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ABSTRACT
A novel interval optimisation approach is developed to include 
imprecise forecasts into the portfolio selection process for investors 
measuring upside potential and downside risk as deviations from a 
target return. Crisp scenarios are substituted by interval scenarios and 
the resulting interval optimisation problem is solved in a tractable 
manner by means of a bi-objective formulation exploiting a partial 
order relation between intervals. Four utility case studies involving 
assets from the F.T.S.E. M.I.B. Index are considered to illustrate how 
impreciseness can be efficiently handled in portfolio management.

1.  Introduction

Many authors have studied the relationship between the theory of financial markets and 
the rational behaviour of an individual. They have presented different mathematical mod-
els which take into account both the uncertainty arising from the investments in a certain 
number of assets (portfolio theory) and the subjective risk aversion of a single investor 
(utility theory).

It is well known that utility theory was born with an historical essay by Bernoulli (1738). 
In this milestone work, it is stated that the value of a good is better represented by its utility 
than by its price. Moreover, utility only depends upon individual characteristics (such as 
current wealth and risk perception) of the decision maker.

Von Neumann and Morgenstern (1947) initiated modern utility theory. In their famous 
representation theorem they proved that every preference relation satisfying some given axi-
oms can be represented by a utility (or value) function, which turns out to be concave in the 
case of risk aversion (i.e., when the decision maker refuses a fair gamble with zero expected 
value). Friedman and Savage (1948) considerably improved the aforementioned result by 
introducing reverse S-shaped (first concave and then convex) utility functions. Markowitz 
(1952, 1959) initiated modern portfolio theory by introducing mean-variance and semi-var-
iance analysis. He justified the adoption of a quadratic utility function by arguing that it is 
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a reasonable approximation of rational investors’ behaviour with risk–return tradeoffs. On 
the other hand, Bawa (1975) and Fishburn (1977) illustrated the fact that mean-lower partial 
moment models can implement Von Neumann and Morgenstern utility functions and, at 
the same time, can be easily related to first, second and third stochastic dominance. In these 
models the wealth of the investor is replaced by a return rate below a desirable target. A 
few years later Fishburn and Kochenberger (1979) and Holthausen (1981) extended these 
models by introducing upper and lower partial moment models (U.P.M.-L.P.M.).

Prospect theory (P.T.) was originally developed in order to solve the famous paradoxes 
of Allais (1953) and Ellsberg (1961). The first paradox threatened the independence axiom 
of Von Neumann and Morgenstern, while the second paradox explained that risk aversion 
can arise from ambiguous descriptions of uncertainty. Kahneman and Tversky (1979) started 
from U.P.M.-L.P.M. models in order to add the concept of a distorted probability, namely a 
nonlinear transformation of the probability scale which possibly overweights small prob-
abilities and underweights moderate and high probabilities.

In our opinion, in recent decades the concept of risk aversion, which is naturally associ-
ated with utility theory and preference-based models, has not been appropriately considered. 
At the same time, the main role has been played by static equilibrium models, such as the 
widely used capital asset pricing model, and by risk measures such as Value at Risk and 
Conditional Value at Risk, which have been studied mainly from a technical point of view. 
Nawrocki and Viole (2014) recently suggested focusing attention again on utility theory and 
therefore on the individual investor at the core of behavioural finance. In recent years several 
authors have faced the problem of defining optimal portfolios that achieve the maximum of 
the utility functions in U.P.M.-L.P.M. models, and therefore several nonlinear programming 
problems have been developed with this aim. For example, Cumova and Nawrocki (2014) 
introduced an augmented Lagrangian algorithm that finds the best asset allocation on the 
basis of an approximation of the L.P.M. and U.P.M. measures.

In this paper, following You (2013), who considers a fixed underlying probability space, 
we introduce an extended model for the financial market in which securities have random 
interval payoffs. The uncertainties arise from the realisations of random variables better than 
from probabilities measures. According to the imprecise probabilities approach studied for 
example by Miranda, Couso & Gil (2005a, 2005b), a random interval whose two endpoints 
are random variables is here interpreted as an imprecise perception of a random variable. 
It is remarkable to observe that the application of random set theory in econometrics and 
finance is not new (the reader may refer to Molchanov and Molinari (2014) for a detailed 
exposition). Beresteanu, Molchanov, and Molinari (2011, 2012) applied random set theory 
to partially identified models, Diaye and Koshevoy (2014) to decision making under risk 
and Liu, Zhang, and Zhang (2013) to multi-period portfolio selection optimisation.

We perform portfolio selection by using imprecise forecasts as random intervals in line 
with Kaucic and Daris (2016). In this study, however, we focus on a wider range of risk–
reward profiles, including P.T. investors as a special case. The family of utility functions we 
adopt is the three-parameter one proposed by Holthausen (1981). In particular, four types 
of strategies characterising the principal attitudes toward risk and reward are compared 
in terms of compositions, diversification and expected rates of return. Moreover, from a 
computational point of view, we provide a tractable formulation of the resulting interval 
optimisation problem by defining a bi-objective optimisation problem on the basis of a 
partial order relation for intervals and a ranking approach. A multi-objective evolutionary 
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algorithm based on decomposition allows us to identify the solutions. Results illustrate the 
potential of the proposed model.

The paper is organised as follows. In the next section we provide the necessary back-
ground on interval analysis and random interval theory. Section 3 introduces the upside 
potential and downside risk framework. Our interval extension of the model to include 
incomplete/imprecise forecasts of asset rates of return by means of interval scenarios is 
developed in Section 4. Section 5 first describes the scenario-generation process and the 
optimisation solver, and then illustrates an empirical application to real data from the Italian 
F.T.S.E. M.I.B. Index involving four different investment strategies. Concluding remarks 
are given in Section 6.

2.  Preliminaries on interval analysis and order relations

2.1.  Basic operations with intervals

Uncertain, imprecise or incomplete information can be incorporated into the portfolio 
optimisation process by expressing data and/or parameters as intervals instead of single 
values. Thus, an adequate algebraic and probabilistic setting has to be defined in order to 
properly define the decision maker actions in this context (for a detailed exposition, the 
interested reader may consult Molchanov (2005), Corral, Gil, and Gil (2011) and the ref-
erences therein).

Definition 2.1: An interval number, denoted as ã, is a bounded and closed subset of R 
given by

Where al, au ∊ R, with al ≤ au, are the lower and the upper bounds of ã, respectively.
The set of all interval numbers on ℝ is denoted as c(R) .
Remark 1. This representation of an interval number ã is called endpoints (E.P.) form.
Remark 2. I f al = au then ã reduces to a real number.
The sum of two interval numbers and the product of an interval number by a scalar are 

defined in terms of the corresponding Minkowski set-theoretic operations.
Definition 2.2: For every ã = [al , au], b̃ = [bl , bu] in c(R) and γ ∊ R, we have
 

and
 

From Eqns. (2) and (3), we have that the opposite of an interval number ã is −ã = [−au,−al] . 
Thus, the difference of two intervals can be defined as b̃ − ã = b̃ + (−ã) = [bl − au, bu − al]  . 
A serious problem related to this expression is that ã − ã ≠ [0, 0], where we assume 
[0, 0] = {0} represents the neutral element for addition. This implies that the space c(R) 

(1)ã = [al , au]
def
=
{
x ∈ R | al ≤ x ≤ au

}

(2)ã + b̃
def
=
{
a + b | a ∈ ã, b ∈ b̃

}
= [al + bl , au + bu]

(3)𝛾 ∗ ã
def
={𝛾a | a ∈ ã} =

{
[𝛾al , 𝛾au] if 𝛾 ≥ 0

[𝛾au, 𝛾al] if 𝛾 < 0.
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does not contain inverse elements. An alternative definition of intervals difference that 
overcomes these limits has been proposed independently by Markov (1979), Stefanini and 
Bede (2009) and Chalco-Cano, Roman-Flores, and Jimenez-Gamero (2015).

Definition 2.3: For every ã = [al , au], b̃ = [bl , bu] in c(R), the generalised Hukuhara 
difference (gH-difference) ã and b̃ is defined as

 

In particular, ã −gH ã = {0}.

A second characterisation of an interval number is the following:
Definition 2.4: An interval number ã ∈ c(R) is said to be in midpoint-radius (M.R.) 

form if it is encoded as the following vector of R2

 

where ac denotes the centre of the interval and awis its half-width.
By means of Eqn. (5), we can easily move from E.P. to M.R. encoding and vice versa. 

With an abuse of notation, for every ã ∈ c(R), it holds that

From these observations it emerges that the former encoding is suitable to introduce alge-
braic properties of intervals while the latter can be used to exhibit and explicitly manipulate 
the uncertainty in interval numbers.

In particular, the gH-difference of two intervals can also be expressed as in M.R. form as
 

where ã = (ac, aw) and b̃ = (bc, bw).

2.2.  Random intervals

We can characterise random intervals by exploiting the E.P. encoding of interval numbers 
as follows.

Definition 2.5: Let (Ω,�,P) be a probability space. A multi-valued mapping Γ:Ω → c(R) , 
given by Γ(ω) = [ inf Γ(ω), sup Γ(ω)], where infΓ, supΓ:Ω → R are two real-valued func-
tions such that inf Γ ≤ sup Γ almost surely, is said a random interval if inf Γ and sup Γ are 
real-valued random variables.

A notion associated to the concept of random interval is the following.
Definition 2.6: Let Γ:Ω → c(R) be a random interval. A random variable X:Ω → R is 

said a (measurable) selection of Γ if X is measurable and X(ω) ∊ Γ(ω) for all ω ∊ Ω .
The set of all measurable selections of Γ is denoted by (Γ).
We assume that a random interval Γ represents an incomplete knowledge about the 

outcomes of a given random variable X. Thus, all the information we have available is that 
X is a measurable selection of Γ. Accordingly, let �(X) represent the Lebesgue expectation 
of a random variable X, the random interval corresponding to an imprecise/incomplete 

(4)ã −gH b = [min{al − bl , au − bu}, max{al − bl , au − bu}].

(5)ã = (ac, aw)
def
=

(
au + al

2
,
au − al

2

)

(ac, aw) = {x ∈ R | ac − aw ≤ x ≤ ac + aw} = [al , au].

(6)ã −gH b̃ = (ac − bc , |aw − bw|).
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perception of X(ω) for all ω ∊ Ω is the so-called Aumann expectation and is defined as 
follows.

Definition 2.7: Let (Ω,�,P) be a probability space and Γ:Ω → c(R) be a random inter-
val such that all its selections are integrable, i.e. X ∈ L1(Ω,�,P) for allX ∈ (Γ). The interval 
number �(Γ) defined as

where inf Γ and sup Γ are the two random variables specified in Definition 2.5, is called the 
expected (or mean) value of Γ in Aumann’s sense.

Remark 3. In the definition of �(Γ), the set of all measurable selections (Γ) is replaced 
by the subset of all integrable selections.

The Aumann expectation is coherent with interval arithmetic and inherits many valuable 
probabilistic and statistical properties from expectation of a real-valued random variable, 
such as the satisfaction of the strong law of large numbers. The next proposition, in particu-
lar, summarises some results that will be used in the next sections to formalise the notion 
of expected interval (rate of) return and other related notions.

Proposition 2.8: Let (Ω,�,P) be a probability space. The Aumann mean of a random 
interval satisfies the following properties:

(i) � if Γ is a random interval such that Γ(Ω) = {ã1,… , ãn} and {Ωi}
n
i=1 is a partition of 

Ω, with Ωi = Γ−1(ãi), i = 1, …, n, then

(ii) � for every �, � ∈ ℝ, ã ∈ c(R) and Γ, Υ random intervals, then

Remark 4. We have limited the presentation to the c(R) space, omitting the exposition 
for the general n-dimensional case, in order to avoid useless cumbersome notations since 
the results are almost the same.

2.3.  Interval extension of a point-valued function

Before formally stating the procedure, the following preliminary definitions are necessary. 
An n-dimensional interval vector is a subset of Rn given by the Cartesian product of n 
interval numbers. Through the paper, it will be denoted in bold as �̃ = ã1 ×… × ãn and 
the associated space will be indicated with c(R)

n.
The exposition specialises the arguments in Hickey, Ju, and Van Emden (2001) and 

Moore, Kearfott, and Cloud (2009) to the continuous case, since only this type of function 
will be handled in the next sections. Noting that a continuous point-valued function f maps 
compact sets into compact sets, we can state the following definition for a multi-valued 
mapping extending a real-valued function.

Definition 2.9: Let f:Rn → R be a continuous point-valued function. The natural interval 
extension of f is the multi-valued mapping f̂ :c(R)

n
→ c(R) given by

�(Γ) =
[
�(infΓ),�(supΓ)

]

�(Γ) =

n∑
i=1

P(Ωi) ∗ ãi

�(𝛼 ∗ Γ + 𝛽 ∗ Υ + ã) = 𝛼 ∗ �(Γ) + 𝛽 ∗ �(Υ) + ã.
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where dom(f ) is the domain of f.
The natural interval extension can be straightforwardly computed in the following case.
Lemma 2.10: Let f :ℝ → ℝ be any monotone continuous point-valued function and 

assume x̃ ∩ dom(f ) = [xl , xu] is non-empty, then it holds

The proof of this result is an immediate consequence of Eqn. (7) and of the Weierstrass’ 
theorem.

In particular, we are interested in evaluating the natural extension of the power func-
tion with rational exponents f (x) = kx

r

s, where k ∈ R⧵{0} and r, s are coprime positive 
integers. Without loss of generality, we assume x̃ ∩ dom(f ) = x̃ and define the r-th power 
of an interval x̃ = [xl , xu] as

 

and its s-th root as
 

Accordingly, the natural extension of the power function with rational exponents may be 
obtained by combining Eqns. (8) and (9) with Eqn. (3) as follows

 

for a given k ∈ R⧵{0}.

2.4.  Order relations for interval numbers

Mathematical programming involving interval numbers can be considered as optimisation 
problems with uncertain or imprecise information in the objective function coefficients 
and/or constraints. Thereby, the preference relations for interval numbers play an important 
role in selecting the best alternative. In this paper, we compare intervals according to the 
preference relation ≤ cw proposed in Ishibuchi and Tanaka (1990).

(7)f̂ (𝐱̃)
def
=

{ {
f (𝐱) | 𝐱 ∈ 𝐱̃ ∩ dom(f )

}
, if 𝐱̃ ∩ dom(f ) ≠ �

�, otherwise

f̂ (x̃) =

{
[f (xl), f (xu)] if f is increasing

[f (xu), f (xl)] if f is decreasing.

(8)x̃r
def
=

⎧⎪⎨⎪⎩

�
(xl)r , (xu)r

�
if r is odd or xl ≥ 0�

(xu)r , (xl)r
�

if r is even and xu ≤ 0�
0,max

�
(xl)r , (xu)r

��
if r is even and xl ≤ 0 ≤ xu

(9)x̃
1

s

def
=

⎧
⎪⎪⎨⎪⎪⎩

�
(xl)

1

s , (xu)
1

s

�
if s is odd or xl ≥ 0�

0, (xu)
1

s

�
if s is even and xl ≤ 0 ≤ xu

� if s is even and xu < 0.

(10)f̂ (x̃) = k ∗ x̃
r

s

def
= k ∗ (x̃r)

1

s .
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For maximisation problems, this order relation can be represented in the following form.
Definition 2.11: Let ã = (ac, aw) and b̃ = (bc, bw) be two interval numbers in c(R), then
 

Furthermore,
 

defines the strict order relation on c(R).
For minimisation problems, the order relation ≤ cw becomes as follows.
Definition 2.12: Let ã = (ac, aw) and b̃ = (bc, bw) be two interval numbers in c(R), then
 

and
 

Remark 5. The Ishibuchi and Tanaka’s order relation compares two intervals in terms of 
the corresponding centres and uncertainties. The larger the width of an interval, the greater 
the uncertainty. In particular, if the problem is the maximisation of an interval utility, the 
greater the centre value of the objective function and the lesser its uncertainty will be better. 
Conversely, for portfolio optimisation problems aiming at minimising interval risks, less 
centre value and less uncertainty in the objective function are preferred.

The ≤cw order relation is a partial order on c(R) since it is not difficult to prove that it 
satisfies the following properties:

(i) � reflexivity: for all ã ∈ c(R), ã ≤cw ã;
(ii) � antisymmetry: for all ã, b̃ ∈ c(R), if ã ≤cw b̃ and b̃ ≤cw ã then ã = b̃;
(iii) � transitivity: for all ã, b̃, c̃ ∈ c(R), ã ≤cw b̃ and b̃ ≤cw c̃ then ã ≤cw c̃;

However, not all intervals are comparable with respect to ≤cw. Consider for instance 
A = [ - 1, 3], B = [2, 4] and C = [1, 5]. For maximisation problems, A and B are incompa-
rable since ac < bc and aw < bw. At the same time, for minimisation problems, A and C are 
incomparable since ac < cc and aw > cw.

An interval-ranking approach will be also used in this paper, the so-called acceptability 
index developed in Sengupta, Pal, and Chakraborty (2001).

Definition 2.13: Let ã = (ac, aw) and b̃ = (bc, bw) be two interval numbers in c(R), then 
the acceptability function :c(R) ×c(R) → R is defined as

 

where bw + aw ≠ 0.
The real number 

(
ã ≤ b̃

)
 represents the grade of acceptability of the sentence ‘ã is 

inferior to b̃’ or, equivalently, ‘b̃ is superior to ã’. The terms ‘inferior to’ and ‘superior to’ are 
analogous to the terms ‘smaller’ and ‘greater’ for real numbers.

(11)ã ≤cw b̃ ⇔ ac ≤ bc ∧ aw ≥ bw .

(12)ã <cw b̃ ⇔ ã ≤cw b̃ ∧ ã ≠ b̃

(13)ã ≤cw b̃ ⇔ ac ≤ bc ∧ aw ≤ bw

(14)ã <cw b̃ ⇔ ã ≤cw b̃ ∧ ã ≠ b̃.

(15)
(
ã ≤ b̃

)
=

bc − ac

bw + aw
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Remark 6. If ã and b̃ are degenerate intervals, i.e., both have zero radius, the ≤ order for 
reals is used.

From the definition, the following cases can occur:

In the first two cases, the sentence ‘ã is inferior to b̃’ is not accepted. If 0 < 
(
ã ≤ b̃

)
< 1,  

then the decision maker accepts that ‘ã is inferior to b̃’ with grade of satisfaction ranging 
from zero to one (excluding zero and one). If 

(
ã ≤ b̃

)
≥ 1, then the decision maker is 

completely satisfied with this sentence and accepts that ã ≤ b̃ is true.
Remark 7. This ranking index is unable to discriminate between ã ≤ b̃ and b̃ ≤ ã when 

ac = bc and bw + aw ≠ 0. In this situation, indeed, 
(
ã ≤ b̃

)
= 

(
b̃ ≤ ã

)
= 0.

3.  Upside potential and downside risk framework

The financial market is modelled by a probability space (Ω,�,P) and consists of n risky 
assets, indexed from 1 to n. Agents allocate their wealth over a one-period investment 
horizon according to the following table of scenarios:

 

where S represents the number of involved scenarios, �s =
(
r1s,… , rns

)T is the n-vector 
of rates of return for the s-th scenario and ps is the associated probability of occurrence, 
s = 1, …, S. In this manner, the expected rate of return for the i-th security can be computed 

as the mean rate of return over the S scenarios, i.e., �(ri) =
S∑

s=1

psris. Let xi be the weight of 

the i-th asset in the portfolio, we consider the following standard set of constraints for a 
portfolio to be feasible:

(i) �
n∑
i=1

xi = 1;

(ii) � xi ≥ 0 for all i.

The set of portfolios � ∈ Rn satisfying (i)–(ii) is denoted by . Let the portfolio rate of 
return for a fixed � ∈  under the s-th scenario given by

 

it holds that the expected rate of return of the portfolio is
 


�
ã ≤ b̃

�
⎧
⎪⎪⎨⎪⎪⎩

< 0, if ac > bc

= 0, if ac = bc

∈ (0, 1), if ac < bc and au > bl

≥ 1, if ac < bc and au ≤ bl .

(16)

(
�1 … �S

p1 … pS

)
with

S∑
s=1

ps = 1 and ps ≥ 0 ∀s

(17)r
p
s

def
= �T�s =

n∑
i=1

xiris for i = 1,… , S,

(18)r
p
s

def
= �T�s =

n∑
i=1

xiris for i = 1,… , S,
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Market participants act the decisions related to their investments on the basis of the fol-
lowing assumptions:

(i) � outcomes are evaluated in comparison to a certain benchmark rather than an abso-
lute final wealth;

(ii) � reactions toward probable gains and losses may be different.

The first characteristic is modelled by introducing a reference level of wealth, rref, which 
divides outcomes into gains and losses. To handle the different attitude toward risk and 
reward we consider the three-parameter family of piecewise power utility functions devel-
oped by Holthausen (1981), whose analytical expression is

 

where rref is a reference rate of return for the investment, α denotes the reward parameter, 
β is the downside risk parameter and γ represents the loss aversion parameter, with γ > 0. 
Some examples of γ type of utility function are displayed in Figure 1.

Since the upside deviations from the reference level can be considered as potential ben-
efits, we adopt the terminology proposed by Cumova and Nawrocki (2014), according 
to which we have the following investor behaviours. If α > 1, then she/he is said upside 
potential seeking since the higher the returns above the target, the greater her/his utility; 
if 0 < α < 1, the agent is said upside potential averse; the case α = 1 represents potential 
neutrality. Analogously, the following attitudes toward risks can be identified in terms of 
the β values for the downside deviations from the reference level. If β > 1, then the investor 

(19)u(�|�s;rref ) =
{ (

�T�s − rref
)𝛼
, if �T�s ≥ rref

−𝛾(rref − �T�s)
𝛽 , if �T�s < rref
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Figure 1. Plots of the utility function given by (19) for γ = 2.25 and various α, β values. Source: Calculated 
by the authors.
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is downside risk averse; if 0 < β < 1, she/he is downside risk seeking; β = 1 indicates risk 
neutrality. The parameter γ controls the steepness of the utility function for losses: the 
greater γ and the steeper the curve.

Various risk–reward profiles can be represented by appropriately combining the values 
of these three parameters. The plots of some members of this class of utility functions are 
displayed in Figure 2, highlighting how the convexity–concavity shape changes by varying 
α and β according to the investor behaviour.

According to (19), investors are modelled as expected utility maximisers that formulate 
investment decisions according to the solution of the following nonlinear optimisation 
problem:

 

4.  The interval-based portfolio optimisation model

The market is the same as that described in the previous section with the same probability 
space (Ω,�,P). The novelty now is that rates of return are modelled by random intervals 
instead of random variables.

(20)max �
�
u(���1,… , �S;r

ref )
�
=

S∑
s=1

psu
�
���s;rref

�

s.t. � ∈  ⊆ Rn.
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Figure 2. Plot of the non-dominated front found by M.O.E.A./D.-D.E. for each instance of Problem (28) 
related to investor behaviour. Source: Calculated by the authors.
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The interval counterparts of the financial quantities entering Problem (20) are to be 
established. More specifically, based on the treatment in Kaucic and Daris (2016), we can 
give the following definitions for the interval rate of return of a portfolio and for its expected 
value, respectively.

Definition 4.1: Let R̃i =
[
Rl
i ,R

u
i

]
 be the random interval rate of return of the i-th asset, 

i = 1, …, n, with Aumann mean �(R̃i) =
[
�(Rl

i),�(R
u
i )
]
. The interval rate of return of the 

portfolio with weights (x1, …, xn)T in the n-dimensional simplex  is the random interval
 

with Aumann mean given by
 

Remark 8. If we remove the assumption of no short selling, (21) and (22) are not true in 
general due to (3).

We assume the investor operates her/his decisions on the basis of the following table of 
interval scenarios:

 

where �̃s =
(
r̃1s,… , r̃ns

)T is the n-vector of interval rates of return for the s-th scenario, 
s = 1, …, S, and ps is the associated probability of occurrence for scenario s.

The portfolio interval rate of return under the s-th scenario can thus be defined as
 

Similar to the case of random variables, it is easy to show that if �(Rl
i) =

S∑
s=1

psr
l
is and 

�(Ru
i ) =

S∑
s=1

psr
u
is, for i = 1, …, n, the expected (in the Aumann’s sense) interval rate of return 

of the portfolio in Eqn. (24) can be directly evaluated in terms of the scenarios as
 

In this financial environment, the investor articulates her/his choices relative to an interval 
reference rate of return, ̃rref = [rref ,l , rref ,u], on the basis of the natural extension of the piece-
wise power function (19). Gains and losses are now defined in terms of the interval ranking 
(15): an interval rate of return is called a gain if it has a positive degree of acceptability to 
be preferred to the interval reference point; conversely, it represents a loss. Maintaining the 
same parameter setting of the utility function (19), its interval extension becomes

(21)R̃p =
[
Rp,l ,Rp,u

] def
=

n∑
i=1

xi R̃i =

[
n∑
i=1

xiR
l
i ,

n∑
i=1

xiR
u
i

]

(22)�(R̃p) =
[
�
(
Rp,l

)
,�

(
Rp,u

)]
=

[
n∑
i=1

xi�(R
l
i),

n∑
i=1

xi�(R
u
i )

]
.

(23)

(
𝐫̃1 … 𝐫̃S

p1 … pS

)
with

S∑
s=1

ps = 1 and ps ≥ 0 ∀s

(24)r̃
p
s =

[
r
p,l
s , r

p,u
s

]
def
=

[
n∑
i=1

xir
l
is,

n∑
i=1

xir
u
is

]
.

(25)�(R̃p) =

[
S∑

s=1

psr
p,l
s ,

S∑
s=1

psr
p,u
s

]
.
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where r̃ps  is defined in (24).
Finally, the loss-averse investor that takes into account also imprecise forecasts for her/

his investment decisions has to solve the following nonlinear interval-valued programming 
problem:

 

where ‘max’ is interpreted as the most preferred interval value for �
(
û(�| �̃1,… , �̃s; r̃

ref )
)
 

with respect to the order relation (11).
Definition 4.2: A point �∗ ∈  is an optimal solution of the interval opti-

misation problem (27) if there does not exist another point � ∈  such that 
�
(
û(�| �̃1,… , �̃s; r̃

ref )
)
<cw �

(
û(�∗| �̃1,… , �̃s; r̃

ref )
)
.

Remark 9. If no imprecision is assumed in forecasts and reference point, Problem (27) 
reduces to Problem (20).

Next, we show that Problem (27) is equivalent to the bi-objective optimisation problem
 

where �
(
û(�| �̃1,… , �̃s; r̃

ref )
)c and �

(
û(�| �̃1,… , �̃s; r̃

ref )
)w are the centre and the radius of 

the expected interval utility �
(
û(�| �̃1,… , �̃s; r̃

ref )
)
, respectively.

Definition 4.2: A point � ∈  is a Pareto optimal solution of the bi-objective optimisa-
tion problem (28) if there does not exist another point � ∈  such that

�
(
û(�| �̃1,… , �̃s; r̃

ref )
)c

≥ �
(
û(�| �̃1,… , �̃s; r̃

ref )
)c and 

�
(
û(�| �̃1,… , �̃s; r̃

ref )
)w

≤ �
(
û(�| �̃1,… , �̃s; r̃

ref )
)w with at least one strict inequality.

Proposition 4.4: �∗ ∈  is an optimal solution of Problem (27) if and only if �∗ is a 
Pareto optimal solution of Problem (28).

Proof. This proof is a direct consequence of the order relation ≤cw in c(R) and Definitions 
4.2 and 4.3.

5.  Illustrative example

5.1.  Interval-valued scenario-generation process

Since no assumption regarding the distribution of asset rates of return is made, we adopt 
the scenario-generation process implemented in Zhu, Ji, and Li (2015) and Kaucic and 
Daris (2016) for the generation of imprecise forecasts. In particular, standard point-valued 
scenarios are first generated through a sampling procedure based on principal component 
analysis (P.C.A.). It works as follows:

(26)û(𝐱� 𝐫̃s; r̃ref ) =
⎧
⎪⎨⎪⎩

�
r̃
p
s −gH r̃ref

�𝛼

, if
�
r̃ref ≤ r̃

p
s

�
≥ 0

−𝛾
�
r̃ref −gH r̃

p
s

�𝛽

, if
�
r̃ref ≤ r̃

p
s

�
< 0

(27)max
≤cw

�
�
û(𝐱� 𝐫̃1,… , 𝐫̃s; r̃

ref )
�
=

S∑
s=1

psû(𝐱� 𝐫̃s; r̃ref )
s.t. 𝐱 ∈  .

(28)min
(
−�

(
û(𝐱| 𝐫̃1,… , 𝐫̃s; r̃

ref )
)c
,�

(
û(𝐱| 𝐫̃1,… , 𝐫̃s; r̃

ref )
)w)

s.t. 𝐱 ∈ 
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Step 1. � retain a sufficient number of principal components (P.C.) for each asset in order 
to capture most of the variability of historical samples;

Step 2. � for each P.C., divide its range into several subintervals and define a point-valued 
scenario as the midpoint of the corresponding subinterval with the associated 
probability given by the ratio of the number of samples within that subinterval 
to the total number of samples;

Step 3. � joint scenarios are the Cartesian product of scenarios of individual P.C.s;
Step 4. � generate the scenarios of asset rates of return on the basis of an inverse linear 

transformation derived by P.C.A.

In the experiments we have fixed in Step 1 a lower threshold for the represented historical 
variability equal to 90.

Interval-valued scenarios are then obtained by applying to the point-valued scenarios a 
perturbation method. More specifically, let �s = (r1s,… , rns)

T denote the n-vector of asset 
rates of return under the s-th scenario, s  =  1,  …,  S, then the corresponding perturbed 
interval-valued scenario is defined as

 

where 𝜎̂i is the standard deviation of rates of return for the i-th asset estimated by the T 
historical samples used to generate the traditional scenarios. In the M.R. form it can be 
compactly rewritten as

 

with �� = (𝜎̂1,… , 𝜎̂n)
T. In this case, the interval portfolio rate of return under the s-th 

scenario (24) becomes
 

for all � ∈  and s = 1, …, S.

5.2.  Optimisation solver

For detecting optimal solutions to Problem (28), due to non-differentiability and non-con-
cavity of the objectives, we use the so-called multi-objective evolutionary algorithm based 
on decomposition with differential evolution (M.O.E.A./D.-D.E.), a novel and robust sto-
chastic technique that combines traditional mathematical programming and evolutionary 
computing. A general framework of M.O.E.A./D. is proposed in Qingfu Zhang and Hui 
Li (2007), while the effectiveness of including the differential evolution operator for some 
multi-objective optimisation problems with complicated Pareto set shapes is shown in Hui 
Li and Qingfu Zhang (2009).

(29)𝐫̃s =

�
r1s − 1.96

𝜎̂1√
T
, r1s + 1.96

𝜎̂1√
T

�
×… ×

�
rns − 1.96

𝜎̂n√
T
, rns + 1.96

𝜎̂n√
T

�

(30)𝐫̃s =

�
𝐫s, 1.96

𝛔̂√
T

�

(31)𝐫̃
p
s =

�
n�
i=1

xiris,
1.96√

T

n�
i=1

xi𝜎̂i

�
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The first step in the M.O.E.A./D.-D.E. is decomposing the multi-objective problem into 
a number of scalar optimisation sub-problems through the Tchebycheff approach. These 
sub-problems are then optimised by exploiting the neighbourhood relationship among 
them. A population is composed by the best solutions found so far for each sub-problem. 
The DE/best/1/bin operator and polynomial mutation are used to generate new solutions. 
For each sub-problem i, choose its current solution �i as the first mating parent �r1, and 
randomly select two other different mating parents �r2 and �r3 from the neighbourhood 
pool. An intermediate solution �i = (yi1,… , yin)

T is produced as follows:

where F ∊ (0, 1] is a constant, called scaling factor, which controls the amplification of the 
differential variation �r2 − �r3, CR is a crossover probability and rand is a uniform random 
number from [0, 1]. A new solution ��i = (x̂i1,… , x̂in)

T is generated by polynomial mutation 
as

with

where η is a control parameter and pm is the mutation probability. A repair procedure on 
each offspring is then applied to guarantee its feasibility as follows:

(1) � Each vector �̂i is clamped by projecting it onto the interval [0, 1]:

with i = 1, …, n. In this manner, �̃ = (x̃1,… , x̃n)
T satisfies short-selling constraints.

(2) � The projected vector �̃ ∈ [0, 1]n is now normalised through the transformation

After this step, the individual ̃̃𝐱 = ( ̃̃x1,… , ̃̃xn)
T also verifies the budget constraint.

The parameter setting of the M.O.E.A./D.-D.E. used in our experiments is listed in  
Table 1.

�i =

{
�r1 + F(�r2 − �r3), if rand ≤ CR

�r1 , otherwise

x̂ik =

{
yik + 𝜎k, if rand ≤ pm
yik, otherwise

𝜎k =

{
(2 × rand)

1

𝜂+1 − 1, if rand < 0.5

1 − (2 − 2 × rand)
1

𝜂+1 − 1, otherwise

x̃ik =

⎧
⎪⎨⎪⎩

0, if xik < 0

1, if xik > 1

x̂ik, otherwise

̃̃xi =
x̃i

n∑
j=1

x̃j

, i = 1,… , n.
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5.3.  Data description and interval scenarios

The experiments have been based on data relative to the F.T.S.E. M.I.B. Index, which captures 
approximately 80% of the domestic Italian market capitalisation by replicating the broad 
sector weights of the Italian stock market. The investment universe comprises the 31 assets 
reported in Table 2. The time series include weekly closing prices covering the period from 
1 January 2014 to 26 December 2016 for a total of 157 observations. The quotations are 
taken from http://it.finance.yahoo.com.

The descriptive statistics for the time series of rates of return are given in Table 3 from 
column 2 to column 5. As can be noted from the second and third columns, all assets have 

Table 1. Parameter setting for the implemented M.O.E.A./D.-D.E.

Source: Calculated by the authors.

Parameter name Value
Generations 1000
Population size 100
Neighbourhood size 5
Scaling factor F 0.50
Crossover probability CR 0.50
Mutation probability pm 1/31
Distribution parameter η 20

Table 2. List of assets included in the investible universe.

Source: Calculated by the authors on the basis of data from http://it.finance.yahoo.com.

Name Code
1 A2A S.p.A. A2A.MI
2 Atlantia S.p.A. ATL.MI
3 Banca Generali S.p.A. BGN.MI
4 Banca Mediolanum BMED.MI
5 Banca Pop Emilia Romagna BPE.MI
6 Buzzi Unicem BZU.MI
7 CNH Industrial NV CNHI.MI
8 Davide Campari-Milano S.p.A. CPR.MI
9 ENEL Ente Nazionale per l’Energ Elet S.p.A. ENEL.MI
10 Eni S.p.A. ENI.MI
11 EXOR S.p.A. EXO.MI
12 Fiat Chrysler Automobiles NV FCA.MI
13 Brembo S.p.A. BRE.MI
14 Assicurazioni Generali G.MI
15 Intesa Sanpaolo ISP.MI
16 Leonardo S.p.A. LDO.MI
17 Luxottica Group S.p.A. LUX.MI
18 Mediaset MS.MI
19 Mediobanca MB.MI
20 Moncler S.p.A. MONC.MI
21 Prysmian PRY.MI
22 Recordati S.p.A. REC.MI
23 Salvatore Ferragamo S.p.A. SFER.MI
24 Snam S.p.A. SRG.MI
25 STMicroelectronics NV STM.MI
26 Terna S.p.A. TRN.MI
27 Unione di Banche Italiane S.p.A. UBI.MI
28 UniCredit S.p.A. UCG.MI
29 Unipol Gruppo Finanziario S.p.A. UNI.MI
30 UnipolSai S.p.A. US.MI
31 YOOX NETAPORT YNAP.MI

http://it.finance.yahoo.com
http://it.finance.yahoo.com
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a mean value ranging from –26 basis points of U.C.G.M.I to 77 basis points of B.R.E.M.I, 
with a volatility between 0.0094 of U.B.I.M.I and 0.06642 of B.P.E.M.I. From an analysis of 
the skewness and kurtosis values reported in the fourth and fifth columns, respectively, it 
emerges that about half of the assets present negative skewness or kurtosis larger than three, 
indicating non-normal distributions and pronounced downside risk. These findings are 
then confirmed by the Jarque–Bera test statistics and the corresponding p-values reported 
in the last two columns of the same table.

On the basis of these data, we have obtained 15 interval-valued scenarios for each asset 
by means of the procedure described in subsection 5.1. In particular, to offer a larger degree 
of freedom in modelling uncertainty, we allow the possibility that intervals related to a given 
asset may be overlapping. Table 4 provides these imprecise forecasts for the three scenarios 
with the highest probability of occurrence.

5.4.  Interval-based utility maximisation problems

We test the proposed model in terms of both flexibility and efficiency to represent investor 
attitudes toward risk and profit when impreciseness is included in the forecasts. In line with 
Cumova and Nawrocki (2014), the following risk–reward profiles have been considered:

Table 3. Descriptive statistics and Jarque–Bera test statistics with corresponding p-values for the weekly 
rates of return series from 6 January 2014 to 31 December 2016 for a total of 156 observations.

The symbol *indicates that the null hypothesis of normally distributed data can be rejected at the 5% level.
Source: Calculated by the authors on the basis of data from http://it.finance.yahoo.com/.

Mean Std. Dev. Skewness Kurtosis Jarque–Bera p-value
A2A.MI 0.0031 0.0356 −0.2428 2.8211 1.7403 0.3548
ATL.MI 0.0023 0.0294 −0.0791 3.6427 2.8473 0.1795
BGN.MI 0.0010 0.0455 0.6277 6.0535 70.8459 0.0010*
BMED.MI 0.0014 0.0414 −0.3851 3.7487 7.4990 0.0284*
BPE.MI 0.0007 0.0662 0.2502 3.4315 2.8373 0.1806
BZU.MI 0.0044 0.0434 −0.0595 3.3552 0.9123 0.5000
CNHI.MI 0.0009 0.0428 −0.0162 3.6619 2.8541 0.1788
CPR.MI 0.0032 0.0305 −0.1739 3.1354 0.9056 0.5000
ENEL.MI 0.0023 0.0325 −0.4917 3.8891 11.4256 0.0115*
ENI.MI −0.0001 0.0358 −0.0431 3.5567 2.0629 0.2934
EXO.MI 0.0029 0.0405 0.1520 7.0872 109.1864 0.0010*
FCA.MI 0.0058 0.0574 0.1196 4.2558 10.6236 0.0136*
BRE.MI 0.0077 0.0428 0.4469 4.9616 30.2049 0.0010*
G.MI −0.0005 0.0366 0.0733 4.1330 8.4832 0.0219*
ISP.MI 0.0029 0.0459 0.0048 3.1043 0.0712 0.5000
LDO.MI 0.0067 0.0461 0.1883 3.2684 1.3903 0.4366
LUX.MI 0.0022 0.0305 −0.3544 4.3488 15.0906 0.0060*
MS.MI 0.0027 0.0573 0.7469 6.6260 99.9679 0.0010*
MB.MI 0.0025 0.0506 −0.2656 2.6656 2.5605 0.2135
MONC.MI 0.0009 0.0415 0.0248 3.8083 4.2630 0.0854
PRY.MI 0.0025 0.0377 −0.4871 3.9654 12.2274 0.0098
REC.MI 0.0068 0.0353 −0.0412 3.4094 1.1333 0.5000
SFER.MI −0.0003 0.0464 0.1560 3.1112 0.7128 0.5000
SRG.MI 0.0001 0.0321 −1.9069 16.7622 1325.6337 0.0010*
STM.MI 0.0053 0.0501 −0.3706 4.0597 10.8710 0.0129*
TRN.MI 0.0015 0.0248 −0.1090 4.9078 23.9671 0.0018*
UBI.MI 0.0010 0.0094 −0.3988 3.3058 4.0737 0.0897
UCG.MI −0.0026 0.0600 0.1483 3.4468 1.8695 0.3293
UNI.MI −0.0003 0.0517 −0.1060 2.8682 0.4049 0.5000
US.MI −0.0004 0.0407 0.0249 3.2256 0.3470 0.5000
YNAP.MI 0.0001 0.0591 0.7301 6.6002 98.1075 0.0010*

http://it.finance.yahoo.com/


1422   ﻿ M. KAUCIC AND R. DARIS

(1) � upside potential seeking and downside risk aversion;
(2) � upside potential aversion and downside risk aversion;
(3) � upside potential seeking and downside risk seeking;
(4) � upside potential aversion and downside risk seeking.

The numerical comparisons of these investment behaviours have been done with the param-
eter settings for the interval utility function (26) reported in Table 5. The first parameteri-
sation represents the most common situation where an agent wish to reduce downside risk 
and try to take profit from potential upside movements. The second case corresponds to an 
investor everywhere risk averse. The third investment profile mimics an investor who likes 
exposure to high profits and accepts exposure to low returns. Finally, the representative 

Table 4. Interval scenarios with the highest probability of occurrence.

Source: Calculated by the authors on the basis of data from. http://it.finance.yahoo.com/.

Scenario 1 Scenario 2 Scenario 3
Probability 0.16 0.63 0.11
A2A.MI [-0.0024, 0.0088] [-0.0046, 0.0066] [-0.0069, 0.0043]
ATL.MI [0.0450, 0.0542] [0.0791, 0.0884] [0.1148, 0.1241]
BGN.MI [0.0185, 0.0328] [0.0369, 0.0513] [0.0562, 0.0705]
BMED.MI [0.0535, 0.0666] [0.1265, 0.1396] [0.2027, 0.2158]
BPE.MI [-0.0413, −0.0205] [-0.0665, −0.0456] [-0.0927, −0.0718]
BZU.MI [-0.0826, −0.0689] [-0.0859, −0.0723] [-0.0894, −0.0757]
CNHI.MI [-0.0719, −0.0584] [-0.0614, −0.0480] [-0.0505, −0.0371]
CPR.MI [-0.0893, −0.0797] [-0.1009, −0.0913] [-0.1129, −0.1033]
ENEL.MI [-0.0569, −0.0467] [-0.0710, −0.0607] [-0.0857, −0.0754]
ENI.MI [-0.0481, −0.0368] [-0.0365, −0.0252] [-0.0244, −0.0131]
EXO.MI [0.0751, 0.0879] [0.0677, 0.0804] [0.0599, 0.0726]
FCA.MI [-0.0768, −0.0587] [-0.0521, −0.0340] [-0.0263, −0.0082]
BRE.MI [-0.0768, −0.0633] [-0.0694, −0.0559] [-0.0617, −0.0482]
G.MI [0.0543, 0.0658] [0.0929, 0.1044] [0.1332, 0.1448]
ISP.MI [0.0377, 0.0522] [0.0078, 0.0223] [-0.0233, −0.0089]
LDO.MI [0.1739, 0.1884] [0.1484, 0.1629] [0.1218, 0.1363]
LUX.MI [-0.1452, −0.1356] [-0.1327, −0.1231] [-0.1197, −0.1101]
MS.MI [0.0826, 0.1006] [-0.0061, 0.0119] [-0.0988, −0.0807]
MB.MI [0.3647, 0.3807] [0.2813, 0.2972] [0.1941, 0.2100]
MONC.MI [0.2743, 0.2874] [0.2146, 0.2277] [0.1522, 0.1653]
PRY.MI [-0.1521, −0.1402] [-0.1299, −0.1180] [-0.1067, −0.0948]
REC.MI [0.1316, 0.1427] [0.0494, 0.0605] [-0.0365, −0.0253]
SFER.MI [0.0203, 0.0349] [-0.0013, 0.0133] [-0.0238, −0.0092]
SRG.MI [-0.0739, −0.0637] [-0.0737, −0.0636] [-0.0735, −0.0634]
STM.MI [0.1316, 0.1473] [0.2122, 0.2279] [0.2964, 0.3121]
TRN.MI [-0.0604, −0.0526] [-0.0689, −0.0611] [-0.0778, −0.0700]
UBI.MI [-0.1732, 0.0223] [-0.2317, −0.0362] [-0.2928, −0.0972]
UCG.MI [0.0576, 0.0765] [-0.0255, −0.0066] [-0.1122, −0.0934]
UNI.MI [-0.0485, −0.0323] [-0.0765, −0.0602] [-0.1057, −0.0894]
US.MI [-0.1307, −0.1179] [0.0562, 0.0691] [0.2514, 0.2642]
YNAP.MI [-0.1115, −0.0928] [-0.0481, −0.0295] [0.0181, 0.0367]

Table 5. Parameter setting for the interval utility function (26).

Source: Calculated by the authors.

Investor profile α β γ r̃
ref

 1 3 2 2 [0, 0.0001]
2 0.5 2 2 [0, 0.0001]
3 3 0.9 2 [0, 0.0001]
4 0.88 0.88 2.25 [0, 0.0001]

http://it.finance.yahoo.com/
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of the fourth category is an individual enacting her/his decision in accordance with P.T. 
principles but avoiding using subjective decision weights and maximising expected values 
instead of prospective values (see Kahneman and Tversky (1979) for an introduction to 
the theory and Kaucic and Daris (2016) for an implementation in portfolio optimisation 
with interval forecasts).

As a result of Proposition 4.4, the solution of Problem (27) is not unique but a set of 
non-dominated solutions calculated on the basis of Problem (28). Thus, an approximation 
set is generated by the M.O.E.A./D.-D.E. for each investor profile. The corresponding dot-
ted representations in the objective space are displayed in Figure 2. Note that for all the 
considered risk–reward profiles, impreciseness, represented by the width of the expected 
interval utility, increases as expectations, given by the centre of the expected interval utility, 
grow upwards.

To discriminate among the non-dominated solutions, we use the diversification index 
(D.I.) proposed by Woerheide and Persson (1993) and defined as

DI = 1 −

n∑
i=1

x2i

Table 6.  Diversification values and corresponding optimal portfolio compositions for the investor  
risk–reward attitudes considered.

Source: Calculated by the authors.

Profile 1 Profile 2 Profile 3 Profile 4
DI 0.8044 0.5097 0.9452 0.9329
�(R̃

p
) [0.1299, 0.1429] [0.2355, 0.2500] [0.0000, 0.0164] [-0.0059, 0.0067]

A2A.MI 0.0004 0.0003 0.0330 0.0329
ATL.MI 0.0757 0.0000 0.0148 0.0232
BGN.MI 0.0006 0.0003 0.0315 0.0000
BMED.MI 0.1364 0.0049 0.0290 0.0202
BPE.MI 0.0011 0.0001 0.0447 0.0000
BZU.MI 0.0001 0.0000 0.0673 0.0086
CNHI.MI 0.0040 0.0000 0.0146 0.0429
CPR.MI 0.0002 0.0004 0.0263 0.1188
ENEL.MI 0.0000 0.0000 0.0469 0.0903
ENI.MI 0.0000 0.0000 0.0290 0.0449
EXO.MI 0.2988 0.0002 0.0252 0.1334
FCA.MI 0.0005 0.0002 0.0305 0.0283
BRE.MI 0.0003 0.0000 0.0402 0.0650
G.MI 0.0300 0.0000 0.0500 0.0814
ISP.MI 0.0001 0.0001 0.0142 0.0135
LDO.MI 0.0209 0.0001 0.0384 0.0294
LUX.MI 0.0036 0.0003 0.0323 0.0145
MS.MI 0.0017 0.0002 0.0135 0.0073
MB.MI 0.0415 0.4967 0.0137 0.0139
MONC.MI 0.2622 0.4936 0.0767 0.0174
PRY.MI 0.0011 0.0000 0.0051 0.0045
REC.MI 0.0008 0.0001 0.0102 0.0167
SFER.MI 0.0000 0.0000 0.0200 0.0282
SRG.MI 0.0008 0.0009 0.0124 0.0398
STM.MI 0.1002 0.0009 0.0047 0.0083
TRN.MI 0.0037 0.0003 0.0606 0.0096
UBI.MI 0.0000 0.0000 0.0152 0.0000
UCG.MI 0.0016 0.0000 0.0440 0.0136
UNI.MI 0.0011 0.0001 0.0598 0.0369
US.MI 0.0104 0.0004 0.0553 0.0000
YNAP.MI 0.0022 0.0001 0.0409 0.0565
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where xi is the weight of the i-th asset in the portfolio. A D.I. value equal to 0 represents a 
portfolio with absolutely no diversification while the maximum diversification is attained 
at 1. Thus, greater values of D.I. are advisable.

Table 6 reports the assets weights in the optimal portfolios identified by maximising the 
D.I. along the approximation set of each investment behaviour. The portfolios associated 
with investors belonging to the third and fourth profiles are the most diversified, with a 
value of D.I. almost equal to 95\. Conversely, the investor with upside potential aversion and 
downside risk aversion would select the least diversified portfolio, with a D.I. of almost 51\ 
and a proportion of 98\ of the capital evenly distributed between two assets, namely M.B.M.I. 
and M.O.N.C.M.I. However, focusing on the Aumann mean rates of return, we can see that 
the first two profiles guarantee the best results, with expected values in [0.1299, 0.1429] 
and in [0.2355, 0.2500] respectively. These findings confirm the importance of taking into 
account diversification for reducing risks and providing protection against extreme events, 
but also suggest that diversification alone is not adequate to be used as a task in portfolio 
selection. It has to be considered in conjunction with other criteria, such as cardinality, or 
with another set of constraints for the decision variables that better describe the decision 
maker’s investment plan.

In general, we can conclude that the developed approach is sufficiently flexible to be 
adapted to a wide range of utility functions and, at the same time, the implementation of 
the M.O.E.A./D. permits the handling of large-scale problems involving nonlinear objective 
functions with reduced computational costs.

6.  Conclusions

Expected utility theory is a valuable paradigm for representing the behaviour of decision 
makers in the context of risk and uncertainty. We extend this approach for portfolio optimi-
sation problems involving imprecise/incomplete information about asset rates of return in 
the form of random sets. Crisp scenarios are thus substituted by interval scenarios. Investors 
are assumed to allocate their portfolios for a single period investment horizon according 
to an objective function composed by an interval-valued piecewise power function with 
rational exponents. The resulting interval-valued nonlinear optimisation problem is con-
verted into a bi-objective nonlinear programming problem using a partial order relation 
between intervals and an interval-ranking approach, exploiting the decision maker’s dis-
position to uncertainty. Due to non-differentiability and non-concavity of the objectives, 
a multi-objective evolutionary algorithm based on decomposition is used to solve this 
problem in a computationally tractable manner.

The proposed methodology is illustrated in a numerical example involving 31 assets 
from the Italian stock market index. Four risk–reward profiles are compared in terms of 
compositions, diversification and expected rates of return. The strategy with upside potential 
aversion and downside risk aversion produces portfolios with a low degree of diversification 
but, at the same time, high expected rates of return. As diversification increases, however, 
the capability to produce profits reduces. A good compromise is given by the profile of an 
investor that is upside potential seeking and downside risk averse. Agents acting investments 
according to P.T. seem to be not competitive in this context.

These findings are promising and, in order to better highlight strengths and weaknesses 
of impreciseness in behavioural portfolio management, we plan to carry on further analysis 
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involving other classes of utility functions and order relations with constraints on both 
portfolio weights and risks.
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