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This paper considers the problem of the robot motion control in the presence of the major uncertainties
such as it is varying load. Efficiency of one conventional and two soft computing model based control algo-
rithms is investigated and compared trough the results of application on a direct drive robot. First control al-
gorithm is a conventional computed torque based on the Lagrangian dynamic equations. Second method is a
computed torque alike control with an adaptive fuzzy logic system that replaces Lagrangian model, and third
is a continuous sliding mode control with an artificial neural network instead of the dynamic model. Both
soft computing methods give excellent results, while inefficiency of the computed torque control confirms the
disadvantages of the conventional model based motion control approaches.
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1 INTRODUCTION

Up to date the robot manipulators are employed
in many demanding technological processes and
therefore the robot motion control design still re-
presents a challenging task. There are many sorts
of the control algorithms to choose between and
some of them require exact dynamical model of
the system; those are so called model based con-
trol algorithms. The conventional model based mo-
tion control algorithm is well known computed-
-torque method (CT), [14], and many other con-
trollers were obtained by the modification of this
original feedback-linearization based algorithm. Al-
so other control methods, as for example variable
structure control [ 12] require dynamic model of the
mechanism. For good efficiency of those and oth-
ers model based control approaches, the realistic
mathematical model based on physical differential
equations of the second order is required; that is
the model which with its structure and parameters
matches the structure and parameters of the real
robot dynamics with all influential inertia, gravita-
tion, friction, Coriollis and centrifugal effects. But
even if the good model is available, also stable
conditions must be guaranteed for the model based
control to be efficient. Those conditions include in-
variable, exactly known robot load and stable envi-
ronment factors especially a temperature, because
variation in the temperature can significantly in-
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fluence the friction parameters. However varying
and unknown load is present in the most robot ap-
plications. This problem limits the applicability of
the conventional model based control to very few
practical applications or to the robots with substan-
tial gear reduction ratios.

Lately soft computing approaches based on adap-
tive fuzzy logic systems (FLS) or artificial neural
networks (NN) are used a lot to replace dynamic
model in the model based control algorithms. Both
mathematical structures have ability to approxi-
mate any nonlinear function on a compact set and
adapt its parameters by learning. However their
complexity and therefore high computational de-
mands are probably the reason why in the litera-
ture only a few real time applications of adaptive
FLSs and NNs in the robot motion control can be
found and the most works to the date present only
extensive simulation results [1, 6, 13, 17].

In this paper the application results of three
model based control algorithms are compared. Two
of them are based on the soft computing models.
All algorithms are applied to motion control of di-
rect drive robot, so it was possible to directly com-
pare controllers’ efficiency as well as other impor-
tant properties like pretentiousness of the parame-
ter setting and computational requirements. The ef-
ficiency was tested with the movements where the
robot load is varying. Varying load is the biggest
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possible uncertainty and nonlinearity that can ap-
pear in the robot dynamics and therefore a very
good indicator of the quality of the control algo-
rithms.

This paper is organized as follows. In section 2
direct drive robot manipulator is described and
robot motion control problem is stated. Section 3
describes CT control and gives implementation re-
sults. Section 4 describes design of CT alike adap-
tive FLS. Application results are shown and dis-
cussed. Section 5 describes design of a continuous
sliding-mode controller with NN. Section 6 gives
comparison of the methods by considering diffe-
rent aspects. Section 7 gives some conclusions.

2 DIRECT DRIVE ROBOT

The test plant was in-house designed and built
direct-drive (DD) robot manipulator Puma config-
uration with three degrees of freedom shown in
Figure 1. Robot dynamic model and basic con-
struction plan are available at the web page [11].
Detailed description of the robot and controller is
given in [ 16]. The mechanical construction of the
DD robot mechanism is simplified by the use of
Yokogawa Dynaserv direct drive AC-motors (ma-
ximal torques are 220 Nm, 160 Nm and 60 Nm).
Here expensive gear-boxes are not needed and
consequently no back-lash error is presented. On
the other hand, the dynamic model equations for
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DD robot mechanism reveal especially high non-
-linearity, because the influences of the mechanism
on the AC-motors are direct and not reduced by
the high gear ratios. Actual positions of robot
joints are measured by the resolvers. Joint veloci-
ties are not measured, but calculated from the po-
sitions. Robot controller is transputer based multi-
processor system and enables low sampling times
and parallel execution of the controller’s task.

The dynamic model of a rigid DD robot mech-
anism, with m degrees of freedom described with
the Lagrange equation of motion is as follows:

T =M(0)0+h(0,0)+G,(0)+FO)+T,. (1)

Here T is a vector of the drive torques on ro-
bot’s joints, M is inertia matrix, 4 is a torque vec-
tor due to the centrifugal forces and Coriollis for-
ces, G,is a torque vector due to forces of the gra-
vity, F{ is a torque vector due to the friction forces,
and T, stands for a torque vector due to the other,
unknown disturbances. ¢ = [6,,0,,...0,,]T € Am,
0 e Rmand O € Rm are vectors of actual positions,
velocities and accelerations. This well known mat-
hematical note of robot mechanism dynamics (1)
can be also expressed with an n-dimensional state-
-space system of equations with regard to the con-
trol value u as:

x=f(x,t)+B(x,t)u+d(x,t). 2)

Il

60Nm

1100mm

160Mm

S00mm

M1 Z20Mm

g. 1 Direct drive robot
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t stands for time, xe R" is a state space vector,
ue R" is a control vector, d(x,?) is unknown dis-
turbance, B is an actual input matrix, defined as:

B(x,t) = B(x,t)+ AB(x,1), 3)

where B(x,?) is estimated input matrix and AB(x,f)

is discrepancy between estimated and actual input
matrix.

Next the problem of the motion control must be
stated. For the robot described with dynamic equa-
tions (1) or (2) this problem can be specified as
the problem of finding the control torques 7 in (1)
so that the equilibrium point e = 0 defined with (4)
is globally asymptotically stable.

T
e=[ef (.85 (0] eR™". 4)

In (4) the error vector components are:
¢9=[0,1()=0,(0..0,,()=0,]. )

The reference trajectory is a smooth function
prescribed with the position 0,(f)e, ", velocity
0,(f)e R™ and acceleration vectors 6,(f) e R™.

3 COMPUTED TORQUE CONTROL

The conventional CT control [14] is a straight-
forward control scheme where feedback lineariza-
tion is achieved by applying the complete robot
dynamic model. The driving torques are calculated
as:

T =M(0)6°+ h(0,0)+G,(0)+ F(0)+T,, (6)

where 6 is calculated acceleration, defined as:

0 =K 9 + K,y +0,. (7)

If the dynamic model is known fairly accurate-
ly, the closed loop error dynamics becomes:

ég + erg + Kvee =0. (8)

K, and K, are mx m diagonal matrixes of the ve-
locity and position gains and are usually selected
for critical damping D = 1 (9). w,,; is natural fre-
quency of k-th joint.

K

2
ok =Cl)n’k, Kv,k :2Dwn’k, k=1m. (9)

A. Experimental results

In experiment applied CT control law is given
with (6), (7) and applied dynamical model is from
[11]. Dynamic model was completed with the
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measured friction that includes joint velocity de-
pendent viscous and Coulomb friction in form:

Tn,k :bk 'ék +Lf,k -Sign(ék). (10)

b, are viscous friction coefficients, Ly are Cou-
lomb friction coefficient with the following values

by = 123) = [1.04, 4.05, 0.35] Nms,

Ly = 123) = [3.38, 3.30, 2.06] Nm.
Applied gains were

Kpg - 1,23 = [100, 300, 900] and

Kpg = 123 = [20, 35, 60].

Position gains were set to high values in order to
achieve faster response for the joints with lower
masses and to lower values for the heaviest first
robot joint. Velocity gains were selected for the
critical damping, equation (9). Robot tip's posi-
tion error is used to measure the quality of the mo-
tion control:

) ) 2Tl/2
e=[(X, = X) + (Y, =¥V +(Z,-Z)" | " (11)
Here X,,, Y,;, Z,; are reference trajectories in the
i-th sampling time in the task space and X, Y;, Z;
are the actual trajectories in the task space.

Test reference trajectory was point-to-point mo-
vement same for all joints, Figure 2. The load with
mass 4.7 kg has been attached and released few
times, when the robot joints were already at the
standstill. Robot tip’s position error is shown in
Figure 3. Very high tracking and positioning error
is present from which it can be concluded that the
accuracy of the mechanism’s dynamic model is not
sufficient, although a lot of effort was put into de-
riving of the accurate Lagrangian dynamic model.
Error at the standstill shows that even gravity is
not sufficiently compensated. But also when exact
model would be available, the problem of varying

061 o m e == - — = -
/ }_> Changing load
Loaded robot
0.4 /
’
/
o2 7
7
7 . -
0
Unloaded robot
-0.2
— = Reference position /rad
—04} - = Reference velocity/(rad/s)
) — Reference acceleration/(rad/sz)
0 5 10 15 20 25 30

Fig. 2 All controllers: Reference point-to point trajectory
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Fig. 3 Computed torque control: Robot tip's position error
during load change

load would still exist. Because the model parame-
ters in CT control are fixed, it is impossible to
compensate for the load variations. Accordingly,
Figure 3 shows that in the case of the additional
load, the robot tip’s position error is increased and
stays high until the load is dropped.

4 MODIFIED COMPUTED TORQUE CONTROL
WITH FUZZY LOGIC SYSTEM

Next, design of CT alike control, where dynam-
ic model is replaced by an adaptive FLS, is de-
scribed. Simplest strategy for developing FLS,
which can be considered, is view on the robot as
powered by the number of independent drives that
are controlled separately, as a set of simple single
input-single output systems. The mutual interac-
tions among the robot joints that appear due to
varying configurations during the robot motion are
treated as the disturbances. Decentralization of the
control algorithm helps to keep the system's com-
plexity manageable, which is strong argument for
choosing this approach. Especially in the case of
adaptive FLS, that can easily become very com-
plex and computational extensive, this is most wel-
comed. Those arguments are strong enough to
make this worth an attempt, although the highly
coupled DD robot dynamics stirs up doubts about
the suitability of the decentralized approach. To fa-
cilitate the derivation of this control scheme, (1)
is rewritten for the k-th robot joint, £k = 1...m, as

Ty = My (0)0; + AMy (0)0, + Y, My(0)0, +
J=Lj#k
+22hﬂ,k(9)9;91 +G(0)+F (0)+ T

j=l1=1

(12)
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where M, is the constant part of inertia matrix,
AM;,(0) is the variable part of the inertia, and
M;;(0) are the coupling inertias. Let us denote the
whole dynamics of the robot joints (12) with ex-
ception of the constant part of the inertias as the
disturbance term wy (6,6,0):

w; (0,0,0) =AMy (0)0, + Y, My (6)0; +
J=1,j#k

+3 D 1y 1 (0)0,0, + G (0)+ Fi(0) + Ty
j=li=1

By using (13) in (12), the model of the 4-th ro-
bot’s joint with the joint drive torque as an input
can be rewritten as:

T, = M, (0)0, +w,(6,6,0).

(13)

(14)

Applying CT control approach (6), (7) to the
robot with joint dynamics (14), gives:
Wy is estimation of disturbance term w; (13) and
will be estimated by adaptive FLS. The error dyna-
mics of robot joint may be now written in the fol-
lowing form, [3]:

Cor T K, reor + K, réor =

= My [ Wy (6,6,0)—w; (6.6,6) . (16)
This implies that if following is fulfilled:
lim[ W, (6,6,6) —w; (6,6,6) =0, (17)
t

the control (15) decouples and linearizes the sy-
stem, as all nonlinear terms are completely can-
celled and consequently good performance can be
expected.

A. Design of decentralized FLS model

Because decentralized control approach has been
chosen, also adaptive FLS for estimation of the
dynamics should be decentralized. Additionally de-
centralized FLS is easier to design, more transpa-
rent and less complex then centralized system.
Applying complete decentralized approach to con-
trol (15) gives:

Ty = My 0y +w (0,6,,0;). (18)

The discrepancy from (15) is that new decen-
tralized disturbance term w, (6,,0,,6,) is intro-
duced. Now it depends only on the position, the
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velocity and the acceleration of the single joint,
while information about states of the other robot
joints is not included. In the sequel of this subsec-
tion the design of the corresponding FLS is de-
scribed.

First the inputs in FLS have to be chosen.
The obvious choice is three element vector
Xy = [Gkﬁkﬁr’k] that includes the actual position,
velocity and desired, reference acceleration of the
k-th robot joint. Reference acceleration is used in-
stead of the unknown actual acceleration. The
fuzzy rule base designed for the k-th robot joint
now consist of IF-THEN rules R,é with the follow-
ing general form:

IF 6,=X]" AND 0,=X]" AND
6¢ =x%' THEN w, =7 (19)

Superscript / refers to the /-th rule / = 1...M.
X,?’I,X,?’l,X ,?“l are input fuzzy sets and )_qi are
the positions of the output singleton fuzzy sets. The
following structure of the FLS is applied: single-
ton output membership functions (MF), singleton
fuzzifier, product-operation rule of fuzzy implica-
tion and center of average defuzzifier. For the sake
of making the FLS nonlinear in its nature, bell
shaped function form was chosen for the input
MFs. The output of the resulting FLS is given by
(20) and (21).

M / n .
z_kH’uR]i’[ ('xéc)
=1

~ / i
Wy =, (20)
ZH/’LR]i,I ('x;C)
=1 i=1
(xi) = : 1)
H 5= i il PO
141 =X
il
oy

where fli’l are the centers of the input MFs, 0’,";1

determine the width lof the bell MFs and b,i’l the

slope of each MF. x; refers to the i-th element of
the vector of the input variables.

After choosing FLS’s structure, corresponding
parameters have to be assigned to it. First set of
the parameters are input MFs’ parameters, which
are parameters concerning conditional (IF) part of
the rules. This includes: MFs’ number, MFs’ posi-
tions )_c,i’l and parameters that determine their sha-

pe (02’1, b,i’l) . The interval that MFs should occupy
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must include all possible values that might appear
in the inputs and it is conditioned by the robot
construction. Consequently the parameters concer-
ning conditional (IF) part of the rules can be fixed.
This topic will be also addressed later in the sec-
tion with experimental results.

The next step is identification of the parameters
belonging to consequent (THEN) part of the rules,
)7,€. Those parameters are chosen to be adaptive, so
that the variations in the robot dynamics (changing
load, friction parameters) can be estimated. In or-
der to derive the adaptation law, well known pro-
perty of the robot dynamics is applied: dynamic
model of the rigid mechanism can be described as
the linear combination of the parameter vector and
nonlinear functions called base functions, [3]. FLS
(20) can be written in that form after introducing

5 _[=1  —m .
the parameter vector P, —[yk,...,yk ] , with all
adaptive parameters and vector of the nonlinear
. T
functions £, (x,) =[ &4 (i )o-- &4 (x4 (1) |
defined as:

H/’LRI'J (‘x;{)
El _ =1 *
E=l M n )
ZH’LLR/{]I (x;(T)

I=1i=1

(22)

By using (22), the FLS (20) can be written in
the parameter vector-regressor form, often used in
the conventional theory of the system identifica-
tion [ 8] as:

_li "Pi(xk)zﬁi"fk(xk)- (23)

Mz

V/\\/kz

~
1l
—_

Rewritten joint error dynamics (16) is:

ot K plor + Kpreo s =
-1 BT _pT o1 5T
=My (P =B )6 (x) = My P83 (x),  (24)

where P=P—P is the parameter vector error. By
introducing vector

. 0 1
=[0,1]" and matrix A =
v=[0.1] ) [_Kp,k _Kv,k]

in the error equation (24), following is obtained:
e=A-e+ My -v-PT £ (x). (25

This error equation falls into the class of ‘Error
model 2°, as defined by [9]. Suggested adaptive
law is:

P= —+/,&(x) (26)
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where a new term for linear combination of the
position and the velocity error is introduced as:

fer = a ;e + ayy- . 27)

The adaptation law (27) guarantees the global
asymptotic stability if following conditions (28)
and (29) are satisfied:

al,k. Kp,k >0 (28)
a

ayy > —% (29)
v.k

ay; and a, are positive parameters, « is adapta-
tion rate. At this point one additional topic con-
cerning FLS’s design must be considered. It is
known that FLSs often suffer from the problem of
the complexity because its size is an exponential
function of the number of its inputs [ 18]. Suggestion
from [10] for improving the interpretability and
lowering the complexity is to use three sets of the
rules, where each set has different number of the
inputs.

For part of the rules only the position and the
acceleration are used in input vector

X L.SET = [Qk,fi/g]-

Those rules are local dynamic models for estima-
tion of the varying part of the torque which is
caused by the inertia and is mathematically a prod-
uct of the position dependent inertia and accelera-
tion of the robot joint. Second set of the rules has
as input position and velocity,

X 2.567 = 98-k ]

and it is designed to estimate Coriollis, centrifugal
forces and velocity dependent friction. Third set
of rules has as inputs all input vector’s elements

Xi3.5ET = Xk
and compensates the rest of the robot’s dynamics.

B. Experimental results

Applied control scheme is shown in Figure 4.
CT alike control law is given with (18), FLS with
(20), (21) and adaptation law with (26), (27). In
previous subsection described rule optimization is
applied. Table 1. shows implemented rule base.
Positions of MFs were set by considering follow-
ing; robot has joint limit switches at the positions
and maximum joint’s velocity is limited to 6 rad/s.
Maximum possible acceleration depends on the ro-
bot load, but most used values are under 50 rad/s2.
Accordingly three MFs were implemented, two
with the open sides, so that the whole interval of
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A » FLS

Fig. 4 CT alike control with FLS: Control scheme

Table 1 CT alike control with FLS: Rule base

Rule Position | Velocity |[Acceleration
1. R! negative - negative
subsystem R2 zero - zero
R3 positive - positive
2. R4 negative negative -
subsystem RS zero zero -
RO positive positive -
3. R7 positive zero zero
subsystem RS negative Zero Zero
R® zero negative positive
RI0 | zero Z€ro Z€ero
Rl zero zero positive
RI2Z | zero negative negative
Not RI3 | positive Zero positive
applied R4 | negative negative negative
on 1. joint RIS | positive positive positive

possible input values is covered. MFs are shown
in Figure 5. MFs for the position and velocity are
equally distributed. The initial values of the adap-
tive parameters, respectively the positions of the
singleton output MFs, were set to very small ran-
dom values. With using small initial values, the
FLS outputs can also have only small values.
Therefore the possibility of the instability due to
randomly chosen initial values in the first moments
is avoided. Another possibility would be to care-
fully consider the rules and determine proper ini-
tial values of each belonging adaptive parameter
from known dynamic model. However this would
cost a lot of work. Further the variable robot load
would not be considered. Position gains were set
to Kp-1,3) = [1000,2400, 1200], velocity gains
to Kvii—123) = [64,98,70] and parameters of ave-
rage inertia matrix to M = diag[3.5, 2.5, 0,13] kgm?2.
The controller parameters satisfy the stability con-
dition (28), (29). The initial values of the average
inertia matrix were calculated by using known dy-
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Fig. 5 CT alike control with FLS: Membership functions

namic model [11] and point-to-point movement
same for all robot joints. Those values were in
practice increased, because better results without
loosing the stability were obtained. Position and
velocity gains were set by increasing gains applied
in the conventional CT method to the point where
the position error was small but no problems with
the instability appeared. At the procedure number
of different reference movements were used. Adap-
tation parameters were set to a;_ = [44, 0.7] for
the first robot joint, to a;_, =[50, 1] for the se-
cond and to a;_; =[7, 0.2] for the third robot joint
and for all joints a;_;,3=1 were used. Small va-
lues of the second parameter of g, for each joint
were chosen, therefore the velocity error has lower
influence on the adaptation then the position error.
This was necessary, because the velocity signals
are contaminated with a lot of noise that could
cause problems at the parameter adaptation stabili-
ty. The reference trajectory is shown in Figure 2.
Again variable load of 4.7 kg is applied. Figure 6
shows the robot’s tips position error, equation (11).
The top tracking error during the movement at the

x 1073 e/m
8 ;

15 20 25 30
t/s

Fig. 6 CT alike control with FLS: Robot tip's position error
during load changes
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acceleration phase is less then 3 mm. There is less
then 0.1 mm steady state position error and about
0.3 mm tracking error in the part of movement
with the zero acceleration and constant velocity.

40

‘ — Estimated first joint torque [Nm]

20 -

20 L 1 L L L
0 5 10 15 20 25 30

200 | — Estimated second joint torque [Nm]
=-=- Calculated load torque [Nm]

20 ['— Estimated third joint torque [Nm]
=--—- Calculated load torque [Nm]

Fig. 7 CT alike control with FLS: Estimated total joint torques
and calculated load torques

120[ — Estimated torque, second joint |NmJ |
— - Nominal torque, second joint [Nm]

) Mmﬁ%ﬂm 7

20 : : : : ‘
0 5 10 15 20 25 30

m-u,....wm - —

Fig. 8 CT alike control with FLS: Estimated torque w, and
nominal torque M,,05 for second robot joint
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When the load was attached and released, the in-
crease in the position error can be observed, but it
falls rapidly to the initial value without the stabi-
lity problems. Note that the load changes were per-
formed manually, so there were different forces
strokes present each time and the resulting peak
position error is also different at every change. Fi-
gure 7 shows torques applied at the each robot
joint. At the second and the third joint that under
influence of gravitation the load changes causes
step-like fluctuations. The figure also shows from
the Lagrangian model [ 11] calculated load torques.
Figure 8 shows nominal and by the FLS estimated
part of the torque for the second robot joint. Most
of the torque is estimated by the FLS, which fil-
ters out the signal noise, so that its output signal
is smooth. In the nominal torque signal oscillations
caused by the measurement noise are present.

5 SLIDING MODE CONTROLLER WITH
NEURAL NETWORK ESTIMATION

The main advantages of the sliding mode (SM)
control are the robustness to the parameter uncer-
tainty, to the load disturbance and fast dynamics
response [12, 15]. However, these properties are
valid on the sliding surface when no modeling im-
precision, external disturbances and switching time
delays are present. Practical SM control implemen-
tations exhibit high frequency oscillations in the
plant output, called chattering. This may excite high
frequency dynamics on the sliding surface that was
neglected in the dynamic model. A number of met-
hods have been suggested to alleviate the chatter-
ing effects and improve precision in the SM con-
trol of robot mechanism. In [4] and [5], the au-
thors developed perturbation estimation schemes,
others suggested to supplement the control input
with a predictive correction term [7]. Here a two
layer NN for estimation of most of the robot dy-
namics, with exception of average inertia matrix,
is applied. Two layer NN is a proper choice to esti-
mate dynamics, as it was shown that it possess good
approximation abilities the same as adaptive FLS,
[18].

A. Design of continuous neural network
sliding-mode controller

For mechanism with dynamics (1) that is trans-
formed into an n-dimensional state-space system
(2) and (3) switching function (30) is chosen. The
goal is to design the control law with the help of
Lyapunov theory for the robot system (1), (2).

o(x,) = G- [x(t) — x,(0)]. (30)
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This means that after transient time, defined
with elements of the matrix G, the difference bet-
ween the actual and the desired vector of state,
space variables x and reference state space vari-
ables x, should equal zero and will be stable for
all disturbances. Function o(x,f) = 0 will be stable
if the Lyapunov function is positive V' > 0 and its
first time derivative is negative V' < 0. The sim-
plest V for guaranteeing ¥ > 0 for whichever cho-
sen x,, x, G is (31) and its derivative is (32).

V=0T~% 31)
V=00 (32)

Next the suitable conditions for control law u,
where the robot system will be stable, have to_be
determined. This is done as follows. Because V is
not always less than zero for all x,, x, G, the first
desired Lyapunov function time derivative has
been defined as:

V=-0"-Do (33)

where D is a diagonal matrix with positive ele-
ments. Further, if the definition (33) and the de-
rivative of Lyapunov function (32) are made equal,
the result is:

ol (D-0+6)=0. (34)

The equation (34) is valid if both or at least one
of the multiplicators equals zero. Since the first
multiplicator, the term o7, does not equal zero dur-
ing the transient response, the control law can be
calculated on the basis of the second multiplicator,
which is:

D-o+0=0. (35)
Further if (30) is differentiated and (2), (3) are

inserted into the calculated derivative, the follow-
ing is obtained:

06=G-(f+B-u+AB-u+d-%x). (36)

Next (36) is inserted into the implementation
condition of the control law (35) to obtain:

u(t)=—G-B)"[G-(f+AB-u+d—%,)+D-0].
(37)

Since the term (f + AB- u+ d) is unknown and
not measurable, it is approximated by the neural
network N:

w(t)=—(GB)™" -[G-(N(1) = %,())+ Da(n)].  (38)
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A conventional supervised learning of NN can-
not be used, since the target values are not known.
Therefore an on-line estimator has been developed
for estimating of the learning signal which is the
difference between the target and the output of
NN. Next the exact stability condition will be de-
rived. From differentiated equation (30) the deri-
vative of the state vector can be expressed as:

=G o+x,. (39)

After (38) and (39) have been inserted into the
basic equation of the mechanism dynamics (2), the
result is:

0+D-0=G-(f+AB-u+d)—G-N=G(Z-N),
(40)

where it was substituted Z= f+ AB-u +d. By using
the derivative of Lyapunov function and the equa-
tion (40), the condition, where the system control-
led with the derived control law (37) remains sta-
ble, is:

V=0l 6=
=0"-G-(f+AB-u+d—N)-o' -D-0<0.(41)

The next condition, equation (42), has been de-
rived from (30) and (41). To make V' < 0 and con-
sequently o — 0 possible, the condition (42) has to
be fulfilled in time during which NN is approxi-
mating the unknown part of robot dynamics (f +
+ AB-u + d).

IG-(f+AB-u+d)-G-N|=|D-0+6|<|D-a|. (42)

NN with two layers shown in Figure 9 is ap-
plied. To teach output layer, a modified backpropa-
gation (BPG) rule has been used and for the hid-
den layer traditional BPG rule is used [2]. The hid-
den layer output is calculated as (43) and the out-
put from an outer layer, that is an output from the
NN, is calculated as (44).

net; =§,wﬂ vy, 0;=g(net;), (43)

netl-=2wl~j~0j, N; =o0; = g(net;), (44)
J

j is number of the neurons in the hidden layer, i is
number of the neurons in the output layer, v is
NN’s input vector, / is number of the NN’s inputs,
wy; is matrix of the hidden layer weights, w;; is ma-
trix of the output layer weights, o; is hidden layer
output, o; is NN’s output. Transfer function of the
hidden layer is nonlinear sigmoid function (45) and
transfer function of the output layer is linear (46).
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Fig. 9 SM control with NN: Neural network with two layers

2

—net .
J

g(net;)=1- (45)
‘ 1

+e
g(net;) = net,. (46)

Change of the weights for the output layer is
calculated as:

Aw; =——, (47)

where the error E£ is chosen to fulfill (35):

E=(D-a+<'7)T2-(D-0+(7)=
_[G-(Z-N)"T[G-(Z-N)]
2

(48)

The change of weights can be now expressed as
(49).

Aw;; =¢-JE [ dnet; - dnet; | dw; = €-0E/dnet; -0; =
=¢&-3dE/do;/do; | dnet; -0, =
Aw; =¢&-0E /do; - g'(net;)-0;, (49)

where from (46) g'(net;) = 1 follows. The deriva-
tive dE/do; from (49) can be calculated as:

0E |00, =0/00,[ (G-Z~G-N)" -(G-Z-G-N)]/2
=3/90,[(G-N) -(G-Z-G-N)|=
IE /d0; =/30, (G- N)|" -(Do +6). (50)
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B. Decentralized control law for three degrees of
freedom mechanism

Expression for robot dynamics, equation (14) is
written to facilitate the derivation of decentralized
control law as:

Ty = My ()0 +w (0;,0,0,). (1)

The equation (51) for the k-th joint can be writ-
ten as:

)'ck:fk+ABk~uk+f?k-uk+dk, (52)

where following expression are used:
. a7 . . e AT
xk:[ek’ek] ; xk:[ekaek] ; (53)

0,
sz LT S
M - wi (04,0;,0;)

N 0
and Bk = A_}_l .
- kk

The dimensions of the vectors f;,B;,B; are 2
by 1. The control law u, is described by the fol-
lowing equation:

(54

(1) =
=Gy B [Ge - (N (0=, (D) + dyor ()]
(55)
Here G, :[Kp,k Kv,k] is vector of gains and

. T . . .. T
X :[er,lwer,k] and X, ; =[9,,k,9,,k] are refe-

rence vectors. IV, with dimension 2 by 1 represents
the NN’s output. Switching function and its time
derivative are:

0, (=G [x, ()= x4 (D)),

, (56)
61 =Gy [54 () =%, 1 (1)]-

The learning procedure for NN’s output layer
weights according to (49) and (50) is given with
(57). First equation gives learning law for the
weights of the first neuron in the output layer (i =
= 1) and second for the weights of the second neu-
ron (i = 2), g'(net;) = 1.

Awgj=my K, i (doy +6y)-g'(nety) o

o (57)
AWy =My Ky - (dp0y +0y)- g (nety)-o;.
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C. Experimental results

Applied decentralized SM control law with NN
is given with (55) and (56), NN with (43)-(46)
and the learning law with (57). NN structure is
shown in Figure 9. The same as for the previously
described experiments, point-to-point movement,
Figure 2. The load with mass 4.7 kg has been at-
tached and released few times. Best results were
achieved with j = 5 of neurons in the hidden layer.
When using more or less of neurons, deterioration
of the tracking accuracy appeared. / = 3 neural net-
work inputs were used: actual position, actual ve-
locity, and difference between desired and actual
positions in the joint space. Initial weights were
randomly chosen between —1 and +1. Learning
rates were

Nap = 4e — 7’

Naap = N3qp = 0€ — 6,
d(k: 1,2,3) = [15,23,20]

Position and velocity gains were
Kp(k= 1,2,3) = [115, 150, 180] and
Kv-123) = [25,40,20].

All parameters were set experimentally, begin-
ning with the low initial values that were increased
to achieve the best results. When too high learn-
ing rates or gains were applied the system became
unstable, since noise was affecting the learning
process. It should be also noted, that mathemati-
cally the stability of the BPG learning algorithm
can not be always guaranteed, especially in the
first moments of learning. However in the case of
the applied SM control algorithm (55), the basic
SM part keeps the system stable if NN output is
not very large, although no NN convergence is

0.018 T T T T

0.016 | - 4

0.014 |

0.012 |

0.01 |

0.008 HH

0.006 HH

0.004

0.002

0

Fig. 10 SM control with NN: robot tip's position error during
load changes
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achieved. Therefore the NN output was limited to
the lower and upper bounds estimated from the
Lagrangian model [11]. When performing the ex-
periments, there was no case of the unstable learn-
ing. The robot tip's position error is shown in Fi-
gure 10. Between the movement the top error is
16.5 mm while steady state position error is less
then 0.1 mm. The load changes are efficiently com-
pensated.

6 COMPARISON OF THE CONTROL METHODS

Performance of all designed control algorithms
was verified by the application on DD robot. Com-
parison of the techniques by considering different
aspects is given in this section.

A. Tracking and positioning error

Conventional CT control results in very high
tracking and positioning error of about 35 mm;
when the robot is loaded with unmodelled load,
this error is even higher. For CT alike control with
FLS the top tracking error at the acceleration phase
is less that 3 mm and there is less then 0.1 mm
steady state positioning error. SM with NN results
in the top tracking error of 16.5 mm while steady
state position error is also less then 0.1 mm.

B. Robustness

Robustness was tested by applying the step
changes in the robot load, which require signifi-
cant and rapid change in the motors’ output torques
and therefore presents outermost disturbance that
can appear under the normal robot functioning con-
ditions. In the case of both soft computing met-
hods smooth transient response and fast conver-
gence of the position errors after each load change
was observed (Figure 6, Figure 10), since both
schemes have adaptive parameters. In the case of
CT control the load changes are not compensated
and therefore cause the significant increase in the
position error, however the system remains stable.

Another important aspect when considering ro-
bustness is sensitivity toward the measurement
noise. This is the problem in the following cases:
too high position and velocity gains (all three
methods) and too high learning/adaptation rates
(both soft computing methods). The problem can
be omitted by the proper choice of the parameters,
where the position and velocity gains are not too
high. However the precedence concerning sensi-
tivity to the measurement noise is evident in the
case of control with FLS. FLS with input MFs fil-
ters out the noise and since the most of the con-
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trol output is output from FLS (Figure 8) this low-
ers the noise sensitivity.

C. Computational requirements

Overall computational load for both soft compu-
ting methods is highly dependent on number of
the MFs and rules, respectively on the number of
neurons and NN’s inputs. Therefore the comparison
is given for here described controllers’ structures.

CT control calculation requires at each sampling
time: 21 additions/subtractions, 163 multiplica-
tions, 8 basic trigonometric functions, 9 if/else
statements.

CT alike control with FLS calculation requires:
204 additions/subtractions, 390 multiplications,
30 if/else statements, 39 calculation of random
numbers.

SM with NN calculation requires at each sampling
time: 414 additions/subtractions, 474 multipli-
cations, 6 calculations of exponential function,
90 random numbers.

D. Other design and implementation issues

Another important factor is time required for the
design and the implementation. From here presen-
ted techniques CT control design is on overall most
time consuming, since centers of the gravity and
the inertia tensors for robot joints must be calcu-
lated, which is followed by the derivation of the
complete dynamic model. When comparing, the
design of the control with FLS system and SM
with NN both require less time.

However the pretentiousness of the parameter
setting is the lowest for CT control since only po-
sition and velocity gains have to be set and the re-
quired procedure is easy and straightforward as de-
scribed in the Section 3. CT alike control with FLS
is in this respect much more demanding, since be-
side position and velocity gains also initial values
of the adaptive parameters, adaptation rates and
average inertia have to be chosen. Similar is also
pretentious of the parameters setting for SM con-
trol with NN.

Next redesign issue is considered. For soft com-
puting methods sometimes the change of structure
is required if the efficiency is not sufficient. For
SM with NN this means different inputs, or num-
ber of the inputs, and/or different number of the
neurons. The change of the number of NN’s layers
is usually not an option, since NN with two layers
is already an universal aproximator. However with
good programming, those two variations can be
manageable by changing only some program vari-
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ables. In the case of CT control with FLS, the
change of the structure means the change of the
number of MFs and rules. For this the complete
design of the MFs and the rule base must be re-
peated.

Another aspect that should be considered is
transparency of the controllers. CT control has the
best transparency since its structure and parame-
ters are physically conditioned. Also CT control
with FLS subsystems remains transparent because
it can be mostly recognized which dynamic effect
is compensated by which rule. Therefore, if for ex-
ample steady state error appears, the equations in
CT control or rules in FLS that compensate gravi-
tation should be redesigned. However SM control
with NN can be considered as »black box« because
the meaning of the each weight in NN can not be
recognized.

7 CONCLUSION

The conventional model based CT control, CT
control alike control with adaptive FLS and SM
control with NN design and implementation results
are presented and discussed in the paper.

CT control requires exact dynamic model, in-
cluding the structure and the parameters. The de-
sign is pretentious and time consuming. Very poor
results were obtained in the control of the DD
robot, since the exact dynamic model could not be
obtained. Unmodelled disturbances as changing
load are not compensated. The method is not suit-
able for DD mechanisms, or other highly nonlin-
ear mechanism.

CT alike control with FLS requires reasonable
design and implementation time and yields good
results even in the presence of the disturbances. It
is less sensitive to the measurement noise. Algo-
rithm is transparent, calculation requirements are
acceptable. It can be also implemented to the con-
trol of the other mechanisms, where the structure
of the dynamics is known, but the parameters are
vague. Estimation of the average inertia is requi-
red.

SM control with NN presents good solution for
cases where nor the parameters, nor the structure
of the dynamics is known well enough. Only esti-
mation of the lower and the upper bounds of the
disturbances and estimation of the average inertia
matrix is required. Good results were obtained for
DD robot motion control. Design time and com-
putational requirements are acceptable.
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Primjena tehnika mekog racunalstva za upravljanje gibanjem robota. U ¢lanku se obraduje problem
upravljanja gibanjem robota uz djelovanje velikih neodredenosti kao §to je promjenljivost tereta. Istrazene su,
i usporedene na robotu s izravnim pogonima, jedna klasi¢na metoda upravljanja i dvije metode zasnovane na
tehnikama mekog raCunalstva. Prva je metoda upravljanja klasi¢na metoda proraunavanja upravljackog mo-
menta pogonskih motora na osnovi Lagrangeovih jednadzbi koje opisuju dinamiku robota. Druga je metoda
upravljanja sli¢na klasi¢noj metodi, ali se umjesto Lagrangeovih dinamickih jednadzbi koristi adaptivni
neizraziti sustav, a treca je metoda upravljanja zasnovana na kliznim rezimima s primjenom neuronske mreze
umjesto dinamickog modela robota. Obje metode upravljanja zasnovane na tehnikama mekog racunalstva dale
su izvrsne rezultate u svim sluc¢ajevima, dok klasi¢na metoda upravljanja nije dala dobre rezultate uz djelo-
vanje neodredenosti u sustavu.

Kljuéne rijeci: adaptivni neizraziti sustav, upravljanje prorac¢unavanjem upravljackog momenta, neuronske
mreze, upravljanje robotom, klizni rezim upravljanja
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