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Permittivities of 1-alkyl-3-methylimidazolium tetrafluoroborates, hexafluorophosphates, and

tetrafluoroborate-chloride mixtures (alkyl = butyl, hexyl, octyl or decyl) were determined from

the capacitance of a specially designed capacitor, which was measured as the function of fre-

quency over the range from 0.001 Hz to 5 MHz. The measurement setup was tested against

molecular liquids. Water and methanol gave relatively stable results, which comply with the

permittivities known from the literature over a frequency range from 30 kHz to 3 MHz. The

apparent permittivity measured at lower frequencies was highly overestimated. With low-tem-

perature ionic liquids, the plateau in the apparent permittivity as the function of frequency was

narrower, and it was observed between 1 and 3 MHz. Yet, the apparent permittivities in the pla-

teau region are still overestimated, at least for 1-butyl-3-methylimidazolium salts.
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INTRODUCTION

Static permittivity makes it possible to quantify and

compare the polarity of solvents, and thus to predict

their usefulness for various applications. There are also

other methods for comparing the polarities of solvents,

namely, solvent scales based on solvatochromic shifts,1,2

i.e., solvent dependent frequency of certain bands in ab-

sorption spectra of specially designed molecules called

solvatochromic probes. However, solvent polarity calcu-

lated from spectroscopic measurements refers to the cy-

botactic region, that is, it is influenced by the orientation

of solvent molecules that solvate the solvatochromic

probe, and it is not necessarily representative of the

overall volume of the solvent. In mixed solvents, solva-

tochromic shifts are additionally influenced by selective

solvation of the solvatochromic probe by a certain com-

ponent of the mixture. Thus, the permittivity is often

preferred as the quantity characterizing the solvent po-

larity over the solvent scales based on solvatochromic

effect, especially in mixed solvents and for solvents

composed of unsymmetrical molecules. The difference

in polarity between the anion and the cation in the salts

of 1-alkyl-3-methylimidazolium (low-temperature ionic

liquids) and unsymmetrical structure of the cation are

strong arguments for the static permittivity as the prefer-

red parameter to quantify the polarity of ionic liquids.

Permittivities of molecular solvents can be easily meas-

ured, and they are readily available from the literature.
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In contrast, the permittivities of low-temperature ionic

liquids are not available. Static permittivity has many

applications other than selection of a solvent for certain

purposes, e.g., it is necessary to calculate the electroki-

netic potential at the solid-liquid interface and the stabil-

ity of colloids.3,4 In his recent review Welton5 wrote: It

is not possible to measure the dielectric constant of an

ionic liquid directly.

Such a statement is very discouraging for those in-

terested in the permittivity of ionic liquids. As we show

later, in some sense our results confirm Welton’s allega-

tion.

The presence of ions and electric conductance, which

make ionic liquids substantially different from most or-

ganic solvents, do not limit the possibility of measuring the

capacitance of a capacitor, upon which the permittivity cal-

culation is based. For instance, the permittivities of up to 5

molar aqueous solutions of salts (which have molarities of

the same order of magnitude as and conductivities higher

by an order of magnitude than typical low-temperature

ionic liquids) have been measured.6–8

The complex permittivity e* can be expressed as:9

e*(n) = e(∞) + De*(n) + s/ie0w (1)

where e(∞) is the high-frequency limit of the real part,

De*(n) is the frequency-dependent part of complex per-

mittivity, s is static conductivity, and e0 is the electric

field constant. At very low frequencies, the last term on

r.h.s. of Eq. (1) dominates, but at sufficiently high fre-

quencies, the last term on r.h.s. of Eq. (1) disappears, and

the effect of conductivity on the complex permittivity

becomes negligible.

Thus, despite the above mentioned discouraging

statement, we attempt to directly determine the permit-

tivity of ionic liquids. Some research groups determined

the permittivity of ionic liquids indirectly. Angelini et

al.10 derived an empirical equation connecting the tauto-

meric equilibrium constant of 2-nitrocyclohexanone and

the permittivity of a solvent in a series of molecular sol-

vents, and used their equation to calculate the relative

permittivities of 1-butyl-3-methylimidazolium hexafluoro-

phosphate, as well as of four 1-alkyl-3-methylimidazol-

ium triflates, and the results were 10 and 16–30, respec-

tively. Baker et al.11,12 report values of the relative per-

mittivity of about 10 in a few low-temperature ionic

liquids, based on a correlation between certain band ra-

tios and Stokes shifts, on the one hand, and the relative

permittivity, on the other. Miscibility of low-temperature

ionic liquids with organic solvents13 suggests even lower

relative permittivities (below 10).

Weingartner et al. report a permittivity of 26.2 (ethyl-

ammonium nitrate),9 11.4–12.2 (in a series of 1-alkyl-

3-methylimidazolium bis(trifluoromethylsulfonyl)imides,

alkyl = C2-C5),
14 and 8.9–15.2 (in a series of 1-alkyl-3-

methylimidazolium tetrafluoroborates, hexafluorophos-

phates, and trifluoromethylsulfonates, alkyl = C2-C6),
15

obtained by means of microwave dielectric spectroscopy.

The dielectric properties of materials are represented

by a complex number e*, whose real part e' represents

the relative permittivity, and the imaginary part e'' repre-

sents the dielectric loss (both numbers are dimension-

less). The e' is defined as:

e' = C/C0 (2)

where C and C0 are capacitances of a capacitor filled

with certain dielectric (here – ionic liquid) and the same

capacitor filled with vacuum, respectively. In principle,

e' and e'' are frequency dependent, but for water and for

many common molecular solvents, e' is practically inde-

pendent of frequency at frequencies < 1 GHz. This low

frequency limit of e' is the relative static permittivity in

non-conductive liquids. At very low frequencies, the

conductivity-dependent term in Eq. (1) prevails. Then,

the choice of frequency is a compromise: high frequency

is required to depress the last term on r.h.s. of Eq. (1),

and low frequency is required for constant e'. We expect

that a frequency that fulfills both conditions can be

found in the MHz range, at least for certain liquids.

EXPERIMENTAL

The synthesis of ionic liquids and their properties are describ-

ed elsewhere.4 The 1-alkyl-3-methylimidazolium chlorides

(alkyl = butyl, hexyl, octyl or decyl, abbreviated BMI, HMI,

MOI, and DMI, respectively) were obtained from 1-methyl-

imidazole (Fluka) and n-alkyl chlorides (Sigma-Aldrich). The

metathesis reaction between 1-alkyl-3-methylimidazolium

chlorides and ammonium tetrafluoroborate or hexafluorophos-

phate was carried out in acetonitrile. We also studied a few

tetrafluoroborate-chloride mixtures.

The home-made flat capacitor had passivated titanium

electrodes of a surface area of 38.5 cm2 each. The other ele-

ments in contact with the ionic liquids were made of Teflon,

and the distance between the electrodes was adjustable (a few

mm). The capacitor was designed to avoid air bubbles be-

tween the electrodes. In the frequency range 102–5 ´ 106 Hz,

the Helwett Packard 4284A impedance bridge was used. In

the frequency range 0.001–1 Hz, we used a home-made ex-

perimental setup,16 specially designed for low frequencies.

The experimental setup was tested against air and molecular

liquids, whose permittivities were known. The experiments

were carried out at room temperature (no thermostating). The

ionic liquids were dried and kept in a desiccator before the

measurement, but the capacitor was filled and the measure-

ments were carried out without special protection against

atmospheric humidity.

RESULTS AND DISCUSSION

The apparent relative permittivities of molecular liquids

are shown in Figure 1. At a sufficiently high frequency,

water (frequency > 3 kHz) and methanol (frequency >

462 M. KOSMULSKI et al.

Croat. Chem. Acta 80 (3-4) 461¿466 (2007)



30 kHz) gave relatively stable results, which comply with

the permittivities known from the literature, but the ap-

parent permittivity was severely overestimated at lower

frequencies. Apparently, in water and methanol, even

without addition of salt, the conductivity dependent term

in Eq. (1) prevails when the frequency is sufficiently low.

The experimental setup applied in the present study pro-

duces reliable values of static permittivity of water and

methanol over a frequency range from 30 kHz to 3 MHz,

and we hypothesize that also for ionic liquids such pla-

teaus exist, and that these plateaus represent static per-

mittivity, although they may occur at higher frequencies

since the conductivity of ionic liquids is higher than that

of water or methanol (Eq. (1)). For low-temperature ionic

liquids studied in the present paper, the apparent relative

permittivity assumed very high values (even > 106) at

frequencies below 1 kHz (Figure 2), and the behavior

was more complicated than for molecular liquids. Figure

2 presents the apparent permittivity of BMIBF4 over the

frequency range 102 – 5 ´ 106 Hz on the log-log scale.

Different shapes of symbols represent two series of meas-

urements (two lots of BMIBF4) and different colors re-

present two different distances between the electrodes.

The outstanding results at f > 3 MHz are due to the fre-

quency limit of the bridge rather than to the properties of

the ionic liquid, and similar behavior was observed for

water (Figure 1). On the log-log scale, the permittivity at

f = 1–3 MHz seems to be relatively stable. A closer look

at the same results (Figure 3, linear scale) indicates that

even over a relatively narrow frequency range, from 106

to 3 ´ 106 Hz, the apparent permittivity of BMIBF4 is

not as stable as demonstrated in Figure 1 for molecular

liquids, yet it is stable within about 10 %, and the scatter

between different experiments and different electrode

distances within the same experiment is in the range of

20 %. Thus, the present method gives only a rough esti-

mate of the apparent permittivity. The results for water

and methanol obtained by means of the same experimen-

tal setup are more reproducible. Air bubbles and deter-

mination of the distance between the electrodes are pro-

bably the main error sources. The former is more signifi-

cant for ionic liquids, which have high viscosity. Figure

4 presents apparent permittivities for a series of 1-alkyl-

3-methylimidazolium tetrafluoroborates. Unlike BMIBF4

(Figure 3), which shows irregular variation of the appa-

rent permittivity as the function of frequency, the other

1-alkyl-3-methylimidazolium tetrafluoroborates show a

systematic increase in the apparent permittivity as the

frequency increases, and the slope increases as the chain

length in the substituent in the imidazolium ring increa-

ses. Nevertheless, the results shown in Figure 4 are stable

enough to estimate permittivity. The apparent relative per-

mittivity of 1600 (BMIBF4, Figures 2 and 3) is higher

by an order of magnitude than the highest permittivities

observed for molecular solvents. Relative permittivities

of the other 1-alkyl-3-methylimidazolium tetrafluorobo-

rates (Figure 4), 170–190 (hexyl), 30–40 (octyl), and 7–12

(decyl), fall in the range encountered with molecular

liquids and are comparable with N-methylformamide

(189), methanol (33), and 1-octanol (10.3), respectively.17
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Figure 1.The apparent relative permittivity of water and methanol.

Figure 2. The apparent relative permittivity of BMIBF4. Squares and
circles represent two lots of BMIBF4. Black and white represent dif-
ferent distances between the electrodes.

Figure 3.The same plot as Figure 2, linear scale.



In the series of 1-alkyl-3-methylimidazolium hexafluo-

rophosphates (Figure 5), the permittivity decreases when

the chain length of the substituent in the »1« position in-

creases from 250 (butyl) to 35–40 (hexyl), 10–15 (octyl),

and 1.5 (decyl, overcooled liquid). Finally, in the series

of mixtures of 1-butyl-3-methylimidazolium tetrafluoro-

borate and chloride (Figure 6), the permittivity decreases

when the mass fraction of 1-butyl-3-methylimidazolium

chloride increases from 1600 (no chloride) to 1100 (9.75 %

BMICl), 700 (14 % BMICl), and 330 (27.6 % BMICl).

Trends in the apparent permittivity in the series of

1-alkyl-3-methylimidazolium tetrafluoroborates and he-

xafluorophosphates as the function of the chain length of

the substituent in the »1« position are qualitatively

correct, that is, the permittivity decreases when the chain

length increases. Qualitatively similar trends were found

in other series of homologs (alcohols, organic acids),17

but the effects of the chain length were less significant

than those presented in Figures 3–5. Also, the numerical

values of the apparent permittivities presented in Figures

3–6, at least for the 1-butyl-3-methylimidazolium salts, are

too high to be realistic. The apparent permittivities are

correlated with the third power of reciprocal viscosities

of ionic liquids. The viscosity h, apparent permittivity e,

and the product h3e (which assumes similar values for

all ionic liquids studied) are summarized in Table I. Since

the molarity of all systems of interest is similar, the

reciprocal viscosity is roughly proportional to the con-

ductivity (Walden product). Literature data on the con-

ductivity of ionic liquids is limited, while the viscosities

are easily available,18 and this is why we used viscosity

rather than conductivity in the present correlation. The

viscosity of tetrafluoroborate-chloride mixtures was esti-

mated from the results presented in Ref. 19. The number

of experimental data points in Ref. 19 is limited, and we

could only roughly estimate the viscosity. Probably, the

apparent permittivities of short-chain 1-alkyl-3-methyl-

imidazolium salts obtained in the present study represent

a sum of actual permittivity and a term proportional to

the third power of conductivity. Interestingly, this term

is rather insensitive to the frequency in the MHz range.

On the other hand, the results obtained for long-chain

components may very well represent actual permittivities.

These values (except for C10MIPF6) are high compared to

the above discussed results from the literature.

The high electrophoretic mobility of colloidal parti-

cles observed in the low-temperature ionic liquids4 is an

argument in favor of high permittivities. The z-poten-

tials of anatase calculated from experimental data by

means of the Smoluchowski equation with various val-

ues of permittivity are summarized in Table II. The

z-potentials calculated with e = 10 (typical value report-

ed in the literature) are unrealistically high compared to

the z-potentials of anatase and other mineral oxides in

aqueous solutions of comparable molarity.20 The absolute

value of the z-potential in aqueous medium decreases when

the ionic strength increases,3 so high values are expected

at low ionic strengths, and low values are expected at

high ionic strengths. This is because the thickness of the

diffuse layer of the countercharge around the particles is
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Figure 4. The apparent relative permittivity of HMIBF4, MOIBF4,
and DMIBF4.

Figure 5. The apparent relative permittivity of BMIPF6, HMIPF6,
MOIPF6, and DMIPF6.

Figure 6. The apparent relative permittivity of BMIBF4–BMICl mix-
tures.



proportional to the reciprocal root of ionic strength. In

aqueous medium, the z-potentials of about 80 mV (cf.

Table II) are observed at ionic strengths of about 0.001

mol dm–3, that is, lower by 3 orders of magnitude than

the ionic strength in ionic liquids, and z-potentials in ex-

cess of 200 mV are not observed at all. Thus, the values

of z-potentials calculated with e = 10 are at least surpris-

ing. On the other hand, the z-potentials calculated with

e = 100 (the order of magnitude of apparent permittivities

found in the present study) are similar to the z-potentials

of anatase and other mineral oxides in aqueous solutions at

comparable concentrations of inorganic 1–1 electrolytes,20

that is, 10–20 mV.

CONCLUSIONS

Apparent permittivity of low-temperature ionic liquids

obtained from direct measurements of capacity is sub-

stantially higher than that determined from the correla-

tions between the permittivity and the solvatochromic

shifts. A plateau in the apparent permittivity as the func-

tion of frequency is observed over a frequency range

about 1 MHz. Although we were not particularly succes-

sful in determining reliable values of permittivity, our

work shows specific limitations and directions for future

work. The electrometric method is more suitable for

ionic liquids, which have viscosities in the range of 1 Pa

s rather than for less viscous ionic liquids (the lowest

viscosities are on the order of 0.01 Pa s), and a plateau

in the apparent permittivity vs. frequency plots is expect-

ed in the range 1 MHz-1 GHz.
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Permitivnosti 1-alkil-3-metilimidazolijevih tetrafluoroborata i heksafluorofosfata

M. Kosmulski, K. Marczewska-Boczkowska, P. Z
•
ukowski, J. Subocz i C. Saneluta

Iz kapaciteta posebno dizajniranih kondenzatora, mjerenih kao funkcija frekvencije u podru~ju od 0,001

Hz do 5 MHz, odre|ivane su permitivnosti 1-alkil-3-metilimidazolijevih tetrafluoroborata i heksafluorofosfata,

kao i smjese 1-alkil-3-metilimidazolijevih tetrafluoroborata i klorida (alkil = butil, heksil, oktil ili decil). Mjerni

sustav testiran je pomo}u molekulskih teku}ina. Razmjerno stabilni rezultati dobiveni su u pokusima s vodom i

metanolom, {to se sla`e s podacima iz literature za podru~je frekvencija od 30 kHz do 3 MHz. Permitivnost

mjerena pri ni`im frekvencijama bila je izrazito ve}a od realne. U slu~aju niskotemperaturnih ionskih teku}ina,

plato pri prikazu ovisnosti permitivnosti o frekvenciji je u`a i nalazi se u podru~ju od 1 do 3 MHz. Permitiv-

nosti u podru~ju platoa su i u tom slu~aju ve}e od realnih {to se posebno odnosi na 1-butil-3-metilimidazolijeve

soli.
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