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Confidence regions and intervals
in nonlinear regression∗

Mirta Benšić†

Abstract. This lecture presents some methods which we can apply
in searching for confidence regions and intervals for true values of re-
gression parameters. The nonlinear regression models with independent
and identically distributed errors and Lp norm estimators are discussed.
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Sažetak. Područja i intervali povjerenja nelinearne regre-
sije. U ovom predavanju opisane su neke metode koje možemo primi-
jeniti za traženje područja i intervala povjerenja pravih vrijednosti regre-
sijskih parametara. Pri tome razmatrani su nelinearni regresijski modeli
s nezavisno i jednoliko distribuiranim greškama u Lp normi.

Ključne riječi: nelinearna regresija, područja povjerenja, intervali
povjerenja, Lp norma

1. Introduction

This lecture presents a brief review of methods which we apply in searching for con-
fidence regions and confidence intervals for true values of the regression parameters
in nonlinear models.

As it is known, the usual least squares estimator for the regression parameters
is not always the best choice for an estimator if the additive errors are not normal
[10]. Namely, this estimator is known to be sensitive to departures from normality
in the residual distributions. As alternatives to the least squares estimator in these
cases, members of the class of Lp norm estimators have been proposed. In this
context we discuss the ways for computing the confidence intervals and regions if
the Lp-norm estimator is used.

∗The lecture presented at the Mathematical Colloquium in Osijek organized by Croatian
Mathematical Society - Division Osijek, January 31, 1997.
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2. The model

Let us suppose that we have response variables yi (i = 1, . . . , n), observed with
unknown errors ei (i = 1, . . . , n) and we want to fit them to m fixed predictor
variables xi1, . . . , xim ( xi = [xi1, . . . , xim]τ ,) i = 1, . . . , n using a function f(xi;θ).
Here θ = [θ1, . . . , θk]τ is the vector of k unknown parameters and we suppose the
function f is nonlinear in its parameters.

When the errors ei are additive random variables, the response variables can be
shown by

y = F (θ̇) + e,

y = [y1, . . . , yn]τ , F (θ) = [f(x1, θ), . . . , f(xn, θ)]τ

e = [e1, . . . , en]τ .

Here θ̇ denotes a true, but unknown value of the vector parameter θ. Moreover, let
us suppose that the errors ei (i=1,. . . ,n) are independent and identically distributed
random variables.

The Lp-norm estimator of the parameter θ is the value θ̂
(p)

= [θ̂(p)
1 , . . . , θ̂

(p)
k ]

that minimizes the sum of the p-th exponent of the absolute value of residuals,
p ∈ [1,∞). Thus, if we denote

|ri(θ)| = |yi − f(xi; θ)|, i = 1, . . . , n

Sp(θ) =
n∑

i=1

|ri(θ)|p

θ̂
(p)

is a vector which satisfies

Sp(θ̂
(p)

) = min
θ∈Θ

Sp(θ)

if it exists. Here, Θ is the set of all possible values for the vector parameter θ,
Θ ⊆ Rk. Being special cases, this class of estimators contains the minimum absolute
deviations estimator (MAD, p = 1) and the least squares estimator (LSE, p = 2).

As we suppose, y is a random vector which depends on m deterministic predictor

variables. It means that the vector θ̂
(p)

will also be random and for the specific

realizations of y we have different values of θ̂
(p)

. Which is the true one? We can
answer this question only through the confidence regions, i.e. using the properties

of θ̂
(p)

as a random vector, we can indicate with some specific confidence level 1−α

(α ∈ (0, 1)) in what region about θ̂
(p)

we might reasonably expect θ̇ to be. Such
regions are known as 100(1− α)% confidence regions.

A joint confidence region for all parameters θ̇1, . . . , θ̇k is defined using a function

CRα : Y → a region in Rk

that satisfies
P{θ̇ ∈ CRα(y)} = 1− α.
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A confidence interval for an individual parameter θ̇j is defined using a function

CIj,α : Y → an interval in R

that satisfies
P{θ̇j ∈ CIj,α(y)} = 1− α

(see, for example, [3]).

3. Least squares estimator

If p = 2, the Lp norm estimator is in fact the LSE. There are currently many results
regarding this case for computing confidence regions in approximate sense (for large
samples) or in exact sense (for small samples). These results mostly regard models
with normal, independent and identically distributed errors (i.i.d. errors). Thus, in
this section we will suppose that the errors are normal i.i.d.

The least expensive computational procedure for computing confidence regions
if LSE is applied arose from the linearization approach and suggests (1 − α)%
confidence regions for θ̇:1

{θ : (θ − θ̂)τ V̂ −1(θ − θ̂) ≤ kFk,n−k,1−α},

where
V̂ = s2[(J(θ̂))τJ(θ̂)]−1,

s2 =
S2(θ̂)
n− k

,

J(θ̂) is the Jacobian matrix of F (θ) at θ̂. This approach also suggests the (1−α)%
confidence interval for θj , j = 1, . . . , k:

{θ : |θj − θ̂j | ≤ V̂
1/2
jj tn−k,1−α/2},

where Vjj is the (j, j)th element of V̂ .
If the contours of S2(θ) are approximately elliptical (exactly elliptical in the

linear case), these approximations will be adequate but this method can be very
poor if the contours of S2(θ) are not close to ellipses.

There are two other methods for large samples which are more consistent with
the Bates and Watts curvature measures ([1]). Thus, the likelihood approach sug-
gests the (1− α)% confidence region for θ̇:

{θ : S2(θ) ≤ S2(θ̂)[1 +
k

n− k
Fk,n−k,1−α]}

and the lack-of-fit approach suggests:

{θ :
R(θ)τP (θ)R(θ)

R(θ)τ (I − P (θ))R(θ)
≤ k

n− k
Fk,n−k,1−α}

1Here �̂ = �̂(2)
.
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P (θ) = J(θ)(J(θ)τJ(θ))−1J(θ)τ

R(θ) = Y − F (θ).

As we can see, these two methods are computationally very expensive, requiring
the evaluation of a sufficient number of points to produce a contour. The lack-of-
fit approach gives in fact the exact regions which are not dependent on θ̂. The
assumption that the errors are normal is the only reason for puting this method
in the LSE case. Namely, if the errors are normal, LSE is better than the other
estimators from the class of Lp norm estimators.

When the sample size n is small, Duncan ([4]) suggested the jackknife procedure
for computing the confidence region. The procedure is as follows:

1. Let θ̂(i) be the least squares estimate of θ when the ith case is deleted from
the sample.

2. Calculate the pseudo-values as the vectors

Ti = nθ̂ − (n− 1)θ̂(i)

The sample mean and variance of Ti are given by

T̄ =
1
n

n∑

i=1

Ti, T̄ = [T̄1, . . . T̄k]τ

S =
1

n− 1

n∑

i=1

(Ti − T̄)(Ti − T̄)τ S = [Sij ] i, j = 1, . . . , k.

3. A 100(1− α)% confidence region for θ is

{θ|(T− θ)τS−1(Ti − θ) ≤ k

n− k
Fk,n−k,1−α}.

A 100(1− α)% confidence interval for θi can be constructed as2

T̄i ±
√

k

n− k
Fk,n−k,1−αSii.

4. Lp norm estimation

The confidence intervals for regression parameters in nonlinear models that have
been suggested to this day were computed using the results on asymptotic distri-
bution of the Lp norm estimator in the linear models and the fact that the errors
are additive (see [8], [9],[7]). These intervals are only asymptotical.

Thus, if the L1 norm estimator is applied, a 100(1−α)% confidence interval for
θj is given by

θ
(1)
j ± zα/2

√
ω2

1(J(θ(1))τJ(θ(1))jj

2As we can see this procedure requires n+1 nonlinear estimations. Fox et al. ([5], [6]) describes
a linear jackknife procedure which is not so computationaly expensive as this.
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where
ω2

1 =
1

[2f(m)]2

and f(m) is the ordinate of the error distribution at the median m. ω2
1 can be

estimated by the Cox and Hinkley estimator ([2], [6]).
If the Lp norm is applied, p ∈ (1,∞) then a 100(1−α)% confidence interval for

θj is given by

θ
(p)
j ± zα/2

√
ω2

p(J(θ(p))τJ(θ(p))jj

where

ω2
p =

E[|ei|2p−p]
[(p− 1)E(|ei|p−2)]2

.

Here are ω2
p for some symmetric distributions:

• The uniform distribution on [−b, b]:

ω2
p =

b2

2p− 1
=

3σ2

2p− 1

• The normal distributions N (0, σ2):

ω2
p =

2
√

πσ2Γ(p− 1
2 )

(p− 1)2Γ2(p−1
2

)

• The symmetric Laplace distribution ( density function: f(x) = 1
2be

−|x|/b):

ω2
p =

σ2Γ(2p− 1)
2(p− 1)2Γ2(p− 1)

Note that ω2
p = σ2 when p = 2 for all the distributions.

References

[1] D. M. Bates, D. G. Watts, Relative curvature measures of nonlinearity, J.R.
Statist. Soc., Ser. B 42(1980), 1–25.

[2] D. R. Cox, D. V. Hinkley, Theoretical statistics, Chapman and Hall, London,
1974.

[3] J. R. Donaldson, R. B. Schnabel, Computational expirience with confi-
dence regions and confidence intervals for nonlinear least squares, Technomet-
rics 29(1987), 67–82.

[4] G. T. Duncan, An empirical study of jackknife - constructed confidence regions
in nonlinear regression, Technometrics 20(1978), 123–129.

[5] T. Fox, D. V. Hinkley, K. Larntz, Jackknife in nonlinear regression, Tech-
nometrics 22(1980), 29–33.



76 M. Benšić
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