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The existence theorem for the solution of a
nonlinear least squares problem*

DRAGAN JUKi¢H

Abstract. In this paper we prove a theorem which gives nec-
essary and sufficient conditions which guarantee the existence of the
global minimum for a continuous real valued function bounded from
below, which is defined on a non-compact set. The use of the theorem
18 illustrated by an example of the least squares problem.

Key words: least squares, existence problem, exponential func-
tion

Sazetak. Teorem o egzistenciji rjeSenja nelinearnog pro-
blema najmanjih kvadrata. U radu je naveden teorem koji daje
nuzan i dovoljan uvjet za egzistenciju globalnog minimuma neprekidne
1 odozdo omedene realne funkcije definirane na skupu koji nije kom-
paktan. Korisnost teorema ilustrirana je na primgjeru problema naj-
mangih kvadrata.

Kljuéne rijeci: problem najmangih kvadrata, problem egzisten-
cige, eksponencijalna funkcija

1. The least squares problem

We are given a model-function

t— f(t;a), (1)
and the data (p;, t;, fi),i=1,...,m, wherea € A C R" is the vector of unknown
parameters, t1 < to < ... < t,, are the abscissae and fi,..., f; are the data’s

ordinates. The number p; > 0 is the weight of the i-th datum. Usually we have
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m > n, i.e. usually the number of data is considerably bigger than the number
of unknown parameters.

In practice, the unknown parameter vector a* € A for the function-model
(??) is usually determined either in the sense of ordinary least squares (c.f. [?],
(71, 171, 1?1, [7], [?]), by finding a* € A such that

m

S(a*) = inf S(a), Z pilfi — f(t;a)) (2)

acA

(Figure ?77.a), or in the sense of total least squares (c.f. [?], [?], [?]) by finding
(a*,86*) € A x R™ such that

m

F(a*,6") = inf F(a,d), F(a,d) i A[fi — [t +5;a)]2 + 07},
@87 = it Fo) Zp W+ 67)
(3)

(Figure 7?.b), where § = (1,...,0,)7 € R™.
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Hence, in both cases one has an existence problem for a global minimum of a
continuous function on some set. In the next section we prove a theorem giving
necessary and sufficient conditions for the above problem to have a solution.
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2. The existence theorem for the solution of the least
squares problem

Let A C R™ and let G : A — R be a continuous function which is bounded from

below, and denote

G* = inf G()\).
AEA

One has the following problem:
(P1)  Does there exist a point \* € A, such that G(\*) = G* ¢

If the set A is compact, then, by continuity of G, the problem (P1) has a
solution. Therefore, from now on we assume that the set A is not compact. This
means that the set A is either unbounded or is not closed (or both). In the first
case there exists a sequence (zy) in A such that ||zk|| — oo, and in the second
case there exists a sequence (x) in A converging to a point z* € C1A \ A.

Denote by N(A) the set of all sequences (z) in A, such that ||zx|| — oo
or z — x* € CIA\ A. Following Demidenko [?] (see Remark ?7?), define the
number

Gp = inf{liminf G(zy) : (z) € N(A)} (4)

which we call the infimum of the function G at the end.

Since G* < G(A) for all A € A, from the definition (?7?) one can easily prove
the following inequality:

Proposition 1. G* < Gg.

Example 1. Let G(\) = A2

a) If A =R, then G* =0, Gg = o0,

b) If A = [0,00), then G* = 0, G5 = oo,

¢) If A = (0,00), then G* =0, Gg = 0,

d) If A = (—o0,—1]U (1,00), then G* =1, G = 1.

Note that the problem (P1) has no solution only in the case c).
Proposition 2. If G* < Gg, then the problem (P1) has a solution.
Proof. Let (\;) be a sequence in A such that G* = klirn G(M\x). By our

assumption G* < G, and therefore neither the sequence ()\), nor any of its
subsequence, belong to the set N(A). This means that the sequence ||\g|| does
not tend to oo, and hence the sequence (\;) has a bounded subsequence. By the
Bolzano-Weierstrass theorem, the sequence ()\;) has a convergent subsequence
(Ak;). Let A\g, — A*. Then A\* € A, since otherwise, the sequence (\,) would
belong to the set N(A). By the continuity of the function G we obtain G* =
Zlirglo G(Ag,) = G(zllglo Ai;) = G(V). m]

Theorem 1. The problem (P1) has a solution if and only if there exists a
point \* € A such that G(\*) < Gg.
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Proof. a) Suppose the problem (P1) has a solution. Then there exists a
point \* € A such that G(\*) = G*. By Proposition 7?7 we obtain G(\*) < Gg.
b) Suppose the problem (P1) has no solution. Then G(A) > G* for all
A* € A. Furthermore, by Proposition 7?7, G* = Gg. Hence, if the problem (P1)
has no solution, then G(\) > G for all A € A. ]
Remark 1. In [?], the infimum of the function G at the end, is defined as
the number G := inf{liminf G(z1) : (x1) € N*(A)}, where N*(A) is the set of
all sequences (xy) in A, such that either ||z|| — oo or z — z* € CIA\ Int A.

Since CLA\ A C C1A\ Int A, one has Gy < Gg. Furthermore, it is easy to
show that Theorem ?? holds also if G is replaced by é;.

Example 2. We illustrate the application of Theorem 7?7 on the following
simple nonlinear ordinary least squares problem. Let the data (p;,ti, fi), i =
1,....,m, m > 3, be such that t; < ta3 < ... < ty, and f; > 0,71 =1,...,m.
For the model-function we take the exponential function f(t;\) = e*, X\ € R.
We consider the existence problem for the global minimum of the functional
S : R — R given by

S =Y pilfi — M2
i=1

Let I = {1,...,m}, Iy := {i : t; = 0}. Note that the set Iy is either empty or
contains only one point. Let us show that in the set R there exists a point of
the global minimum for the functional S.

a) If some of the numbers 1, .., ty are strictly positive and some are strictly
negative, then obviously Sg = oco. By Theorem ?7? there exists a point of
the global minimum for the functional S on R.

b) If0 < ty, then Sp = Dien, pifi+>er, Pi(fi—1)?. Let (see Figure 7?.a)

A = min In fi = —lnfk.
icl\Iy t; tr

Geometrically, (see Figure ??.a), A* is the slope of the line through the
origin and the point (tx,In fi), and none of the other points (t;,1n f;),
i €I\ Iy, lies below this line. Since fi, = Nt and f; > et i £k, we

have
SN =5 plfi— NP =53 pilfi — NP

i=1 i=

N|—=
S
EaS

<L Y piff+i Y pi(fi—1)?<Sg.

By Theorem 77 in this case there aslo exists a point of the global minimum
for the functional S on R.
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c) If t,, < 0, then Sgp = %Ziel\lopiff + 5 e, Pilfi — 1) Let (see
Figure ??.b)
x Infi Infi
A* = max = —.
i€l\lo t; tr

Proceeding similarly as in b), one can show that there exists a point \* € R
such that S(A*) < Sg.

Therefore, our least square problem always has a solution.
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