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The matrix of a linear operator
in a pair of ordered bases∗

Dragan Jukić†

Abstract. In the lecture it is shown how to represent a linear oper-
ator by a matrix. This representation allows us to define an operation
with matrices.

Key words: linear operator, matrix of a linear operator, matrix
operations

Sažetak. Matrica linearnog operatora u paru ured̄enih baza.
Na predavanju je pokazano kako se linearni operator može reprezentirati
matricom. Ta reprezentacija omogućava nam da definiramo operacije s
matricama.

Ključne riječi: linearan operator, matrica linearnog operatora, op-
eracije s matricama

1. Defining a linear operator

The function from one vector space to another vector space is called the operator.
In this lecture we shall deal only with finite dimensional vector spaces.

Definition 1. Let V and W be any two finite dimensional real vector spaces.
We say that the operator A : V → W is linear if

A(λx + µy) = λA(x) + µA(y)

for all scalars λ, µ ∈ R and for all vectors x,y ∈ V. It is easy to check that the
operator A : V → W is linear if and only if A is an additive and homogenous
operator, where we define:

Definition 2. An operator A : V → W is said to be:

a) additive if A(x + y) = A(x) +A(y) for all vectors x,y ∈ V ;

b) homogenous if A(λx) = λA(x) for each scalar λ ∈ R and for each vector
x ∈ V.

∗The lecture presented at the Mathematical Colloquium in Osijek organized by Croatian
Mathematical Society - Division Osijek, October 19, 1996.

†Faculty of Food Technology, F.Kuhača 18, HR-31 000 Osijek, e-mail: jukicd@oliver.efos.hr
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Properties of additivity and homogenity of a linear operator are graphically
illustrated in Figure 1.
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Figure 1.

Example 1. Let us give some examples of a linear operator A : V → W :

a) V = W = R2, A(x1, x2) = (x1,−x2) (reflection of a plane in the x1 - axis);

b) V = W = R2, A(x1, x2) = (−x1,−x2) (symmetry of a plane about the origin);

c) V = W = R2, A(x1, x2) = (x1, 0) (orthogonal projection of a plane on x1 -
axis)

Lemma 1. Two linear operators A,B : V → W are equal if and only if they
attain the same values on the basis e1, . . . , en for V .
Proof. If two operators are equal, then they attain the same values on basis,

Let us prove the converse. According to the assumption, we have A(ei) = B(ei)
for every i = 1, . . . , n. Let us prove that A(x) = B(x) for every x ∈ V. For that
purpose, let x = x1e1 + . . .+xnen be a linear combination of the vectors e1, . . . , en

of the basis for V. Then we have

A(x) = A(x1e1 + . . . + xnen) = x1A(e1) + . . . xnA(en) = x1B(e1) + . . . xnB(en)
= B(x1e1 + . . . + xnen) = B(x)

from where we conclude that A = B. 2

The next Theorem tells us that each linear operator A : V → W is completely
determined by its values on vectors of the basis for V.
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Theorem 1. Let e1, . . . , en be any basis for V and let v1, . . . ,vn be any n
vector in W. Then there is one and only one linear operator A : V → W such that

A(ei) = vi, i = 1, . . . , n.

Proof. Each vector x ∈ V is uniquely expressible as a linear combination of vectors
e1, . . . , en: x = x1e1 + . . . + xnen. It is easy to check that the operator A : V → W
defined by the formula A(x) = x1v1 + . . . + xnvn is a linear operator and that
A(ei) = vi, i = 1, . . . , n.

If B : V → W is a linear operator such that B(ei) = vi, i = 1, . . . , n, then from
Lemma 1 we obtain A = B 2

Because linear operators are functions, they can be added, multiplied by scalars
and composed with one another.

• The sum C = A + B of linear operators A,B : V → W is again a linear
operator. Namely, for every scalar λ, µ ∈ R and for every vector x,y ∈ V
there holds:

C(λx+µy) = A(λx+µy) +B(λx+µy) =(λA(x)+µA(y))+(λB(x)+µB(y))
= λ (A(x) + B(x))+µ (A(x) + B(x)) = λC(x) + µC(y)

• The scalar multiple C = αA of the linear operator A : V → W by the scalar
α ∈ R is again a linear operator:

C(λx + µy) = αA(λx + µy) =α (λA(x) + µA(y)) =λ (αA(x)) + µ (αA(y))
= λC(x) + µC(y).

• The composition C = A ◦ B of linear operators B : V → W and A : W → Z
is the linear operator from V to Z:

C(λx+µy) = A (B(λx+µy)) =A (λB(x)+µB(y)) =λA (B(x)) + µA (B(y))
= λC(x) + µC(y).

2. The matrix of a linear operator

In this section we will show how to associate a matrix with each linear operator
A : V → W, where V and W are any two finite dimensional vector spaces.

Suppose (e) = (e1, . . . , en) is an ordered basis for the finite dimensional vector
space V , and (f) = (f1, . . . , fm) is an ordered basis for the finite dimensional vector
space W . According to Theorem 1, the operator A is completly determined by its
values A(ej), j = 1, . . . , n, on vectors of the basis. Since A(ej) are vectors in W and
(f) = (f1, . . . , fm) is the basis for W, there are unique scalars aij (i = 1, . . . , m, j =
1, . . . , n) such that:

A(e1) = a11f1 + a21f2 + . . . + am1fm
A(e2) = a12f1 + a22f2 + . . . + am2fm

...
A(en) = a1nf1 + a2nf2 + . . . + amnfm

(1)
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In an ordered pair of the bases (e), (f) to the operator A there belong m ·n scalars
aij (i = 1, . . . , m, j = 1, . . . , n) which can be displayed in a rectangular array

A(f , e) =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
am1 am2 · · · amn


 (2)

called the matrix of a linear operator A in an ordered pair of bases (e), (f). The
matrix (2) has m rows and n columns. Because of this, we say that it has the order
m× n. The matrix (2) may be written in an abbreviated form as A = (aij).

Example 1.. Let D : P3 → P2 be a linear operator that assigns to each
polynomial its derivative, (e) = (x3, x2, x, 1) the basis for P3 and (f) = (x2, x, 1)
the basis for P2. Then

D(f , e) =




3 0 0 0
0 2 0 0
0 0 1 0




3. The algebra of matrices

Let Mm×n be the set of all m×n real matrices and L(V, W ) be the set of all linear
operators from V to W. By using Theorem 1 it is easy to see that the mapping
A 7→ A(e, f) is a bijection from L(V, W ) onto Mm×n. This bijection allows us to
represent operations by operators and vectors by operations with matrices.

Equality of matrices

Let (2) be a matrix of a linear operator A : V → W. Furthermore, let B : V → W
be a linear operator,

B(e1) = b11f1 + b21f2 + . . . + bm1fm
B(e2) = b12f1 + b22f2 + . . . + bm2fm

...
B(en) = b1nf1 + b2nf2 + . . . + bmnfm

(3)

its values on vectors of the basis f1, . . . , fm and

B(f , e) =




b11 b12 · · · b1n

b21 b22 · · · b2n

...
bm1 bm2 · · · bmn


 (4)

its matrix in an ordered pair of bases (e), (f). According to Lemma 1, A = B if and
only if A(ei) = B(ei) for all i = 1, . . . ,m, i.e. if aij = bij for all i = 1, . . . ,m and
for all j = 1, . . . , n. This gives us a criterion of equality of matrices:
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Matrices A = (aij) and B = (bij) are equal if and only if they have the
same order and aij = bij for all i = 1, . . . , m, and j = 1, . . . , n.

Scalar multiple of matrices

Multiplying (1) with scalar α ∈ R we conclude that in an ordered pair of bases
(e), (f) the operator αA : V → W has a matrix




α · a11 α · a12 · · · α · a1n

α · a21 α · a22 · · · α · a2n

...
α · am1 α · am2 · · · α · amn




Motivated by this, we define:

The scalar multiple αA of the matrix A by the scalar α is the matrix
whose entries are obtained by multiplying all of the entries in A by α.

Addition of matrices

Adding (1) and (3) we see that to the operator C = A+B in an ordered pair of
bases (e), (f), there belongs a matrix

C(f , e)=




c11 c12 · · · c1n

c21 c22 · · · c2n

...
cm1 cm2 · · · cmn


=




a11 + b11 a12 + b12 · · · a1n + b1n

a21 + b21 a22 + b22 · · · a2n + b2n

...
am1 + bm1 am2 + bm2 · · · amn + bmn


.

The sum A + B of the matrices A = (aij) and B = (bij) of the order
m× n is a matrix C = (cij) of the same order, where

cij = aij + bij (i = 1, . . . ,m; j = 1, . . . n).

Multiplication of matrices

Suppose B : V → W and A : W → Z are linear operators. Furthermore,
suppose (e) = (e1, . . . , en), (f) = (f1, . . . , fp) and (g) = (g1, . . . ,gm) are ordered
bases for vector spaces V, W and Z, respectively. Let us show how by using matrices
A = (aij) := A(g, f) and B = (bij) := B(f , e) one can determine the matrix
C := C(g, e) of the linear operator C = A ◦ B. Let C = (cij). Then

C(ej) =
m∑

i=1

cijgi, j = 1, . . . , n. (5)
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On the other hand, we have

C(ej) = A (B(ej)) = A
(

p∑
k=1

bkjfk

)
=

p∑
k=1

bkjA(fk) =
p∑

k=1

bkj

m∑
i=1

aikgi

=
m∑

i=1

(
p∑

k=1

aikbkj

)
gi.

(6)

According to (5) and (6), we find that
m∑

i=1

cijgi =
m∑

i=1

(
p∑

k=1

aikbkj

)
gi, from where,

because of the linear independence of vectors gi, we obtain:

cij =
p∑

k=1

aikbkj , i = 1, . . . , m, j = 1, . . . , n. (7)

The product AB of the matrices A and B is defined only if matrices A
and B are conformable for multiplication, i.e. if the number of columns
in A is the same as the number of rows in B. If A has the order m× p
and B has the order p × n, then the product AB is an m × n matrix
C = (cij) with entries defined by (7).

We conclude this section by listing the fundamental algebraic properties of ma-
trix addition, scalar multiplication, and matrix multiplication.

Properties of matrix addition

A+B=B+A
(A+B)+C=A+(B+C)
O+A=A+O=A, where O is the matrix with all entries equal to zero
A+(-A)=(-A)+A=O, where -A=(-1)A

Properties of scalar multiplication

α(A + B) = αA + αB
(α + β)A = αA + βA
α(βA) = (αβ)A
1A = A

Properties of matrix multiplication

A(B+C)=AB+AC
(A+B)C=AC+BC
A(BC)=(AB)C
(αA)B=α(AB)

These properties hold whenever A, B and C are matrices of appropriate sizes so
that indicated operations make sense, and α and β are any scalars.
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