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On regular almost convergence∗

Davor Butković†

Abstract. In this paper possible regularity definitions for
almost convergent double sequences are considered as generalizations
of the regular convergence in the sense of G.H.Hardy and F.Móricz.
Classes of almost convergent sequences with almost convergent rows
and columns are characterized; also, a theorem on the principal limit
and on row (as well as column) limits is proved.

Key words: almost convergence, double sequence, principal limit,
regular convergence, row limit

Sažetak. O regularnoj skoro konvergenciji. U radu se
ispituju moguće definicije regularnosti skoro konvergentnih dvostrukih
nizova kao poopćenja regularne konvergencije u smislu G.H.Hardyja
i F.Móricza. Karakteriziraju se klase skoro konvergentnih nizova
koji imaju skoro konvergentne retke i stupce; takod̄er je dokazan i
teorem o glavnom limesu i o limesima redaka (kao i stupaca).

Ključne riječi: skoro konvergencija, dvostruki nizovi, glavni
limes, regularna konvergencija, limes retka

1. Regular convergence

It seems that stronger convergence definitions for double sequences were initi-
ated by the study of double series. Let

∞∑

i=1

∞∑

j=1

xij (1)

be a double series of complex numbers. If this series converges absolutely, it can
be summed by rows or by columns, and its sum by rows or by columns is equal
to any of the accepted values of (1) as a double series. In particular, the row or
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column sum is equal to the sum of (1) in the sense of Pringsheim (see [1]), i. e.
to the limit of the sequence of partial sums

spq =
p∑

i=1

q∑

j=1

xij . (2)

The limit is a usual one: a double sequence (xij), i, j ∈ N , converges to L (when
both indexes tend to +∞) if, for every ε > 0, there exists Nε ∈ N such that

|xij − L| < ε if min(i, j) ≥ Nε. (3)

The limit L is denoted by limij . A necessary and sufficient condition for the
existence of limij is the Cauchy condition: for every ε > 0 there exists Nε such
that, for every k, l ∈ N0,

|∆klxij | < ε if min(i, j) ≥ Nε, (4)

where
∆klxij = xij − xi+k,j+l. (5)

In case of double series, as well as in case of double sequences, convergence
does not imply convergence of rows and columns. Various authors have studied
nonabsolutely convergent double series with convergent rows and columns (cf.
[4, p.88] and references to [1] there), but it was G. H.Hardy who connected
such series to an alternative definition of convergence of double sequences. A
sequence (xij) converges, after Hardy, regularly if there exist Lj = limi xij for
every j, Li = limj xij for every i, and L = limij xij [4, ibid.]. In case of regularly
convergent sequences the limit L is called the principal limit. Therefore,

limij xij = limi limj xij = limj limi xij . (6)

Much later, and independently of Hardy, convergence of double series were
studied by F. Móricz [6]. He considers rectangular sums which can be written
as

smn
pq =

m+p−1∑

i=m

n+q−1∑

j=n

xij (7)

for m,n, p, q ∈ N . Móricz defines convergence in the restricted sense by the
condition that for every ε > 0 there exists Nε ∈ N such that

|smn
pq | < ε if max(m,n) ≥ Nε. (8)

This definition corresponds to Hardy’s Lemma δ [4, p.89], which is correct,
although Lemma γ, used in the proof, does not characterize convergent series
which have convergent rows and columns. On the other hand, Móricz shows
[6, Theorem 1, p.136] that his ”restricted convergence” is precisely the Hardy’s
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regular convergence for series. Notice, that in [4] Hardy afterwards uses only
Lemma δ, and besides Lemma γ gives no connection between sequence and series
regularity.

If we wish to see what the Móricz definition is in terms of partial sums, we
have to write smn

pq in terms of sij :

smn
pq =





sp+m−1,q+n−1− sp+m−1,n−1− sm−1,q+n−1+sm−1,n−1 if m,n ≥ 2
sp,q+n−1 − sp,n−1 if m=1, n≥2
sp+m−1,q − sm−1,q if m≥2, n=1
spq if m = n = 1.

(9)
It takes a more compact form if sij is extended to N0×N0 by si0 = s0j = s00 = 0
as it is done in [6, Remark 2, p.136] and suggested in [4, Lemma δ, p.89]. Namely,
for extended partial sums we have

smn
pq = 2pqsm−1,n−1, (10)

where
2klsij = sij − si+k,j − si,j+l + si+k,j+l. (11)

The Móricz definition in terms of partial sums requires that, for every ε > 0,
there exists Nε such that, for every p, q ∈ N0,

|2pqsm−1,n−1| < ε if max(m,n) ≥ Nε. (12)

The next example shows that (12) is not equivalent to the Hardy regular
convergence of sij if the sequence is not extended by a nul-row and a nul-
column, or if other additional conditions on the unextended sequence are not
imposed:

Example 1. Let inside the frame be the sequence (sij) on N ×N , and let the
whole scheme, with a frame of 0’s, be the sequence (sij) extended to N0 ×N0.

For the unextended sequence (12) is satisfied, but nevertheless the sequence has
not convergent rows.

The equivalence of Hardy and of Móricz regularity for sequences is obvious
by a proposition which characterizes Hardy’s regularity via the uniformity of
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convergence of rows and columns of (xij). Uniformity means that for every
ε > 0 there exist N ′

ε, N ′′
ε ∈ N such that, for all j,

|xij − Lj | < ε if i ≥ N ′
ε, (13)

and, for all i
|xij − Li| < ε if j ≥ N ′′

ε . (14)

An equivalent statement is that, for every ε > 0, there exist N ′
ε, N ′′

ε such that,
for all i and k,

|4k0xij | < ε if i ≥ N ′
ε (15)

and, for all j and l,
|40lxij | < ε if j ≥ N ′′

ε (16)

For multiple sequences a general theorem of this kind was proved by H. J. Hamil-
ton; we write down the proof for double sequences, which has to be compared
to the analogous theorem for almost convergent sequences (Theorem 2 below):

Proposition 1. [3, Theorem (.003), p.34]. The double sequence (xij) is regu-
larly convergent if and only if the family of rows

{(xij)i∈N : j ∈ N}

as well as the family of columns

{(xij)j∈N : i ∈ N}

converge uniformly.
Proof. Uniform convergence imply convergence of rows and columns, and

for Nε = max(N ′
ε, N

′′
ε ), by (15)-(16)

|4klxij | ≤ |4k0xij |+ |40lxi+k,j | ≤ 2ε if i, j ≥ Nε, (17)

which gives (4) and the existence of the principal limit.
If, on the contrary, the principal limit and all row and column limits exist,

by (4) for l = 0 and every k we have

|4k0xij | < ε if i, j ≥ Nε. (18)

The convergence of sequences from

{(xij)i∈N : 1 ≤ j < Nε}

gives the existence of N0
ε ∈ N such that (18) holds true for i ≥ N0

ε , 1 ≤ j < Nε.
With N ′

ε = max(Nε, N
0
ε ) and i ≥ N ′

ε we have the uniform convergence of rows;
for columns similarly. 2
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Now, the Móricz condition (12) for m = 1 gives the uniformity of row limits
(cf. (8) and (9)); similarly for columns. The opposite implication follows by

|2pqsm−1,n−1| ≤ |4p0sm−1,n−1|+ |4p0sm−1,n+q−1| (19)

|2pqsm−1,n−1| ≤ |40qsm−1,n−1|+ |40qsm+p−1,n−1| (20)

and relations analogous to (15)-(16).
What happens if in (3) instead of min we take max? That means that we

ask that for every ε > 0 there exists Nε such that

|xij − L| < ε if max(i, j) ≥ Nε. (21)

This implies that L is a principal limit, but also that all rows and columns
converge to L uniformly! Therefore, (xij) converges regularly, but moreover, all
row as well as column limits are equal:

limij xij = limi xij = limj xij . (22)

This is why [4, Lemma γ, p.89] does not characterize regular convergence: it
states (21) for partial sums, which is too strong; regular convergence for sums
is given by the weaker Móricz condition (12). We obtain the same class as by
(21) by the Cauchy condition (4) with max instead of min: for every ε > 0 let
Nε be such that

|4klxij | < ε if max(i, j) ≥ Nε. (23)

Taking l = 0, and then k = 0, we have the regular convergence of (xij) by
Proposition 1. But there are not j, l such that

Lj = limi xij 6= limi xi,j+l = Lj+l. (24)

In case that such j, l exist, for ε = |Lj − Lj+l| and k = 0 (23) gives

|40lxij | < ε

2
if i ≥ N ε

2
, (25)

which yields a contradiction (cf. the proof of Theorem 3). On the other hand,
if (21) holds with i ≥ N ε

2
, we have max(i+k, j + l) ≥ N ε

2
, for all k, j and l, and

|(xij − L) + (xi+k,j+l − L)| ≤ |xij − L|+ |xi+k,j+l − L| < ε. (26)

Similarly, with j ≥ N ε
2
, which gives (23).

Denoting various classes of double sequences we will retain as much as pos-
sible the notation in [3]; ”rows” in case of double sequences means there rows
and columns. The set of all double sequences of complex numbers is denoted by
s, the set of bounded such sequences by b, and the set of convergent sequences
(in the sense of (3)) by c; bounded and convergent sequences from s we denote
by bc. Regularly convergent sequences from s are denoted by rc. Obviously
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rc ⊂ c, but, contrary to c, rc ⊂ b. Sequences from rc with the principal limit
equal to 0 are denoted by rcn. Sequences from rc with all row and column
limits equal to 0 are denoted, as in [3], by rcrn (”regularly convergent row
null”). Sequences from rc with equal row and column limits (i. e. sequences
that satisfy (21)) we denote by rcr. This class was considered in [2] (”sequences
convergent in the Hardy’s sense”). Sequences from rcr with the principal limit
equal to 0 are again the rcrn class.

2. Regular almost convergence

The usual definition of almost convergence involves uniform limits: a double
sequence (xij) is almost convergent to L if arithmetical means

σmn
pq =

1
pq

smn
pq =

1
pq

m+p−1∑

i=m

n+q−1∑

j=n

xij (27)

converge to L uniformly with respect to m and n. More precisely, for every
ε > 0 there exists Nε ∈ N such that, for all m,n ∈ N ,

|σmn
pq − L| < ε if min(p, q) ≥ Nε. (28)

An equivalent definition is given by the Cauchy property, which is (4) written
for (27): for every ε > 0 there exists Nε such that, for all m, n ∈ N and k, l ∈ N0,

|4klσ
mn
pq | < ε if min(p, q) ≥ Nε. (29)

The set of all double sequences for which (28) holds true is a linear space and
is called the space of almost convergent sequences (cf. [5]); it is denoted by ac.
It is known that ac ⊂ b, and that bc ⊂ ac [7]. The number L is called the
generalized principal limit and is denoted by Limij (if x is indexed by i, j); it is
a linear form on ac and its restriction to bc is limij .

A class of almost convergent double sequences which can be considered anal-
ogous to the class of regularly convergent double sequences is a subclass of ac
sequences with all rows and all columns almost convergent. We call this class
a class of regularly almost convergent sequences and denote it by rac. If all
generalized row limits Lj = Limixij and column limits Li = Limjxij are equal,
the corresponding class will be denoted by racr, and if in addition Lj and Li

are 0, the class will be denoted by racrn. This is, on the other hand, the class of
sequences from racr with the generalized principal limit equal to 0, as it follows
by the following theorem:

Theorem 1.. Let (xij) be an almost convergent double sequence with the
generalized principal limit L, and let, moreover, every row (xij)i∈N be almost
convergent to Lj. Then the sequence (Lj)j∈N is almost convergent to L, i. e.

Limijxij = LimjLimixij .
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Similarly for columns.
Proof. We have to prove that for every ε > 0 there exists N ′′

ε such that, for
all n, ∣∣∣∣∣∣

1
q

n+q+1∑

j=n

Lj − L

∣∣∣∣∣∣
< ε if q ≥ N ′′

ε . (30)

Let us take q ≥ N ε
2

with Nε defined by (28). For every j there exists Nε(j) such
that, for all m, ∣∣∣∣∣

1
p

m+p−1∑

i=m

xij − Lj

∣∣∣∣∣ < ε if p ≥ Nε(j). (31)

Fix any n and take some p such that

p ≥ max(N ε
2
, N ε

2
(j = n), ..., N ε

2
(j = n + q − 1)). (32)

By (31) we have, for our n and every m,
∣∣∣∣∣∣

1
pq

m+p−1∑

i=m

n+q−1∑

j=n

xij − 1
q

n+q−1∑

j=n

Lj

∣∣∣∣∣∣
≤ 1

q

n+q−1∑

j=n

∣∣∣∣∣∣
1
p

m+p−1∑

j=m

xij − Lj

∣∣∣∣∣∣
≤ ε

2
. (33)

As p, q ≥ N ε
2
, by (28) and (33),

∣∣∣∣∣∣
1
q

n+q−1∑

j=n

Lj−L

∣∣∣∣∣∣
≤

∣∣∣∣∣∣


 1

pq

m+p−1∑

i=m

n+q−1∑

j=n

xij−L


−


 1

pq

m+p−1∑

i=m

n+q−1∑

j=n

xij− 1
q

n+q−1∑

j=n

Lj




∣∣∣∣∣∣
<ε.

(34)
Therefore, with N ′′

ε = N ε
2

we have (30) for every n. Similarly for columns. 2

The following examples show that, in spite of the analogy between rc and
rac, for rac a statement similar to the statement of Proposition 1 has no place.

Example 2. Let (xij) be

The number of 1’s that exceeds the number of −1’s or vice versa in any p × q
block is bounded by max(p, q), and therefore Limijxij = 0; also, rows and
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columns almost converge to 0. Therefore, the sequence is from racrn, and

Limijxij = LimiLimjxij = LimjLimixij (35)

holds (with outer limits reduced to lim). But there is no uniformity in j, i. e.
∣∣∣∣∣
1
p

m+p−1∑

i=m

xij − Lj

∣∣∣∣∣ < ε

for all m and with the same p: for every p there is a row with a p-long initial
part of 1’s (or −1’s). Similarly holds for columns.

Example 3. Let (xij) be

Here again Limijxij = 0, rows and columns are convergent to 1 or −1, and (35)
holds true (with inner generalized limits reduced to lim). The sequence is from
racn, but again there are initial parts of rows and columns with alternating
signs of 1’s as long as you please.

On the other hand, it is easy to find examples of almost convergent double
sequences with rows and columns uniformly almost convergent. It means that
for every ε > 0 there exists N ′

ε such that, for all j, m ∈ N ,
∣∣∣∣∣
1
p

m+p−1∑

i=m

xij − Lj

∣∣∣∣∣ < ε if p ≥ N ′
ε; (36)

and similarly, N ′′
ε such that, for all i, n ∈ N

∣∣∣∣∣∣
1
q

n+q−1∑

j=n

xij − Li

∣∣∣∣∣∣
< ε if q ≥ N ′′

ε ; (37)

These conditions are equivalent to
∣∣∣∣∣
1
p

m+p−1∑

i=m

xij − 1
p + k

m+p+k−1∑

i=m

xij

∣∣∣∣∣ < ε if p ≥ N ′
ε, (38)
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resp. to ∣∣∣∣∣∣
1
q

n+q−1∑

j=n

xij − 1
q + l

n+q+l−1∑

j=n

xij

∣∣∣∣∣∣
< ε if q ≥ N ′′

ε , (39)

where i, j,m, n are from N and k, l ∈ N0.

Example 4. Let (xij) be

The uniformity in this example is obvious, as well as the existence of the prin-
cipal limit. In the general case of uniform almost convergent rows and columns,
by (38) and (39) we have

|4k0σ
mn
pq | < ε if p ≥ N ′

ε; (40)

|40lσ
mn
pq | < ε if q ≥ N ′′

ε

with m, n,N ′
ε, N

′′
ε as before; also, by

|4klσ
mn
pq | ≤ |4k0σ

mn
pq |+ |40lσ

mn
p+k,q| (41)

(cf. (17)) with p, q ≥ max(N ′
ε, N

′′
ε ) = Nε we have (29) i. e. the existence of

Limijxij .
The class of double sequences which satisfy (36) and (37) is therefore a

subclass of rac. Because uniform almost convergence of rows and columns
makes this class in many respects similar to the class rc, we call it almost
regularly convergent and denote it by arc. As

|xij − Lj | < ε ⇒
∣∣∣∣∣
1
p

m+p−1∑

i=m

xij − Lj

∣∣∣∣∣ < ε, (42)

the uniform convergence of rows implies the uniform almost convergence of rows
(and, similarly, for columns); therefore, rc ⊂ arc ⊂ rac.

Although arithmetical means can be given in a form which resembles Móricz
rectangular sums (means are sums divided by the area of the rectangles), con-
vergence of means is a generalization of the convergence of sequences: means are
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in a way connected to partial sums, and not to rectangular sums. Therefore,
the next theorem is expected; but notice, that a Móricz-type condition gives
the class with uniformly converging rows and columns and not the more general
case of rac.

Theorem 2.. A sequence (xij) is arc if and only if for every ε > 0 there
exists Nε ∈ N such that, for every p, q,m, n ∈ N and k, l ∈ N0,

|2klσ
mn
pq | < ε if max(p, q) ≥ Nε, (43)

where σmn
pq is the sequence of arithmetical means extended by σmn

p0 = σmn
0q =

σmn
00 = 0.

Proof. For q = 0, l = 1 and n = j (43) gives (38), which is the uniform
almost convergence of rows; for columns similarly, with p = 0, k = 1 and m = i.

If, on the contrary, both families of rows and of columns are uniformly almost
convergent, the factorization


1

q

n+q−1∑

j=n

− 1
q + l

n+q+l−1∑

j=n




(
1
p

m+p−1∑

i=m

− 1
p + k

m+p+k−1∑

i=m

)
xij (44)

gives (43) in case of p ≥ N ′
ε
2

and q ≥ 1 with N ′
ε given by (38); for q = 0, (40)

and p ≥ N ′
ε
2

with N ′
ε given there give again the required inequality. In case of

q ≥ N ′′
ε
2
, (43) comes out by the factorization similar to (44), but with factors

reversed in order. Therefore, we have (43) with Nε = max(N ′
ε
2
, N ′′

ε
2
). 2

If all row and column limits, Lj and Li, are equal, the class derived in such a
way from arc i. e. the class arcr is easily characterized by a relation analogous
to (21): for every ε > 0 there exists Nε such that, for every m,n,

|σmn
pq − L| < ε if max(p, q) ≥ Nε. (45)

For q = 1, n = j and every m we have the uniform almost convergence of
rows, and for p = 1, m = i and every n for columns, while (36) and (37) with
Lj = Li = L give (45). We put the counterpart of (23) in the following form:

Theorem 3.. A sequence (xij) is arcr if and only if for every ε > 0 there
exists Nε ∈ N such that, for every p, q,m, n ∈ N and k, l ∈ N0,

|4klσ
mn
pq | < ε if max(p, q) ≥ Nε. (46)

Proof. By (46) with q = 1, l = 0, n = j and every m, as well as with p = 1,
k = 0, m = i and every n we have uniform almost convergence of rows and
columns. We have to prove, moreover, that for two rows the generalized limits
are equal, i. e. that there is no j such that

Lj = Limixij 6= Limixi,j+1 = Lj+1 (47)
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(and analogously for columns). In case that there exists such j, let ε = |Lj −
Lj+1|, and let us take p ≥ max(N ′

ε
8
, Nε), where N ′

ε is given by (36) and Nε by
(46). Hence,
∣∣∣∣∣
1
p

m+p−1∑

i=m

xij− 1
p

m+p−1∑

i=m

xi,j+1

∣∣∣∣∣ =

∣∣∣∣∣(
1
p

m+p−1∑

i=m

xij−Lj)+(Lj−Lj+1)−(
1
p

m+p−1∑

i=m

xi,j+1−Lj+1)

∣∣∣∣∣

≥ ε− ε

8
− ε

8
=

3ε

4
. (48)

On the other hand, for k = 0 and q = l = 1, by (46) we have

|401σ
mj
p1 |=

∣∣∣∣∣∣
1
p

m+p−1∑

i=m

j∑

j=j

xij− 1
2p

m+p−1∑

i=m

j+1∑

j=j

xij

∣∣∣∣∣∣
=

1
2

∣∣∣∣∣
1
p

m+p−1∑

i=m

xij − 1
p

m+p−1∑

i=m

xi,j+1

∣∣∣∣∣ <
ε

2

(49)
which is a contradiction. The reverse is easy with N ε

2
from (45):

|(σmn
pq − L)− (σmn

p+k,q+l − L)| < ε

2
+

ε

2
= ε if max(p, q) ≥ N ε

2
. 2 (50)

Let us look at the end where the dichotomy of uniform and nonuniform con-
vergence of rows and columns appears at first. The Hamilton theorem shows
that this is not the case with regular convergence of sequences. Similarly, the
Móricz condition (8) with q = 1, n = j and m ≥ Nε gives the uniform conver-
gence of rows for regularly convergent series; for columns similarly.

The simplest case with nonuniform row and column convergence is perhaps
the Cesàro regular convergence: we have it, if in definitions of rac, arc etc. we
put m = n = 1. Examples 2 and 3 show that rows can converge nonuniformly,
and Example 4 is also an example of uniform convergence in case of the Cesàro
regular convergence. We denote here only the general case, neglecting for the
moment the subclasses with uniformly converging rows and columns; on the
other hand, boundedness is an important and usually unavoidable condition in
summability. Therefore, bounded Cesàro convergent sequences with Cesàro con-
vergent rows and columns we denote by brcC , following the use we adapted in
[2] (bcC for bounded Cesàro convergent sequences, C stays for a double Cesàro
matrix). If all Cesàro-limits of rows and columns are equal, the corresponding
class is brcrC , etc. The inspection of the proof of Theorem 1 with n = 1 gives
at once for brcC and Cesàro-limits C-lim

C-limijxij = C-limjC-limixij = C-limiC-limjxij . (51)
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Finally, let us list classes we considered; they are ordered in a diagram, where
arrows → stay for inclusion ⊃:
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