOWCA showed better performance in finding 
suitable non-dominated solutions sufficiently near to the PFoptimal. Not only the MOWCA 
could stand in the top rank with regard to GD metric, also, it was able to generate uniform 
distribution of non-dominated solutions. It is worth highlighting that as another contribu-
tion in this article, the applied optimisers have been implemented to analyse the daily data 
for the period January 2012 to December 2014 for the multi-objective portfolio optimisation 
problems. The results can lead to this conclusion which even in the real markets with a real 
number of stocks, the portfolio model with the usage of WCA is applicable and it can reach 
reasonable optimal solutions.

7.  Conclusions and future studies

In this article, a portfolio selection model which is based on Markowitz’s portfolio selection 
problem including the cardinality constraints is considered. The results can lead Markowitz’s 
model to a more practical one. Thus, the proposed estimators facilitate the Markowitz 
M-V optimisation procedure, making it desirable, implementable, practically useful, and 
applicable in a variety of situations.

Moreover, this study proposes a cardinality constrained M-V model, and employed 
metaheuristic optimisation algorithms to solve the problem. It utilised an efficient multi-ob-
jective optimisation technique known as MOWCA. The fundamental concepts and ideas 
which underlie the method are inspired by nature and based on the water cycle process in 
nature. In this study, the MOWCA is represented for solving four constrained benchmark 
portfolio optimisation problems.

Furthermore, using the applied optimisers, computational results are attained for analyses 
of daily data for the period January 2012 to December 2014 including S&P100 in the US, 
Hang Seng in Hong Kong, FTSE100 in the UK, and DAX100 in Germany. The efficiency 
and performance of MOWCA were carried out using four well-known performance metrics 
(i.e., GD metric, metric of spacing, metric of spread, and metric of MS).

The statistical optimisation results attained by the performance metrics illustrated that 
the MOWCA was able to offer non-dominated solutions sufficiently near to the optimal 
Pareto front in addition to providing better optimal non-dominated solutions in com-
parison with NSGA-II and MOPSO. Note that the robustness and exploratory abilities 
of MOWCA depends on the nature and complexity of the problems. However, the opti-
misation results obtained in this article showed that the MOWCA can be considered as 
a proper alternative multi-objective optimiser, with a comparable degree of accuracy to 
find the optimal Pareto fronts for different scales of portfolio optimisation multi-objective 
problems.

For future studies some areas of research are proposed as follows: (1) considering other 
constraints of a real market such as transaction costs; (2) studying other periods such 
as crisis periods (2007–2009) and comparing the results with the stable growth period 
(2010–2016) results; (3) selecting the samples from other countries and markets; and (4) 
utilising other risk measures such as semi-variance, mean absolute deviation, and variance 
with skewness for investigating the efficiency of MOWCA.
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